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In complex systems, the network of interactions we observe between systems components is the
aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that
the existence of multiple interaction layers can have a dramatic impact in the dynamical processes
occurring on these systems. However, these studies assume that the interactions between systems
components in each one of the layers are known, while typically for real-world systems we do not have
that information. Here, we address the issue of uncovering the different interaction layers from aggregate
data by introducing multilayer stochastic block models (SBMs), a generalization of single-layer SBMs that
considers different mechanisms of layer aggregation. First, we find the complete probabilistic solution
to the problem of finding the optimal multilayer SBM for a given aggregate-observed network. Because
this solution is computationally intractable, we propose an approximation that enables us to verify that
multilayer SBMs are more predictive of network structure in real-world complex systems.
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I. INTRODUCTION

The development of tools for the analysis of real-
world complex networks has significantly advanced our
understanding of complex systems in fields as diverse as
molecular and cell biology [1], neuroscience [2], biomedi-
cine [3,4], ecology [5,6], economics [7], and sociology [8].
One of the main successes of the network approach has
been to unravel the relationship between the modular
organization of interactions within a complex system [9]
and the function and temporal evolution of the system
[10–13]. As a result, a large body of research has been
devoted to the detection of the modular structure (or
community structure) of complex networks, that is, to
the division (partition) of the nodes of the network into
densely connected subgroups [14].
Stochastic block models (SBMs) [15–17] are a class of

probabilistic generative network models that provide a
more general description of the (mesoscopic) group struc-
ture of real-world networks than modular models. In
SBMs, nodes are assumed to belong to groups and connect
to each other with probabilities that depend only on their
group memberships. The simple mathematical form of
SBMs has enabled not only the identification of generalized

community structures in networks [17–26], but also has
made network inference a predictive tool to detect missing
and spurious links in empirical network data [27], to predict
human decisions [28,29] and the appearance of conflict in
work teams [30], or for the identification of unknown
interactions between drugs [31].
While these approaches have pushed forward our under-

standing of complex network structure, a limitation is that
they rely on the premise that there is a single mechanism
that describes the connectivity of the network, even though
we know that real-world networks are often the result of
processes occurring on different “layers” (for example,
social networks encompass relationships that arise on the
familiar layer and relationships that arise in the professional
layer) [32]. Moreover, it is increasingly clear that the
multilayer structure of complex networks can have a
dramatic impact on the dynamical processes that take place
on them [33–38]. Unfortunately, we often lack information
about the different layers of interaction and can only
observe projections of these multilayer interactions into
an aggregate network in which all links are equivalent.
Here, we precisely address the problem of unraveling the

underlying multilayer structure in real-world networks.
First, we introduce the family of multilayer SBMs that
generalizes single-layer SBMs to situations where links
arise in different layers and are aggregated. Although there
have been proposals to extend the concept of modularity
to multilayer networks [39], ours represents a pioneering
attempt to extend generative group-based models to multi-
layer systems, and to study those models rigorously using
tools from statistical physics. Our approach is also different
from so-called latent feature models [40–42] in that SBMs
allow us to answer the fundamental question of whether an
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observed network is the outcome of a multilayer process,
while in latent feature models it is impossible to disentangle
the contributions of each layer.
Second, we give the probabilistically complete solution

to the problem of inferring the optimal multilayer SBM
for a given aggregate network. Because this solution is
computationally intractable, we propose an approximation
that enables us to objectively address the question of
whether an observed network is likely to be the projection
of multiple layers. The analysis of complex networks from
different contexts suggests that many real-world networks
are indeed projections.

II. MULTILAYER STOCHASTIC BLOCK MODELS

In our approach, nodes interact in different layers. In
each one of these layers, l ¼ 1;…; L, we define a SBM as
follows: each node i belongs to a specific group σli , and
links between pairs of nodes belonging to groups α and β,
respectively, in layer l exist with probability qlαβ. The

observed adjacency matrix AO is an aggregate that results
from the combination of the links in each of the layers, and
where all information of the layers has been lost (Fig. 1).
We call this model the multilayer SBM.
Here, we consider the simplest multilayer case and set

