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Abstract
Many studies have shown that there are regularities in the way human beings make
decisions. However, our ability to obtain models that capture such regularities and
can accurately predict unobserved decisions is still limited. We tackle this problem in
the context of individuals who are given information relative to the evolution of
market prices and asked to guess the direction of the market. We use a networks
inference approach with stochastic block models (SBM) to find the model and
network representation that is most predictive of unobserved decisions. Our results
suggest that users mostly use recent information (about the market and about their
previous decisions) to guess. Furthermore, the analysis of SBM groups reveals a set of
strategies used by players to process information and make decisions that is
analogous to behaviors observed in other contexts. Our study provides and example
on how to quantitatively explore human behavior strategies by representing
decisions as networks and using rigorous inference and model-selection approaches.

Keywords: Stochastic block model; Decision making process; Human behavior;
Choice mechanisms

1 Introduction
In recent years, thanks to the widespread use of the internet, e-mail and mobile phone
technologies, we have been able to gather large amounts of data that have enabled the
large-scale characterization of specific traits of human behavior [1–5]. Indeed, a number
of studies have shown that humans display statistically regular patterns in the way they
move, communicate or make decisions which makes them identifiable [6–11]. Despite the
success in characterizing such systems, there has been, comparatively, less work to assess
whether there are interpretable models of that are truly predictive of unobserved behavior
[10].

A compelling example is that of the study of decisions made by individuals when playing
dyadic games that represent social dilemmas. A recent study [6] identified five different
patterns in the strategies individuals use to play these games; these individual strategies,
or behavioral phenotypes, deviate from optimal rational behavior and can be associated
to common human attitudes such as jealousy, optimism or altruism [6, 12, 13]. However,
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such model is not the best for making predictions of unobserved individual decisions in
the context of dyadic games. Indeed, a Bayesian modeling approach using a network repre-
sentation of individual decisions in dyadic games showed that a model in which individuals
mix three simple strategies is more predictive of unobserved individual decisions than a
five-phenotype model [14]. Moreover, the Bayesian modeling approach reveals that the
way individuals perceive games is different from the expectations based on game theory
arguments [14].

Here, we use a similar network inference approach to model and understand the
decision-making process in the context of stock markets. Specifically, we consider the sit-
uation in which individuals have to guess the short-term direction (up or down) of a stock
market based on real data given a reduced set of available sources of information, such
as the evolution of the market in the previous time step, average historical market trends,
information on other markets or the advice of an expert [15]. Several questions arise in
this context; for example: in an environment in which we are given more information than
what we can process, which sources of information affect the decisions we make the most?
How do we use this information to make decisions? Can we identify recurrent, context-
dependent patterns of information usage that are predictive of unobserved decisions?

To address these questions, we assume that the information available to an individual
fully defines the context in which she makes a decision; the decision is then the result of a
specific strategy in which the individual exploits the available information. To define these
strategies, we assume that there are some underlying patterns of behavior so that we can
identify groups of individuals that display similar decision patterns and at the same time,
identify groups of contexts that are similarly perceived by individuals. In our approach
we exploit the fact that we can represent the decisions made by individuals in a specific
context (for instance, the market went up in the previous round and the individual made a
correct guess) as a bipartite graph connecting individuals and contexts, and use inference
techniques developed for complex networks. In particular, we use stochastic block models,
a type of group-based generative models that are amenable to Bayesian inference methods,
including rigorous model selection [14, 16]. Our choice is further motivated by the fact
that models in which individuals can mix more than one strategy have been shown to be
successful at predicting unobserved individual decisions in other contexts [9, 14, 17].

With our network inference approach, we are able to rigorously compare network data
representations that define contexts using different types of information—for instance in-
formation about the previous round or a historical trend. We find that users are rather
Markovian when it comes to processing available information: individuals are best de-
scribed if we assume that they only use information from the previous and current round
to make their decisions. We also find that, consistently with some previous analysis [15],
individuals use the information of the previous and current rounds in different ways to
construct four distinct strategies: a switching strategy—individuals make a different deci-
sion at each time step; an optimistic strategy—individuals tend to predict that the market
will go up; a repeating strategy—individuals repeat their previous decision; and a win-stay
loose-shift strategy—individuals copy the previous market move.

