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The mechanisms by which modularity emerges in complex networks are not well understood but recent
reports have suggested that modularity may arise from evolutionary selection. We show that finding the
modularity of a network is analogous to finding the ground-state energy of a spin system. Moreover, we
demonstrate that, due to fluctuations, stochastic network models give rise to modular networks. Specifically, we
show both numerically and analytically that random graphs and scale-free networks have modularity. We argue
that this fact must be taken into consideration to define statistically significant modularity in complex networks.
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Statistical, mathematical, and model-based analysis of Ty d. \2
complex networks have recently uncovered interesting uni- M= {—S - (—S> ] (1)
fying patterns in networks from seemingly unrelated disci- silL A2l
plines[1-5]. In spite of these advances, many properties of
complex networks remain elusive, a prominent one beingvherer is the number of modulesg, is the number of links in
modularity [6,7]. For example, it is a matter of common the network]g is the number of links between nodes in mod-
experience that social networks have communities of highlyle s, andds is the sum of the degrees of the nodes in module
interconnected nodes that are poorly connected to nodes # This definition of modularity implies thatf <1 and that
other communities. Such modular structures have been reM =0 for arandom partitionof the nodeg7]. We define the
ported not only in social networkgs—§|, but also in bio- modularity M of a network as the largest modularity of all
chemical network$9], food webg10], and the Interneftll]. possible partitions of the netwomd = max M.
It is widely believed that the modular structure of complex The problem of finding the modularity of a network with
networks plays a critical role in their functionalifg]. There  Snodes is therefore analogous to the standard statistical me-
is therefore a clear need to develop algorithms to identifychanics problem of finding the ground-state energy of the
modules accuratel§s,7,11-13. Hamiltonian H=-LM. Specifically, one can map the net-
More fundamentally, the mechanisms by which modular-work into a spin system by defining the variablss
ity emerges in complex networks are not well understood. Ine {1,2, ... S} as the module to which nodébelongs and the
biological networks—both biochemical and ecological— couplingsJ; as being 1 if nodesandj are connected in the
researchers have suggested that modularity increases robusétwork and 0 otherwise. Then, from Ed), one can dem-
ness, flexibility, and stability9,10]. Similarly, in engineered onstrate that
networks, it has been suggested that modularity is effective
to achieve adaptability in rapidly changing environments s s
[14]. It may therefore seem thavolutionary pressuresake H=-3 Ji S
networks modular, implying that any successful model of
complex networks should take into account external factors

JiJ
* (s, +20.c4 + O ]
ij 2 i i,J% 16L( S%%S SiSjS 55

that enhance modularity. Recently, however, Solé and 2
Fernandez have pointed out that models without any external
pressure are able to give rise to modular netw@iks. This Hamiltonian corresponds to &state Potts model with

In this paper, we show that Erdds-RéniR) random  both ferromagnetic and anti-ferromagnetic terms, and two-,
graphs, in which any pair of nodes is connected with probthree-, and four-spin interactions. Therefore, it seems diffi-
ability p [16], have a high modularity. We show numerically cult to apply methods used in problems that are similar but
and analytically that this high modularity is due to fluctua-formally simpler, like the graph coloring problerfil7].
tions in the establishment of links, which amagnifiedby  Rather, we propose here a heuristic estimation of the modu-
the large number of ways in which a network can be partidarity for a number of interesting graph models, namely low-
tioned into modules. Furthermore, we show that one obtaindimensional regular lattices, ER random gragh§] and
similar results when considering scale-free netwg#sWe  scale-free networkg2].
conclude by discussing how these results should be taken Low-dimensional regular latticesConsider a one-
into consideration to define statistically significant modular-dimensional lattice wittS nodes, each one connected to its
ity in complex networks. two neighborq20]. This case is particularly simple because