L ¼ 2. In such case, there are two combinations with a
plausible physical interpretation: (i) the AND combination
of layers, in which AO

ij ¼ 1 if, and only if, nodes i and j are
connected in both layers [Fig. 1(a)], and (ii) the OR
combination of layers, in which AO

ij ¼ 1 if i and j are
connected in at least one layer [Fig. 1(b)]. For example, the
AND model is a plausible model for in vivo protein
interactions, because in order for proteins to interact in
the cell it is necessary for them to be capable of physically
interacting (that is, to be linked in the layer of in vitro
physical interactions) and to be expressed simultaneously
in the same cellular compartment (that is, to be linked in the
coexpression layer). The OR model is a plausible model for
the effective online social network through which memes
spread [43], because some people use Facebook to share
memes, others use Twitter, and others use both.
In principle, we would like to identify which is the pair

of partitions ðP1;P2Þ (in layers 1 and 2, respectively) that
best describe the observed aggregate topology, which has
no information about the layers. The probabilistically
complete way to solve this problem is to obtain the joint
probability PðP1;P2jAOÞ that P1 and P2 are the true
partitions of the nodes given the aggregate observed
network. This distribution is given by

PðP1;P2jAOÞ ∝
Z

DQ1

Z
DQ2PðAOjQ1; Q2;P1;P2Þ

× PðQ1; Q2;P1;P2Þ; ð1Þ

where Ql is a matrix whose elements qlαβ represent the
probability that a link exists between a pair of nodes
belonging to groups α and β in layer l, and

R
DQl ≡Q

α≤β
R
1
0 dqlαβ is the integral over all possible values of

these probabilities.
This integral can be computed both for AND combina-

tions and for OR combinations of the two layers; for clarity,
we show the calculation for the AND model and discuss
the OR model in Appendix B. Because in a SBM each
link is independent of each other and in the AND model a
link has to be present in both layers to appear in the
observed aggregate network AO, the likelihood for an
AND model is

PANDðAOjQ1; Q2;P1;P2Þ
¼
Y
½α≤βγ≤δ�

ðq1αβq2γδÞn
1
αβγδð1 − q1αβq

2
γδÞn

0
αβγδ ; ð2Þ

where n1αβγδ is the number of links between pairs of
nodes that are in groups α and β, respectively, in layer
1, and in groups γ and δ, respectively, in layer 2
(n1αβγδ ¼

P
i<jA

O
ijδσ1i αδσ1jβδσ2i γδσ2jδ), and n0αβγδ is the number

of no links between such pairs of nodes [n0αβγδ ¼P
i<jð1 − AO

ijÞδσ1i αδσ1jβδσ2i γδσ2jδ].

FIG. 1. Network aggregation mechanisms. In aggregated multi-
layer networks, different networks containing the same nodes but
with different adjacency matrices are combined into an observed
network with adjacency matrix AO, where all information about
the original layers has been lost. We consider two aggregation
mechanisms of two-layer networks with adjacency matrices A1

and A2: (a) AND aggregation, in which AO
ij ¼ A1

ijA
2
ij, so that

AO ¼ 1 if, and only if, i and j are connected in both layers, and
(b) OR aggregation in which AO

ij ¼ 1− ð1−A1
ijÞð1−A2

ijÞ, so that
AO ¼ 1 if i and j are connected in at least one layer.
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Assuming a uniform distribution for the prior
PðQ1; Q2;P1;P2Þ ¼ const [27,44], we can plug Eq. (2)
into Eq. (1) and integrate to find (Appendix A)

PANDðP1;P2jAOÞ

∝
X

½ fmrsg
mrs¼0;…;n0rs

�

Q
r;sð−1Þmrs

�
n0rs
m

�
rsQ

rðn1r þmr þ 1ÞQsðn1s þms þ 1Þ ; ð3Þ

where the summation is over all possible values of eachmrs
and, for clarity, we use the shorthand r≡ αβ and s≡ γδ,
mr ≡Psmrs and ms ≡Prmrs [45].
Given Eq. (3), which is the complete probabilistic

description of the multilayer SBM, one could, in
principle, find the partitions P1 and P2 that maximize
PANDðP1;P2jAOÞ. If this were possible, one would be able
to perfectly disentangle the two SBMs responsible for the
observed links, even though the observation did not have
explicit information about the layers. It would also be
possible to compare regular SBMs to multilayer SBMs to
determine if a multilayer model is more or less appropriate
to describe a given network. Unfortunately, the expression
above becomes numerically intractable even for a small
number of groups and therefore one needs to make
approximations that simplify the problem.