Our inference approach thus makes it possible to identify the best representation of the
data in terms of predictability. Additionally, through this representation we can explore
the regularities in the way individual players use information to make decisions thus pro-
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Figure 1 Methodological flow chart. Illustration of the workflow we follow in our work. Step 1: We identify
the best model M� using the predictive accuracy over unobserved data considering all plausible network
representations of the data. Step 2: We select the network representation of the data that yields most
accurate predictions of unobserved data compared to other data representations using M� . Step 3: We
consider all data and obtain the most plausible model parameters (θ� ,η� ,p�) and analyze and interpret those
parameters to understand decision making strategies

viding a valuable illustration of how powerful inference methodologies are to advance our
understanding of human behavior from data.

2 Methods
To ease understanding of the steps we follow in our analysis, we provide a schematic vi-
sualization of the workflow in Fig. 1.

2.1 Dataset
Here, we consider the data set collected in the Mr. Banks social experiment [15].1 In this
experiment, participants participated in a game that consisted in correctly predicting the
evolution of a simulated market. That is, whether it would go up (↑; stocks increase their
value) or down (↓; stocks lose value). In total, 280 people participated in this experiment.
Participants played during 25 rounds that corresponded to 25 days of a real stock market.
The experiment used 30 different time series of 25 days in a real market taken from the
period between 01/02/2006-12/29/2009 of daily prices of: the Spanish IBEX, the German
DAX and the S&P500 from the United States.

In each round, players had access to the following sources of information: the evolution
of the stock market during the previous month, a simulated expert’s advice that, by design,
was correct 60% of the time, the trend of the same market in other places in the world, the
average trend of the market over the previous 5 and 30 days, and the daily changes of
direction of the market during the 30 previous days. We refer to this information as the
context of the player.

2.2 Network models and inference
2.2.1 Model selection
To find the best model for our data, we compare models in terms of their ability to predict
unobserved decisions. Asymptotically, and most often in practice as well [16], this is equiv-
alent to using Bayesian inference for model selection. In a Bayesian setting, the best model

1The datasets analysed during the current study are available in the Zenodo repository, https://zenodo.org/record/
50429#.YDOCwqvPxPY

https://zenodo.org/record/50429#.YDOCwqvPxPY
https://zenodo.org/record/50429#.YDOCwqvPxPY
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is the one that has the largest posterior probability p(M|D) (or equivalently the model that
has the shortest description length [16, 18]), where M stands for the model, and D for the
observed data we want to model with M. Here, we follow a predictive approach to find,
first, which type of SBM better describes observed data and, second, which is the network
representation with which we get the most accurate predictions of unobserved decisions.

2.2.2 Network representation
Our goal is to predict whether a given player p will guess that the market is going up or
down when exposed to a specific context c, given a set of past observed decisions Ro of the
player herself and other individual players in different contexts. As noted above, a context
c is the information accessible to the player before making her decision.

We represent the data as a bipartite network in which nodes are players and contexts.
We draw an edge with value 1 or 0 between a player p and a context c if, in that context, the
player guessed ↑ or ↓, respectively. For instance, consider that the available information at
round t is: 1) whether the guess of the player at round t – 1 was right or wrong, C = {R, W};
and 2) the market evolution at time t – 1, B = {↑,↓}. Then, there are four possible different
contexts for all CB combinations and we would represent our data as a bipartite network
with N players and four different contexts c = {(R ↑), (W ↑), (R ↓), (W ↓)}.

Because we have information about the guessing history of all users, it would be possi-
ble to build many bipartite graphs in which contexts consider only current information,
current information and information from the previous round, current information and
information from the previous two rounds, etc. However, for our inference approach to
properly work, we need to keep the number of possible contexts small enough to detect
statistical patterns between individuals and contexts. Besides that, we have a priori no jus-
tification to assume that some choices of context are better than others. In our approach,
assessing the predictive power over unobserved decisions allows us to select both the best
model and the best set of contexts to represent the data.

2.2.3 Single-membership and mixed-membership stochastic block models
In our approach, we assume that there are statistical regularities in the way individuals
make decisions in different contexts. These regularities define the strategic behaviors of
players. In the network representation, we assume that the statistical regularities take the
form of groups of players and groups of contexts with similar connections.

