Dates: from Jan. 1, 2014 to June 30, 2017

Funder: MINECO (Spain)

Project id: FIS2013-47532-C3

Total Funding: 90000€

Node Funding: 36000€

Visit the project web page

Technological advances during the last fifteen years have boosted our capacity to generate and store data. Indeed, according to some estimates 90% of the world’s stored data has been generated in the last two years, and the availability of such large quantities of data is changing the way we face crisis response, social mobilization, marketing, and intelligence. In science, the hopes created by big data are also high, and analyses of large datasets are behind recent breakthroughs in areas such as astrophysics, genomics or particle physics.

Big data is a particularly relevant opportunity for the study of complex systems such as cells, societies, ecosystems or economies, the study of which has traditionally been constrained by the limited information available from the different components (and layers of components) comprising the systems. The availability of unprecedented highly detailed data on these systems opens the door to significantly advance our understanding of their behavior, and of how this behavior evolves in time.

Our project is based on the premise that statistical mechanics tools and methods, when applied to large-scale data acquisition, analytics, and modeling, have the potential to successfully address the problem of transforming data into knowledge. The overarching goal of this project is, precisely, to develop and apply a comprehensive set of statistical mechanics methods for large-scale data analysis. To achieve this goal, we propose three main objectives: (M) To develop statistical mechanics tools for the analysis of large-scale data; (D) to develop crowd-sourced data acquisition and processing protocols; (A) To analyze and model, using the methodologies and/or data from objectives M and A, complex systems in three different areas: biochemical systems, techno-social systems, and economic systems.

The methods we propose to develop are aimed at network and non-network data that are, in general, heterogeneous, multidimensional and multilevel, and time-resolved. The development of such methods will allow the construction of predictive models from large quantities of heterogeneous data, and provide guidance and innovative recommendations to practitioners and stakeholders (from academia, industry, and government). Our project relies not only on the interdisciplinary nature of the methodologies of the participants (statistical mechanics, computer science, mathematics, statistics) but also on the direct contact with experts in the fields of economy, finance, biology or chemistry. In this sense it is important to stress the quality of the members of the teams, their experience in different fields and the collaborations they maintain with internationally renowned experts, companies and institutions in many different areas.

Finally, our project deals with problems of large impact in technology and society. Given its comprehensive nature and the collaboration with companies, we expect our project to produce a large number of results with direct impact in our society and economy. Not only on the big data business, but also in problems like urban planning, marketing, financial markets or biology.

Marta Sales-Pardo

Role: Principal Investigator

Roger Guimerà

Role: Investigator

Antoni Aguilar-Mogas

Role: Investigator

Francesco Alessandro Massucci

Role: Investigator