III. LINK RELIABILITY WITH APPROXIMATE
MULTILAYER STOCHASTIC BLOCK MODELS

We propose an approximation that makes it possible to
work with multilayer SBMs. We start by noting that any
multilayer SBM can be represented as a single-layer SBM
[Fig. 2(a)] [46]. In the single-layer SBM, each group
comprises the nodes that belong to the same pair of groups
α, γ in P1 and β, δ in P2 in the multilayer SBM (and only
those); we call the single-layer partition the intersection
partition. Moreover, if group r in the intersection partition
corresponds to groups α in P1 and β in P2, and group s in
the intersection partition corresponds to groups γ in P1 and
δ in P2, then the probability of connection in the single-
layer SBM is qANDrs ¼ q1αγq2βδ (for simplicity, we again focus
on the AND model and leave the OR model for the
appendixes). This fully determines the single-layer SBM.
Here, we make the following approximation: we keep

the information of the partitions P1 and P2 in the
intersection partition, but consider that the matrix elements
qANDrs , while each is the result of the product of two factors,
are all independent of each other [see Fig. 2(b)]. Since this
approximation is equivalent to integrating separately every
term with a different ðα; β; γ; δÞ combination in Eq. (2), it
follows that the integrated likelihood depends exclusively
on the intersection partition. In other words, within this
approximation all pairs of partitions ðP1;P2Þwith the same
intersection partition PI are equally likely, and it is no

longer possible to uniquely determine the multilayer SBM
that best describes the observed topology.
Despite this limitation, our approximation still enables

us to address the fundamental question of whether real-
world networks are better described by single-layer or
multilayer models. Specifically, in what follows we com-
pare the predictive power of single-layer and multilayer
SBMs in the problem of detecting missing and spurious
links in noisy networks [27]. In fact, we argue that, if
(approximate) multilayer SBMs yield better predictions
on real networks, then there is evidence (supported by our
results) to suggest that these networks are likely the
outcome of multilayer processes (despite being observed
as single-layer aggregates).

FIG. 2. Exact and approximate multilayer SBM ensembles.
(a) Two independent single-layer SBMs aggregated using the
AND mechanism. We represent each single-layer SBM by its
node-to-node connection probability matrix (indicated in the
shades of green shown in the color bar; note that node ordering is
different in each SBM). The aggregation of the two layers can
also be represented as a single-layer SBM, in which each group
comprises the nodes that belong to the same pair of groups α in
layer 1 and γ in layer 2; this is the intersection partition PI .
Moreover, if group r in PI corresponds to groups α in P1 and γ in
P2, and group s in PI corresponds to groups β in P1 and δ in P2,
then the probability of connection in the single-layer SBM is
qANDrs ¼ q1αβq

2
γδ. (b) For a fixed pair of partitions P1 and P2, we

integrate over the ensemble of all possible probability matrices
Q1 and Q2 [Eq. (3)]. For each pair ðQ1; Q2Þ, the resulting qANDrs
are therefore correlated. In our approximation, we assume that
the elements of the intersection qANDrs are randomly drawn and
independent of each other.
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In the problem of assessing link reliability [27,47], the
goal is to compute the probability PðAij ¼ 1jAOÞ that a link
between nodes i and j truly exists (Aij ¼ 1) given a noisy
network observation AO, which contains false positives
(spurious interactions that are reported but do not truly
exist) and false negatives (missing interactions that truly
exist but are not reported). We call the probability Rij ¼
PðAij ¼ 1jAOÞ the reliability of the link. In general, for
any setM of models (single-layer SBMs, AND-multilayer
SBMs, or OR-multilayer SBMs), the reliability is [27]