Consistent with this assumption, we model player decisions using stochastic block mod-
els [19–22]. Stochastic block models are simple generative network models that assume
the existence of groups of nodes (players and contexts), and that the probability that a pair
of nodes connects (that is, that a player guesses up or down in a given context) depends
exclusively on the groups to which the nodes belong.

Specifically, because the network we consider has two types of nodes, players and con-
texts, we consider bipartite stochastic block models [17, 23, 24]. In addition, we consider
two types of stochastic block models: one in which each player and context can belong to
a single group (SBM), and another one in which players and contexts can belong to mul-
tiple groups simultaneously with different weights (mixed-membership SBM, MMSBM)
[25, 26].

Formally, we have a set U of players and a set I of contexts, and the observed decisions
Ro = {rpc} that players p ∈ U make in context c ∈ I . In the data we consider that each player
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p in a specific context c has to guess the direction of the market in the next round, therefore
the decision dpc is binary: ↑ or ↓.

We assume that there are K groups of players and L groups of contexts, and that the
probability that player p in group k in context c in group � makes decision dpc =↑ is given
by pk� where p is the matrix of connection probabilities between pairs of groups. Note that
because there are only two possible decisions, the probability that dpc =↓ is pk�(↓) = 1–pk�.

In the case of MMSBM, we allow players and contexts to belong to more than one group.
We therefore introduce a membership vector for players θp, such that θpk is the probabil-
ity that player p belongs to group k. Analogously, we introduce a membership vector for
contexts ηc such that ηc� is the probability that context c belongs to group �. Because these
vectors represent probabilities they are subject to the normalization conditions:

∑

k

θpk = 1,
∑

�

ηc� = 1. (1)

Note that membership vectors become binary in the single membership SBM model, so
that player p exclusively belongs to group k, θpk = 1 and θpk′ = 0 for all k′ �= k.

In the general MMSBM, the probability that player p makes decision dpc in context c is:

P(dpc =↑ |θ ,η, p) =
∑

k

∑

�

θpkpklηc�, (2)

P(dpc =↓ |θ ,η, p) =
∑

k

∑

�

θpk(1 – pkl)ηc�. (3)

SBMs further assume that each decision is independent from the others (conditionally
on the group memberships), so that the probability of observing the data given the model
parameters θ , η, p (or likelihood) can be expressed as the product of the probabilities of
each individual decision:

p
(
R◦|θ , p,η

)
=

∏

(p,c)∈R◦
p(dpc =↑ |θ ,η, p)n↑

pc p(dpc =↓ |θ ,η, p)n↓
pc , (4)

where n↑
pc is the number of times player p guesses ↑ in context c, and n↓

pc is the number of
times player p guesses ↓ in context c.

2.2.4 Inference and prediction
A priori, we are agnostic about the values that the model parameters should take. We
therefore use a non informative prior so that the posterior probability of the model is pro-
portional to the likelihood p(θ , p,η|R◦) ∝ p(R◦|θ , p,η). We then find the model parameters
that maximize the posterior. In the case of the SBM we use simulated annealing to find the
set of model parameters (θ∗,η∗, p∗) that maximizes the posterior probability [14]. In the
case of the MMSBM, we use the expectation maximization approach described in [14, 27]
(see Materials and Methods). We make our predictions about unobserved decisions using
these maximum a posteriori parameters.

Previous work shows that using these approaches we are able of retrieving the correct
model for model generated data [27, 28].
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Figure 2 Predictive accuracy of the three models.
For each fold of the data, we show the predictive
accuracy of the three models: naive,
single-membership SBM and MMSBM. Each bar
represents the average over 23 different network
representations (as detailed in Fig. 3), which
combine the variables that are more informative of
players decisions (player’s decision at t – 1, market
evolution at t – 1, outcome of decision at t – 1,
expert consultation, advice consulted, average
market trend over the 5 last/all rounds, market’s
evolution/outcome before the previous round; see
Additional file 1, Figs. 1–4)

3 Results
3.1 Model selection
We start by looking for the model that best describes our data, that is, the most predic-
tive one. We consider three different models and assess their ability to make predictions
measuring their accuracy on unobserved data using 5-fold cross validation [16]. The first
model we consider is a naive baseline, in which we use the most common observed deci-
sion of player p in context c as a prediction. If there are no observed decisions of player p
in context c, we predict dpc =↑ because this is the most common decision (and the most
common market move) in our data set. The other two models are the (single-membership)
SBM and the (mixed-membership) MMSBM described above.

