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In this paper we study the jamming transition in complex adaptive networks. We introduce an adaptation
mechanism that modifies the weight of the communication channels in order to delay the congestion onset.
Adaptivity takes place locally as it is driven by each node of the network. Surprisingly, regardless of the
structural properties of the backbone topology, e.g., its degree distribution, the adaptive network can reach
optimal functioning provided it allows a reciprocal distribution of the weights. Under this condition, the optimal
functioning is achieved through an extensive network reshaping ending up in a highly reciprocal weighted
network whose critical onset of congestion is delayed up to its maximum possible value. We also show that, for
a given network, the reciprocal weighting obtained from adaptation produce optimal static configurations.
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I. INTRODUCTION

In recent years, the use of complex network theory [1]
together with tools inherited from nonequilibrium statistical
physics have allowed us to study the critical properties of a
variety of complex systems. These critical properties are of
utmost importance to describe the functionality of networked
systems in practical terms such as their resilience to failures,
attacks, and the spreading of diseases [2,3] or their ability
to attain synchronized dynamics [4] and display collective
behaviors in social systems [5], among others. It has been
shown that the structure of interactions among the constituents
of real complex systems influences dramatically the above
properties due to its scale-free (SF) nature [6], revealed
from the power-law probability distribution of the number of
contacts (degree), k, per individual: P (k) ∼ k−γ .

In the same way, the structure of communication systems,
such as the Internet [7], affects their dynamical properties and
the onset of collective states, such as jamming and congestion,
that are detrimental to their functioning. The architecture of
these systems is described by means of a collection of N nodes
and L edges that make up a macroscopic network within which
packets travel from their corresponding departure nodes to the
arrival ones. The path followed by each packet is described
by the sequence of nodes visited along its trip. However,
the nodes have a limited capacity for receiving, allocating,
or sending packets. Thus, congestion eventually appears when
nodes are not able to balance their incoming and outgoing
flows of packets. These microscopic imbalances give rise to
a macroscopic jammed state in which the number of packets
traveling across the network grows in time.

The problem of congestion becomes of utmost importance
in real communication networks due to their SF nature [7].
The presence of largely connected nodes, the hubs, having
a large number of communication channels departing from
and arriving to them, anticipates considerably the onset of
congestion in such a way that the network is very prone to
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fail, even when a low quantity of packets are injected into
the network per unit time. Thus, a large body of recent work
has been focused on the formulation of different strategies
aimed at delaying the critical onset of jamming [8–25] to
increase the traffic capacity of the networks. However, despite
the advances in this direction, achieving optimal functioning
in SF architectures still constitutes a major challenge.

In this work, we approach the problem of delaying jammed
states from the perspective of adaptive networks [26], which
has been successfully used as a way for enhancing the
functionality of network topologies in diverse settings such
as synchronization [27–31], sustainability of cooperation in
evolutionary games [33], or resilience to epidemics [32]. In
our case, the network topology of the communication system
will adapt its connections in order to avoid congestion. In
particular, we will consider that each node of the network
will adapt the weights of its outgoing links to distribute
its deliveries preferentially to its less congested neighbors.
Thus, the adaptive principle makes use of purely local
information. Surprisingly, this simple adaptive network is
able to delay the congestion onset up to the optimal one
regardless of the heterogeneity of the network of physical
links (the network backbone). Furthermore, as a product of the
adaptive process we obtain optimal weighted networks that
show highly reciprocal patterns for the interaction between
connected elements. Finally, we show that these reciprocal
topologies obtained from local adaptation, when used as static
topologies, behave optimally. Therefore, our results show
adaptivity as an efficient way to reach optimal functioning in
communication models while the reciprocal design, showing
up from adaptation, appears near the optimal architecture for
any network substrate.