RM
ij ¼

R
M dMPðAij ¼ 1jMÞPðAOjMÞPðMÞ

Z
; ð4Þ

where Z is a normalization constant.
In the case of multilayer SBMs, the integral over the

ensemble of modelsM requires (i) the integration over the
connection probabilities Q1 and Q2 [akin to what we did to
obtain Eq. (1)] and (ii) the sum over all pairs of partitions
P1 and P2. Within our approximation, the first step can be
carried out analytically, but the second cannot (see the
appendixes). However, always within our approximation,
one can exploit the fact that the integral in Eq. (4) depends
exclusively on the intersection partition PI and map the
sum over pairs of partitions onto a sum over a single
partition. By doing so, we obtain the following expression
for the link reliability (see appendixes for the analogous
expression for the OR model):

RAND
ij ¼ 1

Z

X
PI

0
B@n1σiσj þ 1

nσiσj þ 2

Pnσiσjþ2

k¼n1σiσjþ2
1
kPnσiσjþ1

k¼n1σiσjþ1
1
k

DðPIÞe−HðPIÞ

1
CA;

ð5Þ

where the sum is over all possible intersection partitions
(that is, all single-level partitions), n1αβ is the number of
links between groups α and β in the intersection partition,
nαβ ¼ n0αβ þ n1αβ is the number of (possible links between)
pairs of nodes in groups α and β, and DðPIÞ the number of
pairs ðP1;P2Þ that have the same intersection partition PI
(the degeneracy of partition PI; see the appendixes). The
energy H is

HðPIÞ ¼
X
α≤β

"
lnðnαβ þ 1Þ þ ln

�
nαβ
n1αβ

�
− ln

 Xnαβþ1

k¼n1αβþ1

1

k

!#
;

ð6Þ

where the sum is over all distinct pairs of groups in PI.
As in Ref. [27], the expression for the link reliability

[Eq. (5)] is analogous to an ensemble average of an
observable in statistical mechanics, giving HðPIÞ the
meaning of an energy associated to a specific intersection

partition. We can use a Markov chain Monte Carlo algo-
rithm to compute numerically Rij (see Supplemental
Material [48] for details) [49]. As it turns out, HðPIÞ is
equal to the energy obtained assuming a single SBM
[Eq. (S2), Ref. [27]] plus a term that accounts for the
product of two probabilities that generate each element of
the intersection probability matrix. In a Bayesian context,
we can interpret this term and the degeneracy DðPIÞ as
nonuniform priors for the intersection partitions.

IV. VALIDATION OF LINK RELIABILITY
ESTIMATION IN MODEL NETWORKS

Now that we are able to estimate link reliabilities using
our approximation to two-layer (AND and OR) SBMs
[Eq. (5)], as well as single-layer SBMs [27], we compare
the performance of these approaches at detecting missing
and spurious interactions. Our expectation is that if real-
world networks are truly the result of the aggregation of
multiple layers, then assuming a two-layer structure should
result in a higher accuracy.
Note that, because single-layer and two-layer models are

identical models with a different prior, one may expect that
they perform equally well in large enough networks. This is
because when one has infinite available information about
the system, the prior has no effect on the inference and
therefore single-layer and two-layer models should be
equally accurate. While this is indeed the case for simple
modular SBMs whose group sizes increase with network
size (see Fig. S11 in Supplemental Material [48]), this is
not necessarily the case for real-world networks. Indeed,
real-world networks have very heterogeneous connectivity
patterns, and groups can be arbitrarily small regardless of
network size, which makes it impossible to gather infinite
information about those groups. In that case, the choice of
prior does affect the inference protocol so that we expect a
difference in accuracy between single- and two-layer
SBMs. As we show in the following, our results for all
the real-world networks we study confirm that there are
differences between predictions based on single-layer and
two-layer models.
To identify the limits of detectability in terms of the

choice of two-layer SBM model, we first construct a set of
multilayer test networks that have a well-defined block
structure in each of the two layers, and that are aggregated
using the AND or OR models (see Supplemental Material
and Fig. 3). We parametrize this ensemble of networks
using two variables: (i) the low-to-high connectivity ratio λ
and (ii) the average connectivity of nodes k. For a fixed
value of k, we expect to obtain larger accuracies for the easy
cases, that is, for networks with a more marked block
structure (i.e., low values of λ).
We consider the predictive power of each of the

approaches at detecting [27,47] (i) missing links (we
remove a fraction f of the links and compute the fraction
of times that a removed link has a higher reliability than a
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link not present in the original network, that is, the AUC
statistic) and (ii) spurious links (we add a fraction f of links
and compute the fraction of times that an added link has a
lower reliability than a link present in the original network,
that is, the AUC statistic).
For AND networks [Figs. 3(a)–3(f) and Supplemental