Each set of contexts defines a different network representation. We compute the aver-
age predictive accuracy of each model over folds and over network representations (Fig. 2).
We find that, overall, MMSBM models perform better than the naive baseline and single-
membership SBMs. Therefore, in what follows we use MMSBMs to identify the best rep-
resentation of the data and to analyze player strategies.

3.2 Identification of the most predictive network representation of the data
Next, we identify the most predictive network representation for our data so as to establish
which pieces of information and mechanisms are being used in the decision-making pro-
cess. As we have already mentioned, we have the full history of player’s decisions, daily and
average market evolution, and information on whether players consult the expert opinion
before making their decisions. We find that past information beyond the previous round
t – 1 is not relevant to predict decisions at round t (Fig. 3 and [15]). We therefore consider
23 different network representations that mostly consider information about the user and
the market at round t – 1 and the expert’s advice at round t, and compare the performance
of MMSBMs (fit to each different network representations) at predicting unobserved data
(Fig. 3). To avoid fold-to-fold variability, we use the average log-ratio of the accuracy of
pairs of models as our metric to compare predictive performance:

QS1,S2 =
1

Nfolds

Nfolds∑

i=0

log

(
AS1,i

AS2,i

)
, (5)
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Figure 3 Comparison matrix of data representations using predictive accuracy. Each row/column
corresponds to a specific data representation S. We label them according to the information we are using to
define the set of contexts: A = player’s decision at t – 1, B = market evolution at t – 1, C = outcome of decision
at t – 1, D = expert consultation, E = indications consulted, F/G = average over the 5 last/all rounds, H/I =
market’s evolution/outcome before the previous round. Each matrix element QS1S2 corresponds to the
average log ratio of predictive accuracies (see text) between representations S1, S2 and is colored following
the colorbar on the right hand side. Note that if QS1S2 > 1 (red), S1 (row) has a larger predictive accuracy than
S2 (column). If QS1S2 < 1 (blue), S1 (row) has a lower predictive accuracy than S2 (column)

where AS,i is the predictive accuracy in fold i for representation S, and Nfolds is the total
number of folds. Note that by taking the logarithm of the ratio, we ensure that the metric
is symmetric with respect to zero.

We find that there are five representations that yield an almost identical accuracy, signif-
icantly higher than that of the other representations (Fig. 3). Among those, we select the
simplest representation, which comprises 12 different contexts resulting from the combi-
nation of three sources of information available to players at round t: the market evolution
at round t – 1 (↑ or ↓), the outcome of the player’s guess at round t – 1 (right or wrong),
and the expert’s advice at round t (↑, not consulted, or ↓) – for a total of 2×2×3 = 12 dif-
ferent contexts. Importantly, adding further information does not increase the predictive
accuracy. Our analysis thus shows that players have short memory. This result correlates
with the findings of Ref. [15] on the same data set. While there is a possibility that our data
set is not big enough to capture effects beyond round t – 1, our result is consistent with
other studies which have successfully used a Markovian human in the analysis of decision
making processes [29–31].

3.3 Each group of users has well-defined patterns of behavior
Next, we turn to the model parameters obtained for the most predictive representation of
the data. In particular we focus on player groups, which we identify with guessing strate-
gies [14]. As mentioned before, MMSBMs assume that players can mix several strategies
and that contexts can also belong to different groups simultaneously. In our case, we find
that the highest predictive accuracy is for a MMSBM with K = 4 groups of players (or
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Figure 4 Inferred probability matrix for a group of users to guess ↑. The symbols on the x-axis represent the
context according to the following notation: market move ∈ {↑,↓}, outcome of previous guess ∈ {right�,
wrong ×}, expert’s guess ∈ {↑,↓, -}. We see the groups tend to describe well defined behaviors since the
majority of matrix elements are either 1 or 0

strategies) and L = 8 groups of contexts (see Additional file 1, Fig. 5). Interestingly, we find
that contexts tend to belong to a single group of contexts, while players have their mem-
berships spread across different groups. In other words, the players behavior is the result
of mixing different strategies (see Additional file 1, Figs. 7 and 8).