II. THE MODEL

We start our analysis by considering a simplified routing
model, although we will later show the validity of our results in
a more realistic scenario. The model works as follows. At each
time step, each node i of the network creates a new packet with
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probability p and stores it in its queue, qi . Thus, on average
p · N new packets are created at each time step. Additionally,
at each time step, each node i of the network, provided it has
packets waiting in its queue, delivers one of the packets to one
if its ki neighbors. To decide where to send the packet, each link
from i to a neighbor j has assigned a weight Wij that represents
the probability of sending a packet through the channel i → j .
Thus, we model the dynamics of each packet as a discrete
walk process on top of the network, so the weight of the links
departing from each node i fulfill

∑
j Wij = 1 while this is

not necessarily true for the total strength of its incoming links:
si = ∑

j Wji . Finally, with probability μ, a packet hopping
from node i to a neighbor j reaches its destination and it is
destroyed, otherwise, with probability (1 − μ), it is enqueued
in j .

Simultaneously with the traffic dynamics, the network
adapts the weights of its links according to the level of
congestion. This adaptation takes place locally so, at each
time step, each node i assigns the weights of its outgoing
links depending on the congestion level of its neighborhood
according to

Wt+1
ij = Aij e−βqt

j

∑N
l=1 Aile−βqt

l

, (1)

where qt
j is the queue length of a node j at time step t and

Aij is the (i,j ) element of the adjacency matrix, A, defined as
Aij = 1 when there is a link between i and j while Aij = 0
otherwise. In the above equation the parameter β accounts
of the sensitivity of nodes to their neighbors’ congestion.
Note that the above assignation preserves the normalization of
the outgoing links

∑
j W t

ij = 1 ∀i,t . Obviously, when β = 0
network adaptation does not occur, and we recover a random
walk dynamics for the packets’ motion.

The numerical simulation of the above adaptive network
model allows us to study the effect of the load of traffic, p,
and the strength of adaptation, β, on the level of congestion
of the system. For fixed values of p and β, the macroscopic
state of the system will be characterized by means of the order
parameter ρt introduced in Ref. [34] that accounts of the rate
of growth of the active packets, P (t), in the network during a
time window of duration τ relative to the external flow during
the same period (Npτ ):

ρt = lim
τ→+∞

P (t + τ ) − P (t)

Npτ
. (2)

The average value of ρt , ρ, describes the congestion state of
the system. Obviously, when the system is in the free-flow (or
undercongested) phase we have ρ = 0, since the network is
able to balance the incoming flow with the delivery of active
packets. On the contrary, when ρ > 0 the congestion of the
system grows in time (with rate ρ) attaining its maximum
imbalance when ρ = 1. For a fixed value of β, a phase
transition occurs at some critical value pc separating the
free-flow phase (p < pc) from the congested one (p > pc).

Before describing the congestion levels reached by the
adaptive network, let us derive the optimal critical point,
p∗

c , and the optimal weight topology, {W ∗
ij }, of any network

operating with the routing dynamics described above. To this

end, we write the evolution of the queue length of nodes as

qt+1
i = qt

i + p +
N∑

j=1

Wt
jiθ

(
qt

j

)
(1 − μ) −

N∑

j=1

Wt
ij θ

(
qt

i

)
, (3)

where θ (x) = 1 when x > 0 and θ (x) = 0 otherwise. Equa-
tions (1) and (3) define the evolution of the adaptive network.

We, first, assume that the dynamics ends up in a stationary
state of the free-flow regime (p � pc), i.e., qt+1

i = qt
i ∀i. From

Eq. (1) it is clear that this assumption automatically implies
that the links’ weights are also stationary, Wt+1

ij = Wt
ij ∀i,j .