Material [48]) we find that, for the detection of both
missing and spurious links, the two-layer approach out-
performs the single-layer approach, especially (i) when
the number of distinct node groups in the intersection
partition and the connectivity grow and (ii) for small or

moderate noise levels (fraction of removed or added links).
Only when the structure of the blocks becomes very
blurry do we observe that the single-layer approach works
better (but in this region both approaches do, in fact, work
poorly).
For OR networks [Figs. 3(g)–3(i) and Supplemental

Material [48]), the two-layer approach again outperforms
its single-layer counterpart in most situations. In this
case, however, the largest improvements in performance
happen for the hard cases (low accuracy values) with lower
connectivity.

FIG. 3. Performance of missing and spurious link identification on synthetic aggregated two-layer networks. Each row shows results
for the different sets of two-layer SBMs illustrated in (a),(d),(g). We consider networks of N ¼ 168 (a),(d) and N ¼ 240 (g) nodes
divided into uniform groups in each layer. In the connection probability matrices, dark green represents a high connection probability ph
and light green a low connection probability pl. We generate synthetic networks varying two parameters: the low-to-high connectivity
ratio λ ¼ pl=ph < 1 and the average connectivity k (see Supplemental Material [48]). To compare the performance of the different
approaches at detecting missing links (b),(e),(h), we randomly remove a fraction f ¼ 0.25 of the links (false negatives) from the real
network and calculate the reliability of each unobserved link. Then we calculate the AUC statistic; that is, we rank the links by
decreasing reliability and calculate how often a removed link (false negative) has a higher reliability than a link that does not exist in the
original network (true negative). Analogously, to detect spurious links (c),(f),(i), we randomly add a fraction f ¼ 0.25 of links (false
positives), calculate the reliability of the observed links, and calculate how often an added link (false positive) has a lower reliability than
a link that exists in the original network (true positive). For each pair of parameter values, we generate 30 different synthetic networks.
We compare the average performance (AUC) at detecting missing links (b),(e),(h) and spurious links (c),(f),(i) of the approximate
multilayer SBM approach, AUC2L, against that of the single-layer SBM approach, AUC1L. The size of the circles represents the AUC2L
of the multilayer approach. The color of the circles represents the logarithm of the ratio AUC2L=AUC1L, so that blue circles correspond
to instances where the multilayer approach outperforms the single-layer approach, and conversely for red circles. [See Supplemental
Material [48] for results for other values of f (fraction of false negatives/false positives) and for synthetic networks generated for
different numbers of nodes and/or groups.]
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Note that in the OR model the aggregated network is
denser than each of the layers, whereas in the AND model
the aggregate is sparser than each of the original layers. For
this reason, we expect the AND model to produce better
results in real-world networks, which are sparse. In fact, we
should expect the OR model to produce better results only
for networks obtained from our ensemble of OR two-layer
stochastic block models, that is, networks obtained from an
OR aggregation of SBMs with independent and uniformly
distributed probabilities of connection between pairs of
groups (according to our prior). Our results for such an
ensemble of networks confirm that this is the case (Fig. S12
in the Supplemental Material [48]).

V. MULTILAYER STOCHASTIC BLOCK MODELS
AREMORE PREDICTIVE FOR REAL NETWORKS

After showing that our approach is indeed more appro-
priate for model multilayer networks, we consider a real
multilayer protein-protein interaction network of yeast
Saccharomyces cerevisiae. In particular, we consider two
types of interactions reported in the BioGRID database
[50]: those detected using “two-hybrid” experiments and
those obtained using “affinity-capture Western” experi-
ments. We aggregate the two layers using the AND
mechanism; that is, we build an aggregate network com-
prising the interactions that are detected by both types
of experiments, and only those. As we show in Fig. 4,
the multilayer model is again more accurate than the

single-layer model at detecting missing and, especially,
spurious interactions.
Finally, we turn to the question of whether real networks