Each element group-to-group probabilities pk� expresses the probability that a group of
players k guesses ↑ when facing contexts that belong to group �, and therefore encapsulate
all the information of the strategy of each group of players. For a more straightforward in-
terpretation of the strategies (and because each context belongs mostly to a single group),
we analyze the matrix p̂ in which each element p̂kc =

∑
� pk�ηc� corresponds to the proba-

bility that a group of players k guesses ↑ in each context c (Fig. 4). We refer to each row p̂k

in the matrix p̂ as an elementary strategy, since players combine these elementary strate-
gies to give rise to observed complex strategies. Figure 4 shows that elementary strategies
are well defined because the p̂kc are often either close to zero or one.

To help summarize and interpret elementary strategies add(p̂k), we note that in the p̂
matrix we can identify several simple, easily interpretable patterns. We can use these pat-
terns as alternative building blocks to describe decision-making strategies. We choose to
consider the six following patterns which we will later use to define the elementary strate-
gies p̂k :

• Win-stay (WS): at round t repeat the guess of round t – 1 if it was right.
• Lose-shift (LS): at round t change the guess from round t – 1 if it was wrong.
• Market imitation (MI): the guess at round t matches the market direction at t – 1.

This strategy is equivalent to a combination of the two previous strategies which we
call WSLS: if the market goes ↑ the player guessed ↑, MI = WS; if the player guessed
↓, then MI = LS.

• Repeat previous guess (RPT): the guess at t is equal to the guess at t – 1.
• Repeat after ↑ (RPTU) (or ↓, RPTD): repeat last guess if it was ↑ (respectively, ↓).
• Expert’s advice (EXP): follow the expert’s advice if consulted.

For clarity Table 1 summarizes the acronyms we use for each pattern. The first three
patterns were already identified in the behavior of some players in the original data col-
lection study, as well as a general bias towards ↑ when making decisions [15]. However,
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Table 1 Glossary of Acronyms

Patterns

WS LS MI RPT(U/D) EXP

Win-Stay Lose-Shift Market Imitation Repeat (↑/↓) Expert’s advice

Elementary strategies

SWI RPT OPT WS-LS

Switching Repeating Optimistic Win-Stay Lose-Shift

whether these strategies were combined with others or used by different users was not
explored.

To assess how each one of the elementary strategies p̂k align with these patterns, we
define for each cluster k a score Mkb that quantifies the extent to which players within
group k follow behavioral pattern b ∈ {MI, WS, LS, RPT, RPTU, RPTD, EXP}:

Mkb =
1

Nkb

∑

c∈Sb

Nkc
[
qkc(b) –

(
1 – qkc(b)

)]
. (6)

In the summation, Sb represents the set of contexts in which a behavioral pattern can be
observed – for example, while RPTD can be observed after a user guessed down in the
previous round, RPTU cannot –, qkc(b) is the probability that a user in group k follows the
elementary strategy b in context c, Nkc is the number of times a player in group k faces
context c, and Nkb =

∑
c∈sb

Nkc is the total number of observations of players in group k
facing contexts c ∈ Sb. Therefore, a score Mkb = 1 means that the group k always follows a
pattern of behavior b when facing contexts c ∈ sb; a score Mkb = –1 means that the group
does exactly the opposite of what the strategy prescribes in 100% of cases. For instance, if
group k always guesses ↑ regardless of the context, the scores for RPTU and RPTD will
be MkRPTU = 1 (always guess ↑ after having guessed ↑) and MkRPTD = –1 (never repeat ↓
after having guessed ↓).

In Fig. 5, we show the Mkb scores for each group of players. First, we note that when the
expert is consulted, three of the groups follow her advice, while the remaining group is
not influenced by it. In the remaining six contexts in which the expert is not consulted,
we find that each group follows a very specific elementary strategy p̂k defined in terms of
the six behavioral patterns we have previously defined. Group k1 strongly tends to change
their previous decision (switching behavior); k2 tends to guess ↑ (optimistic behavior); k3

almost always repeats the previous decision (repeating behavior); and k4 always follows a
win-stay loose-shift (WS-LS) behavior.