Following the first quantitative definition of modularity the modules comprise only contiguous nodes and, therefore,
[7,12), several groups have proposed heuristic algorithms téhe number of between-module links equals the numlur
detect modules in complex networks. For a given partition ofmodules. Assuming that all modules have approximately the
the nodes of a network into modules, the modularity of ~ same sizen=S/r, the modularity of a partition witlt mod-
this partition is defined ag/] ules is
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S-r 1 within-module links as possible. Therefore, if one finds a
Map(Sir) = S T (3 very commonpartition M(S,p;r k) > 1, it must be possible

to find another partition with the sammeandk{ >k; that has
where we have used the fact that the numbesf links is  |arger modularity. This new partition will bearer than the
L=S. Under these assumptions, the problem of finding thgormer oneN(S,p;r,k/) <MS,p;r,k). By iterating this ar-
modularity of a regular one-dimensional lattice is reduced tqyument, one concludes that the partition we are interested in
finding the optimal number* of modules, that is, the num-  muyst satisfy
ber of modules that yields the maximum modularity. One can

show thatr* (S)=+S, and the modularity is MSp;r.k(Sp;n) =1, 9
M p(9=1 -=. (4) Whereki*(S,p;r) is the maximum number of within-module
VS links that one can typically find in a partition withidentical

Note that the only assumption in the calculation is that allmodules.

modules have approximately the same number of nodes. Nu- To calculateN(S,p;r.kj), we use the following process.

merical results confirm that this is a sensible assumption. First, we calculate the numbgf; of ways in which a module
One can generalize this result to one-dimensional lattice§f size n=S/r, with k; within-module links andk(r,k;) ex-

in which each node is connectedzmodes on the left and  ternal links, can beeparatedrom the rest of the graph:

on the right. In this case, the leading contributions to the

: S

modularity are T N, = (n)Pi(S P;N,k)Po(S,p;Nn,kKo), (10
Z+
Mip(S2)=1- : (5
S where
Similarly, one can calculate the modularity @¥dimensional n(n-1)
cubic lattices in which each node is connectedzm@des in — | n(n-1)J2x
each one of thel directions, to obtain that18] P(Spnx=| 2 |p1-p) . (1D
X
z+1 d/(d+1) 1
MdD(sz) =1- (d + 1)( 2d ) Sl/(d+1) . (6)

. — n(S— I"I) X n(S-n)—-x
Random graphs-In ER random graphglL6], each pair of Po(S.p;nx) _( X )p (1-p) ' (12)

nodes is connected with probabilipy As for d-dimensional )
lattices, we assume that the partition of the network withThe next step is to separate the second module from the
highest modularity consists ofmodules with approximately "eémaining set o5-n nodes. It is important to note that the
the same number of nodes=S/r, the same number of S€cond module only needs to estabkgtl—n/(S-n)) exter-
within-module linksk;, and the same number of linkg to  Nhal links, because the remainiign/(S-n) are already es-
other modules. In th&>1 limit, we can assume that the tablished with the first module. Therefore,
total number of links isS’p/2 and, thereforek; andk, are S-n 0
related by N2=< . )pi(gp;n,ki)po(s,p;n,k()(l_ﬂ)),

Sp
ko(S:p;ryki):T_Zki- (7) (13

) o Repeating this separation process, one can see that the gen-
Hence, forS> 1, the modularity of such a partition is simply o4 term is of the form

. - 2r_k| _ } S—-tn tn
Mer(Spir k) = Sp r’ (8) -/vt+1:( N )Pi(S.p:n.ki)Po<Sp;n,ko<1‘g))-
Under these assumptions, the problem of finding the (14)

modularity of a random graph is reduced to finding a parti-

tion of the graph with the following propertieg) The par-  Finally, V(S,p;r k) is the product of all the individual mod-
tition consists ofr equal modules, each one wikh within- ule separations

module links;(ii) the partitiontypically existsin a random
graph; andiii) the partition yields the maximum modularity
relative to the other partitions that typically exist.

In a random graph witls nodes and linking probabilitg,
the average numbeY of different partitions withr identical ~ so that Eq(9) can be solved numerically to obtd&fl(s, p;r)
modules, each witl; links, is M(S,p;r,k). A certain parti-  using Egs(11), (12), (14), and(15).
tion typically existsif AV(S,p;r,k)=1. Among all the parti- Once we find{(S,p; r) for a given value of, we use Eq.
tions that typically exist, we are interested in the one whos&8) to obtain the modularity. Finally, we select the optimal
modularity is maximum. In other words, given a certain number of modules=r* (S, p) and the modularitM (S, p)
numberr of modules, we want a partition with as many of the ER random graph is