that are observed as single-layer networks are, in fact, better
described as aggregates of multiple layers. Specifically, we
compare the performance of the single-layer and multilayer
approaches on eight real-world networks (Fig. 5 and also
Fig. S10 in the Supplemental Material [48]): (i) the air
transportation network in Eastern Europe [51], (ii) the
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FIG. 5. Performance of missing and spurious link identification
on real aggregated networks. We proceed as in Fig. 4 to compare
the performance of the different approaches at detecting missing
links (a),(c),(e),(g),(i) and spurious links (b),(d),(f),(h),(j). We
show results for five real-world networks (see Supplemental
Material for results on other networks [48]): (a),(b) the air
transportation network in Eastern Europe [51], (c),(d) the neural
network of C. elegans [52], (e),(f) the Email network within an
organization [53], (g),(h) the network of books about U.S. politics
in 2004 elections [54], and (i),(j) the transcriptional regulation
network of yeast S. cerevisiae [55]. Red lines represent the AUC1L
obtained with single-layer SBMs, blue circles correspond to AND
two-layer SBMs, and green circles to OR two-layer SBMs.
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(a) missing and (b) spurious interactions in the protein-protein
interaction network of S. cerevisiae, obtained from the BioGRID
database [50], by aggregating two layers as described in the text.
To compare the performance of the different approaches at
detecting missing links (a), we randomly remove a fraction of
the links (false negatives) from the real network and calculate the
reliability of each unobserved link. Then we calculate the AUC
statistic; that is, we rank the links by decreasing reliability and
calculate how often a removed link (false negative) has a higher
reliability than a link that does not exist in the original network
(true negative). Analogously, to detect spurious links (b), we
randomly add a fraction of links (false positives), calculate the
reliability of the observed links, and calculate how often an added
link (false positive) has a lower reliability than a link that exists in
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neural network of Caenorhabditis elegans [52], (iii) the
Email network within a university [53], (iv) the network of
frequent copurchasing of books about U.S. politics sold by
the online bookseller Amazon during the 2004 presidential
elections [54], (v) the transcriptional regulation network of
yeast S. cerevisiae [55], (vi) the air transportation network
in the U.S. [56], (vii) the collaboration network of jazz
musicians, where two musicians are connected if they have
played in the same band [57], and (viii) the network of
American football games between colleges during regular
season in the fall of 2000 [58].
Our results in Fig. 5 and also Fig. S10 of the Supplemental

Material [48] show that the two-layerANDmodel provides a
better description of these real-world networks since both
missing and spurious interactions are consistently more
accurately detected by the multilayer SBM approach,
especially for low observational noise.
As mentioned earlier, a comparison of the two-layer

approximation in Eq. (5) and the single-layer model in
Ref. [27] shows that the two-layer model differs from the
one-layer model in two ways. First, the AND model
generates sparser networks than the single-layer model.
Second, the two-layer model includes a degeneracy factor
DðPIÞ that favors partitions with a larger number of groups
than the single-layer model (Table S3 in Supplemental
Material [48]). Our results (Supplemental Material Fig. S10
[48]) show that neither of the two factors alone is
responsible for the improvement in accuracy we observe.
In particular, we show that if we add the degeneracy factor
to the single-layer model, we already improve the accuracy
at detecting missing and spurious links in most cases. From
our results, it follows that sampling from partitions with a
larger number of groups provides better models for real-
world networks. This may seem counterintuitive, since one
may expect a better model to have a lower number of
parameters (groups in our case). However, because we
expect the intersection block model resulting from a layer
aggregation process to have a larger number of groups than
the block models for each of the layers, this observation
further reinforces our hypothesis that most real-world
networks are in fact the result of an aggregation process.