4 Discussion
Our analysis shows that the best description of player’s strategies to predict their decision
about market evolution is to consider that players are mixing elementary strategies which
we have termed switching (SWI), optimistic (OPT), repeating (RPT), and win-stay (WS-
LS) (see Table 1).

Interestingly, not all of these elementary strategies are combined in the same way by
all of the players (Fig. 6). The most used strategy overall is the WS-LS strategy, which on
average explains 34% of player’s decisions, that is, 1

N
∑

u θu,WS–LS = 0.34. We observe this
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Figure 5 Patterns of behavior for each group of users. For each group of users we show the score Mkb (see
text) for each pattern of behavior b (from left to right): (EXP) Following the expert’s advice; (WSLS) – Win-stay
loose-shift; (WS) Win stay; (LS) Loose shift, (RPT) Repeat previous guess; (RPTU) Repeat previous decision if it
was ↑; RPTD Repeat previous decision if it was ↓. A score of 1 means the group completely follows a basic
pattern, and a score of –1 means it does the exact opposite of the basic pattern. Every group displays a
preferential (if not systematic) pattern of behavior: K4 behaves according to the WS-LS strategy, K3 repeats the
previous guess, K2 always guesses ↑ and K1 changes the previous guess. Additionally, the expert’s advice is
either followed or ignored, but none of the groups systematically makes the opposite decision. Note that
because the expert is consulted in less than 30% of the rounds, we split the data set into expert consulted
and not consulted. From the former we get the score for the EXP strategy, while from the latter we obtain the
scores for the other behavioral patterns

Figure 6 Distribution of use of behavioral patterns by players We compute the Shannon entropy of the θ

membership vectors among four behavioral patterns: switching, optimistic, repeating, and win-stay (WS-LS).
We split the users according to their Shannon entropy: (a), (d) Low entropy, including players who typically do
not mix elementary strategies; (b,e) Medium entropy, including players who mix two or three elementary
strategies; (c), (f) High entropy, including players mix three or four elementary strategies. (a), (b), (c) Use of
each elementary strategy for players with membership vectors with low, medium and high entropy users,
respectively. (d), (e), (f) Membership vectors. Each row represents one player. The color code quantifies the
extent to which a player uses a behavioral pattern. We observe that the win-stay loose-Shift strategy is widely
used alone, and that optimistic is commonly used in combination with other behavioral patterns

trend for both players using a single elementary strategy (low entropy in Fig. 6) and those
combining various elementary strategies (high entropy). This finding is consistent with the
conclusions of numerous studies assessing the wide use of this behavior in various natu-
ral systems such as children education [32, 33], evolutionary systems [34, 35], or games
involving adversity [36].
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Figure 7 Balance between repeat and switch strategies. We define Dp =
θpRPT–θpSWI
θpRPT–θpSWI

, so that Dp = 0 means

that both strategies are used by players to the same extent. This plot shows that a significant number of
players are using exclusively one of the strategies; other players use a combination of those with a bias
towards repeating their previous guess, rather than switching

By contrast, the optimistic behavior is seldom used by users using a single strategy
(Fig. 6(a), (d)). Nonetheless the optimistic strategy is on average part of 25% of players’
behavior, suggesting that this is a common strategy when used in combination with other
strategies, which reflects the overall bias to guess ↑ regardless of the context in which the
decision is made [15].