Second, we assume that all the nodes are occupied by at least
one packet, i.e, the queues are nonzero: θ (qi) = 1 ∀i. This
second hypothesis holds for p � pc. Consequently, if the two
hypothesis hold at once, the system is situated at the onset of
congestion, p = pc. More importantly, these two conditions
impose that both the stationary distribution of weights and the
critical load ({W ∗

ij } and p∗
c ) are optimal, since all the nodes

become congested at once at the onset of jamming. Thus,
imposing the two conditions for optimal functioning in Eq. (3)
we obtain

p∗
c +

N∑

j=1

W ∗
ji(1 − μ) =

N∑

j=1

W ∗
ij . (4)

Considering the normalization of the outgoing weights,∑N
j=1 W ∗

ij = 1, we obtain that the incoming strength of each
node in the optimal configuration, s∗

i = ∑
j W ∗

ji , is

s∗
i = 1 − p∗

c

1 − μ
∀i, (5)

at the critical point p∗
c . On the other hand, since we are in the

stationary state, the total incoming flow,
∑

i si has to be equal
to the outgoing one which, in its turn, is equal to

∑N
i,j=1 W ∗

ij =
N since, at p∗

c , all the nodes are occupied. Thus, at p∗
c , the

incoming strength of nodes is s∗
i = 1 ∀i and, from Eq. (5), we

obtain that the congestion onset reaches the optimal (maximum
possible) value: p∗

c = μ.
Let us note that we have not imposed any particular

structure to the adjacency matrix A. Therefore, in principle,
for a given network backbone A, optimal behavior can be
attained provided it is possible to achieve a weight distribution
{Wij } such that si = 1 ∀i. In the following we will show that
the proposed adaptive scheme is able to reshape the weight
structure of the networks in order to achieve optimality. To this
aim, we have carried out numerical experiments by starting
from an empty network, i.e., with empty queues for all the
nodes, and with the following initial configuration for the
links’ weights: W 0

ij = 1/ki . We then let the traffic and topology
coevolve until the value of ρ reaches a stationary value.

The backbone topologies, encoded in A, used along
the work are Erdös-Rényi (ER) random graphs (having a
Poissonian degree distribution) and SF networks. In both
cases, we generated them by means of a model introduced
in Ref. [35] that interpolates between SF networks with a
degree distribution P (k) ∼ k−3 and ER graphs. In addition,
to generate SF networks with different exponents γ in their
degree distribution, we have used the configurational model
[36]. In all cases, we take care that the networks are connected,
i.e., they have a single connected component.
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FIG. 1. (Color online) Congestion diagrams ρ(p/μ) for (a) ER
and (b) SF (γ = 3) networks. Both topologies have N = 5000
nodes and an average degree of < k >= 8. In the two panels
the diagrams correspond to β = 0 (no adaptivity), β = 10−3 (slow
adaptive dynamics), and β = 1 (fast adaptive dynamics). The points
show the results obtained through numerical simulations of the
routing dynamics (50 realizations per point) while the curvs are for
the solution of the associated theoretical model, Eqs. (1) and (3). In
both cases the arrival-to-destination probability is set to μ = 0.2 as
the usual value found in the Internet [7].

III. RESULTS

We start our analysis by measuring the value of pc that
separates the congested and the free-flow regimes for ER
and SF networks topologies when there is no adaptivity in
the system (β = 0). In Fig. 1(a) we observe that for ER
graphs congestion starts when pc/μ ∼ 0.75 while for SF
networks [Fig. 1(b)] congestion occurs much earlier and
pc/μ ∼ 0.1. However, when we let the system self-adapt,
the weights of the links by increasing the value of β, the
congestion point for both networks shifts toward the optimal
onset and finally, for β = 1, the critical load is optimal,
pc = p∗

c = μ. The results indicate that the adaptive topology
is able to find a distribution of weights that optimizes the
traffic distribution across the network, independently of the
underlying interaction backbone.

To understand the optimal functioning of the adaptive
networks, we analyze the system at a microscopic level. In
particular, we measure the effect of β in (i) the incoming
strength of the nodes, si , and (ii) the link reciprocity, rij , that
quantifies the relation between the values of the weights, Wij

and Wji , associated to each link (i,j ) as

rij = min[Wij ,Wji]

max[Wij ,Wji]
. (6)

FIG. 2. (Color online) The panels show (a) the incoming strength
of nodes as a function of their degree, sk and (b) the probability density
function for link reciprocity, rij , as defined in Eq. (6) for different
values of p/μ. Additionally, the inset in (b) shows the cumulative
distribution for the reciprocity of links. In both cases, we used μ = 0.2
and a SF (γ = 3) backbone with N = 5000 and 〈k〉 = 8.