VI. QUANTIFICATION OF THE PREFERENCE
FOR MULTILAYER MODELS

Our results demonstrate that the two-layer stochastic
block model (with AND aggregation) is more predictive for
real-world complex networks, thus suggesting that real-
world complex networks may be the result of the projection
of several layers onto a single aggregate observation. To
further quantify to what extent a two-layer model provides
a better description of real-world networks than a single-
layer model, we use Markov chain Monte Carlo sampling
to compute the Bayes factor K of the models [59] (see
Supplemental Material [48]), which is defined as

K ¼ pðAOjM2Þ
pðAOjM1Þ

: ð7Þ

Here, M2 and M1 are the two-layer AND SBM and the
single-layer SBM, respectively, and the value of K repre-
sents the extent to which an observed network AO supports
the claim that the “true” model is the two-layer versus the
single-layer model (if K > 1, modelM2 is better supported
by the data under consideration than model M1, and
vice versa.)
Figure 6 shows that, for all the real-world networks we

consider, the Bayes factor is larger than 1. Using the
qualitative scale proposed by Kass and Raftery to map K
values to human perception of evidence strength [60], we
conclude that there is “very strong evidence” supporting the
two-layer model for most of the networks; for the S.
cerevisiae protein-protein interaction network and for the
networks of political books the evidence is “strong.”
Importantly, Fig. 6 also shows that the preference for the
two-layer model cannot be solely attributed to the sparsity
induced by the AND aggregation. Indeed, simply adding to
the single-layer model the degeneracy factor (which, as
discussed above, introduces a preference for larger numbers
of groups) also results in a model that is better supported by
the data than the single-layer model, in all but one of the
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networks we consider (the protein-protein interaction net-
work of S. cerevisiae).
Interestingly, we find that there are some discrepancies

between the evidence we find for the two air transportation
networks we consider. While for U.S. air transportation we
find very strong evidence for the two-layer model, we find
barely any positive evidence for European air transporta-
tion. From previous analyses, we know that air trans-
portation networks have a very strong modular component
driven by geopolitical factors [51,61]; nonetheless, there is
arguably a second layer that may arise from the distinction
between international hubs that connect to one another and
local aiports that connect to hubs. Our results suggest that
while U.S. air transportation shows strong evidence for
those two layers, for the European air transportation net-
work (which is smaller and has a much lower density, and
where geography may play a stronger role because of the
presence of political borders) the evidence of the two layers
is less conclusive.

VII. DISCUSSION

We introduce the family of multilayer SBMs, which
generalizes single-layer SBMs to situations where links
arise in different layers and are aggregated through different
mechanisms. We also give the probabilistically complete
solution to the problem of inferring the optimal multilayer
SBM for a given aggregate network, and propose a
tractable approximation that enables us to objectively
address the question of whether an observed network is
best described as the projection of multiple layers or as a
single layer. Our results suggest that many real-world
networks are indeed projections.
Although, as mentioned above, there have been propos-

als to extend the concept of modularity to multilayer
networks [39], our approach represents a pioneering
attempt to extend stochastic block models to multilayer
systems. In this regard, it is important to stress that in this
work we are concerned with the learning of multilayer
models from aggregate networks where all information
about the layers has been lost; in this sense, our work
is different from previous attempts to do inference of
stochastic block models on multigraphs where the layers
themselves are observed [29].
Our work is also different from works on link prediction

using latent feature models [40–42]. An important differ-
ence between latent feature approaches and ours is that
the latent feature model considers that the probability of the
existence of a link is a function of the weighted sum of
the interactions at the different layers; therefore, the latent
feature model does not allow a physical interpretation of
what each layer is and of how layers are combined. All in
all, latent feature models are very well suited for the
inference of unobserved links, but due to the intricacies
of the model and the difficulty to interpret its “parameters,”
it is not clear whether they are appropriate to address the

question of whether a real network is really the outcome of
processes occurring in different layers or not (and may also
be prone to overfitting when observational data is noisy).
Our multilayer SBM is the simplest group-based multi-

layer model one can propose. Although our approach is not
exempt of limitations (for example, it is computationally
expensive and is therefore not suitable to handle extremely
large networks), we believe that its detailed analysis will
open the door to better understand the structure of real
complex networks.
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APPENDIX A: CALCULATION OF
PANDðP1P2jAOÞ FOR A TWO-LAYER SBM