Finally, we note that the two remaining elementary behaviors, switching decisions (SWI)
and repeating the previous decision (RPT) are complementary to one another, since if
a player does not repeat her decision, it means that she changes her decision. There-
fore, a player combining both strategies with equal probability would generate a se-
quence of random guesses. To investigate whether these strategies are the result of a be-
havioral pattern or just capture random sequences of ↑ and ↓, we measure from each
player p, the normalized probability difference of use of each one of the two strategies
Dp:

Dp =
θpRPT – θpSWI

θpRPT + θpSWI
. (7)

If Dp = 1 player p uses exclusively the repeating strategy; if Dp = –1 means she exclusively
uses the shifting strategy; if Dp = 0 means that both strategies are used equally. We com-
pute Dp only for players that use either “shifting” or “repeating” as a main strategy to avoid
considering players that mostly use other strategies (WS-LS or optimistic). The results are
presented Fig. 7. We find that while there are two peaks at extreme values (Dp = –1 and
Dp = 1) showing that many players use exclusively one of the two strategies, players have
a tendency to repeat their previous guess (i.e. the distribution of Dp is skewed towards
Dp = 1). Indeed, this observation shows that some players behave according a natural
persistence cognitive bias observed when an individual has to make repeated decisions
[37, 38].

5 Conclusion
In this work we have shown the suitability of the MMSBM for the study of social sys-
tems, particularly for modeling, predicting and understanding human decision-making
processes. MMSBMs not only provide more accurate predictions than other state-of-the-
art methods [14, 17], but they are interpretable.
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A close analysis of the model parameters highlights the ability of these models to decom-
pose complex behaviors into a linear combination of elementary behaviors. Our analysis
helps identify basic patterns of behavior that are consistent with human behavior in other
contexts. First, we observe an optimistic bias that suggests that individuals make decisions
based on their desire that the market goes up. Second, we observe that many players use a
win-stay loose-shift strategy which is known to be very efficient in the long run in learning
processes, games of adversity, co-evolution networks, etc. Last, we find that players also
display a tendency to repeat previous decisions, a behavior observed when individuals
have to perform repetitive tasks. Our study demonstrates that these behavioral patterns
of behavior are hidden to the naked eye but can be obtained from the data using our ap-
proach.

MMSBM have been widely used in several other fields including quantitative and com-
putational social science [14]. This work confirms and pinpoints its relevance in the study
of social systems. Its predictive accuracy and interpretability could be efficiently exploited
in different studies and experiments in sociology and psychology in order to improve the
understanding of human behavior [39]. Moreover, MMSBM offer an alternative frame-
work to conventional populations analysis tools used in social sciences, and therefore finds
its direct uses in the confirmation and information of state-of-the-art theories in cogni-
tive sciences, sociology, psychology, etc., if not for the discovery of previously unreachable
hidden thought mechanisms.

6 Materials and methods
In order to maximize the logarithm of the likelihood, we use a variational approach. First
we use a trick to change the logarithm of a sum into a sum of logarithms:

log
(
P
(
R◦|θ ,η, p

))
=

∑

(ui)∈R◦
Nrui log

(∑

k,l

θukpkl(rui)ηil

)

=
∑

(ui)∈R◦
Nrui ln

( K ,L∑

k,l

ωui(k, l)
θukpkl(rui)ηil

ωui(k, l)

)

≥
∑

(ui)∈R◦
Nrui

K ,L∑

k,l

ωui(k, l) ln

(
θukpkl(rui)ηil

ωui(k, l)

)
.

(8)

In the second line of Eq. (8), we introduced the ωui(k, l) function, which is the probability
for a node u belonging to the group k to be linked by an edge rui to the node i belonging to
the group l. By construction, this function is such that

∑K ,L
k,l ωui(k, l) = 1. Therefore we can

use Jensen’s inequality ln(x̄) ≥ ln(x); we end up to the last line of the equation (8). Then,
one notices that this inequality becomes an equality for:

ωui(k, l) =
θuk · pkl(rui) · ηil∑K ,L

k′ ,l′ θuk′ · pk′l′ (rui) · ηil′
. (9)

Which is the update equation for the expectation step. In order to maximize the log-
likelihood, we derive it with respect to θ , η and p using Lagrange’s multipliers to account
for normalization constraints. We obtain:

θuk =
∑

rui
Nrui

∑
i∈∂u

∑L
l ωui(k, l)

du
, (10)
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ηil =
∑

rui
Nrui

∑
u∈∂i

∑K
k ωui(k, l)

di
, (11)

pkl(r) =
∑

rui
Nrui

∑
(u,i)∈R◦|rui=r ωui(k, l)

∑
(u,i)∈R◦ ωui(k, l)

. (12)

With du the degree of node u and di the degree of node i.
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