Obviously, when rij = 1, the link connecting nodes i and j is
fully reciprocal while rij → 0 as reciprocity decreases.

In Fig. 2(a) we show the strength of nodes as a function
of their corresponding degree for SF networks and different
values of p/μ corresponding to the subcritical (free-flow)
regime and the optimal critical point, p∗

c = μ. We observe that,
when the load of traffic is low (e.g., p/μ = 0.05), the network
adaptivity causes almost no change and the adaptive dynamics
ends up almost in the original wiring {W 0

ij = 1/ki} ∀ i,j .
Thus, the incoming strength scales linearly with the degree of
the node, sk = k

∑
k

′ P (k
′ |k)/k

′ 
 k
∑

k
′ P (k

′
)/〈k〉 = k/〈k〉,

so hubs are prone to receive the largest number of packets.
However, as traffic load p increases, adaptivity progressively
homogenizes the incoming strength of the nodes so, at the
optimal critical point, p∗

c , si = 1 ∀i, in agreement with the
results obtained for the wiring in the optimal critical point of
the Markovian model [Eqs. (1) and (3)].

Since many possible microscopic configuration may sat-
isfy the condition si = 1 ∀i, the question naturally arises
with regard to the precise mechanism by which adaptivity
reaches optimality. One possible solution is a fully recipro-
cal configuration Wij = Wji ∀ i,j since in such a situation
si = ∑

j Wji = ∑
j Wij = 1 ∀ i. In Fig. 2(b) we present the

probability density function of the values rij , P (rij ), measured
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FIG. 3. (Color online) Congestion diagrams ρ(p/μ) for SF networks of size N = 500 with different exponents γ . In (a) we set β = 0.0
so no adaptation occurs. As a product, we observe large levels of congestion even for low values of p. However, when adaptivity is at work
(b), congestion decreases dramatically and all the adaptive networks reach the optimal critical value p∗

c = μ. In (c) we fixed the weights of the
links to the values obtained at the optimal critical point after applying the adaptive process. We then run the traffic dynamics with no adaptation
(β = 0.0) for the whole range of p/μ values reaching almost optimal congestion values such as those shown in (b). The networks below (d)
show the weighted topologies obtained from the adaptive dynamics for different values of p/μ. The total (incoming plus outgoing) weight of
each link corresponds to the color code in the right. In all the panels the results correspond to fixing μ = 0.2.

in the adaptive networks produced for different values of p/μ

corresponding to the free-flow regime and the optimal critical
onset. From the figure we observe that when the system is still
far from the congestion point (e.g., p/μ = 0.3), the values of
the links are far from reciprocity and only around 30% have a
value of rij � 0.5. However, as we approach the critical point,
reciprocity starts to increase reaching, at p∗ = μ, with roughly
90% of the links having rij � 0.5. Thus, it seems clear that
reciprocity provides adaptivity with a successful route toward
optimality.

As a by-product of the adaptive process, we analyze the
behavior of the optimal configuration of weights obtained
from adaptation at p/μ = 1 as static structures for the whole
range of p/μ values. First, we generate SF networks with
different exponents γ in the degree distribution, P (k) ∼ k−γ .
In Fig. 3(a) we observe that for β = 0 (no adaptation) all the
congestion thresholds differ and are very low, p/μ ∼ 0, with
the SF network being more vulnerable to congestion as γ

decreases. Second, we introduce the adaptation mechanism in
the system with β = 0.01 and from Fig. 3(b) we observe that all
the critical points are shifted to the maximum value p/μ ∼ 1.
Finally, we extract the (highly reciprocal) weight distribution
obtained at the critical point and we store it as a static weighted
network for traffic routing and run the traffic process with no
adaptation. In Fig. 3(c) we show that the critical point for all
the networks is still close to the maximum. Thus, the reciprocal
networks obtained from adaptation are able to keep the systems
free of congestion up to p/μ 
 1, thus maximizing the traffic
capacity of the networks.