For the AND model, we need to integrate Eq. (1) for
PANDðP1P2jAOÞ over q1αβ and q2γδ assuming uniform
priors. To simplify the notation, we introduce two indices
r and s, so that r≡ αβ and s≡ γδ, and we drop the
reference to layer 1 and 2 so that qr ≡ q1αβ and qs ≡ q2γδ. In
order to perform the integration over qr, for example, we
note that all the terms that contain qr have the following
form:

qr
P

s
n1rs
Y
s

ð1 − qrqsÞn0rs

¼ qn
1
r

r

Y
s

X
mrs¼0;…;n0rs

�
n0rs
mrs

�
ð−ÞmrsðqrqsÞmrs ; ðA1Þ

where n1r ¼
P

sn
1
rs. Then, for fixed values of fmrsg, we

have that the contribution to the likelihood factorizes for
every qr and qs as follows:Z

DQr

Z
DQs

Y
r;s

�
n0rs
mrs

�
ð−Þmrs

Y
r

qn
1
rþmr

r

Y
s

qn
1
sþms

s ;

ðA2Þ

where
R
DQr ¼

Q
rð
R
1
0 dqrÞ and mr ≡Psmrs.

Integrating out the qr’s and qs’s, we obtain for the
likelihood the expression in Eq. (3).
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APPENDIX B: OR COMBINATION OF LAYERS

For the OR model, one can obtain an expression for the
likelihood by noticing that the OR models is an AND
model for the no links, that is nonexisting edges between
pairs of nodes. The likelihood of the observed topology AO

given the model MOR assuming two layers is then

PðAOjMORÞ ¼
Y
½α≤βγ≤δ�

½ð1 − qaαβÞð1 − qbγδÞ�n
0
αβγδ

× ½1 − ð1 − qaαβÞð1 − qbγδÞ�n
1
αβγδ ; ðB1Þ

where all quantities have the same definition as in Eq. (2).
Following the same steps as in Appendix A, we obtain

the following expression for PORðP1P2jAOÞ:

PORðP1;P2jAOÞ

∝
X

½ fmrsg
mrs¼0;…;n1rs

�

Q
r;sð−1Þmrs

�
n1rs
m

�
rsQ

rðn0r þmr þ 1ÞQsðn0s þms þ 1Þ ; ðB2Þ

where, as in Appendix A, we use the notation r≡ αβ and
s≡ γδ, and all the quantities have already been defined in
Appendix A.
Finally, one can then compute the reliability for an OR

combination of two layers as

ROR
ij ¼ 1 − 1

Z

X
PI

0
B@n0σiσj þ 1

nσiσj þ 2

Pnσiσjþ2

k¼n0σiσjþ2
1
kPnσiσjþ1

k¼n0σiσjþ1
1
k

DðPIÞe−HðPIÞ

1
CA;

ðB3Þ

HðPIÞ¼
X

α≤β∈PI

2
64lnðnαβþ1Þþ ln

�
nαβ
n0αβ

�
− ln

0
@ Xnαβþ1

k¼n0αβþ1

1

k

1
A
3
75;

ðB4Þ
where, as before, the sum is over all possible (intersection)
partitions, Z is a normalization constant, and DðPIÞ is the
number of pairs of partitions that have the same inter-
section. In Eq. (B4), the sum is over all distinct pairs of
blocks within a fixed partition, n1αβ ¼

P
i≤jAijδσiαδσjβ,

nαβ ¼
P

i≤jδσiαδσjβ, n0αβ ¼ nαβ − n1αβ, and σi stands for
the block to which node i belongs.

APPENDIX C: COMPUTATION
OF DEGENERACIES

Our goal is to compute the number DðPIÞ of pairs
ðP1;P2Þ that have the same intersection partition PI, that
is, the cardinality of the set fðPi;PjÞjPi∩Pj ¼ PIg. We
start by noting that a specific PI consists of n groups of
nodes that we call “elements”; we make explicit the number

of such elements in an intersection partition and write
Pn

I ¼ ½E1�½E2�½E3�…½En�. By the definition of intersection
partition, we have that (i) all the nodes within an element
must belong to the same group in both partitions P1 and P2

(otherwise, they would not belong to the same element) and
(ii) two elements cannot belong to the same group in both
P1 and P2 (otherwise, they would be a single element). We
compute the degeneracy in two steps (see Supplemental
Material for details [48]): (1) We compute all the possible
unique partitions P1 combining the elements in Pn

I , group
them in classes according to the numbers of elements
combined, and compute the multiplicity associated to each
class, and (2) for each class, we compute all the possible
partitions P2 that result in a specific intersection Pn

I .
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