In Fig. 3(d), we show the effects that adaptation causes on
link weights as the load of traffic increases. From the plots we
observe that network hubs, placed in the center of the networks,
need to decrease the weight of their connections progressively
in order to avoid congestion. In this way, in the optimal
regime, p/μ = 1, almost all the links connected to a hub will
have lower values than in the original system. Conversely,
due to reciprocity, those nodes with lower degree (placed in
the periphery of the networks) distribute the excess weight
(remaining after the weakening of their connections with the
hubs) by reinforcing their connection with their neighbors.
Thus, as p/μ increases, the links associated with low-degree
nodes increase their value, allowing a better distribution of the
traffic and letting the system reach optimality.

Finally, we consider a more realistic scenario for the traffic
dynamics. Until now, packets performed limited paths of
average length 1/μ and then disappear from the network. In
the new realistic scenario, packets are born at a constant rate p

at each node of the network. These new packets are assigned
a particular destination node (randomly chosen among the
N − 1 remaining nodes). In this way, the packets move
across the network until their corresponding target nodes are
reached.

We study the above realistic routing model by monitoring
the congestion diagram ρ(p) when no adaptation (β = 0) takes
place and when the adaptive dynamics works with β = 1.
The results are reported in Figs. 4(a) and 4(b) for ER and
SF networks, respectively. It is clear that, in the absence of
adaptivity, SF networks become congested much earlier than
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FIG. 4. (Color online) Panels (a) and (b) show the congestion di-
agram ρ(p) in the traffic model with prescribed packets’ destinations
for ER and SF networks with 1000 nodes and an average degree
of < k >= 6 (The SF has an exponent γ = 3). In both panels we
show the diagrams corresponding to β = 0 (no adaptation) and β = 1
(strong adaptation). Panel (c) shows the cumulative distribution for
the reciprocity of links, P c(rij ).

ER graphs (as previously observed in Fig. 1). However, as
it was also the case for the simplified routing model, the
capacity of both networks is enhanced up to the same critical
point. Thus, by dropping parameter μ to incorporate realistic
conditions into the traffic dynamics, the adaptive network
is able to reproduce the optimization of network capacity
regardless of the heterogeneity of backbone architecture.
Moreover, in Fig. 4(c) we show the evolution of the cumulative
distribution for the reciprocity of links P c(rij ) as the traffic

load (p) increases in SF networks. We observe that, as p

increases approaching pc, adaptivity progressively shapes the
weight topology into a highly reciprocal one, thus recovering
the behavior observed in the simplified routing model [see
Fig. 2(b)].

IV. CONCLUSIONS

Summing up, we have constructed a model of adaptive
networks aimed at balancing the weight distribution of a com-
munication network as a function of local traffic conditions. We
have shown that, regardless of the heterogeneity pattern of the
network backbone, it is possible to achieve optimal behavior,
i.e., to delay the congestion point up to its maximum possible
value, thus obtaining weighted networks with maximal traffic
capacity. We have analyzed the microscopic details of the
configurations obtained, observing that link reciprocity is the
selected mechanism to achieve such optimal networks. These
results have been tested in both a simplified routing model,
assuming a constant rate for the death of the packets, and
a more realistic scenario, in which packets are assigned a
destination node so they remain in the network until they reach
their corresponding targets.

Furthermore, we have shown that when using the reciprocal
configurations obtained from adaptivity in a static way it is also
possible to achieve optimal behavior. Therefore, adaptivity can
also be used as an efficient methodology for the design of
communication networks. In this way, a given static backbone
of interactions can be assigned a reciprocal weight distribution
that allows to operate in an optimal way. This last result links
with the recently observed [37] reciprocal patterns observed
in the axonal pathways of mammalian brain networks. Thus,
as natural selection in the brain connectome, the adaptive
process introduced here overcomes the constrains imposed
by the structure of the backbone of interactions by selecting
reciprocal wirings for the communication channels.
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