NS ik ko(r. k) =TT A, (15)
t=1
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FIG. 2. Modularity in scale-free networks. Numerical results of

0
o (b) the modularity as a function of the network si&efor different
[ values ofm. These results are obtained by maximizing the modu-
larity, Eq. (1), with simulated annealing. The lines are the predic-
tions of Eq.(21), with a=0.165+0.009 in all the cases.
>
ks 2
=}
8 | cos<1000 MER(SDZZ/S):Mm(S):l‘Tg (18)
= | ==5-2500 !
I Z_‘Zg = gggg ] We propose the simpleahsatzthat verifies Eqs(17) and
<< S = 10000 (18) simultaneously
v S = 20000 _ 2\[2)\"?
105 ) E— Mer(Sp)= 1_\@ pS/ (19

10
Average connectivity, pS

10

o L , In Fig. 1(a), we show that Eq(19) is in good agreement with
FIG. 1. Modularity in Erds-Rényi random grapha) Compari- 41,65 obtained using simulated annealing.
son of numerical results of the modularity as a function of the Our analytic treatment allows us to explain the origin of
linking probability, and the predictions of Eq&l6) and (19). The L - i,
. . I . the modularity in random graphs. The typical partition of an
numerical results are obtained by maximizing the modularity, Eq.ER graph into modules of size s very unlikely to have a
(1), using simulated annealifd9]. (b) Modularity as a function of i .
pSfor large networks, as predicted by Ea6). Both in(a) and(b), number of within-module linksk; larger t.h.an the average
numerical problems in the solution of E() prevent us from ob- pn(n-1)/2, expected for a ran.dom pa'_’t.'t'on of th(_a nodes.
taining values of the modularity for larger valuesof However, the number of possible partitios (nlr) is so
large that, typically, there exists a partition whdsés much
* ] larger than the average. For example, for a network \Bith
Mea(Sp) = 2= (S p)I;i(Sp,r* ) 1 . (16 =200 andp=0.02 one typically finds a partition with=7
Sp r*(Sp) modules and; = 36, instead of the valulg =8 expected for
a random patrtition.
Remarkably, the modularity of a random graph can be as
large as that of a graph with modular structure imposed at the
e%pset[6]. In such a graph, nodes are divided into modules
and each pair of nodes is connected with probabitityif
they belong to the same module, and with probabpiy p;
therwise. Using the same example as before, the modularity
f an ER graph withS=200 andp=0.02 is the same as the
modularity of a graph wittm=7 modulesp;~0.09, andp,
~0.004.
- -2/3 Scale-free networksSo far, we have considered
Mer(S— =.p) ~ (S A9 d-dimensional regular lattices and ER random graphs, in
To obtain a closed expression fgkzg for any value ofS, we  which all nodes have essentially the same degree. However,
note that at the percolation poipiS=2 the random graph many complex networks display scale-free degree distribu-
contains essentially no loops, that is, the graph is a[ttép  tions [4], meaning that some nodes have degrees that are
In this case, one can find partitions in which the number oforders of magnitude larger than the average. Since the results
between-module links equals the number of modulas in  presented for ER graphs rely on the fact that there are many
the simple one-dimensional case, and the modularity is  partitions of the network and implicitly on the fact that nodes

In Fig. 1(a), we compare the modularity of ER graphs
obtained through optimization of E¢l) using simulated an-
nealing[19], with the predictions of Eq(16). We find good
agreement in the relevant region of sparse but connect
graphs, that is, 2<p<1.

Equation(16) enables us to obtain the modularity of large
random graphs, something that would not be possible usiné
simulated annealing because of the computational cost. |
Fig. 4b) we show that forS—~ the modularity only de-

pends ompS
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are exchangeabile, it is worth asking whether “random” scale- Conclusions—We have shown that modularity in net-
free networks also display modularity. works can arise due to a number of mechanisms. We have
To answer this question, we use the scale-free model prqtemonstrated that networks embedded in low-dimensional
posed in2]. In the model, the network grows by the addition spaces have high modularity. We have also shown analyti-
of new nodes. Each tir_ne a new node is adde_d, it establish%"y and numerically that, surprisingly, random graphs and
m preferential connections to nodes already in the networkscaje-free networks have high modularity due to fluctuations

In Fig. 2, we show the modularity of scale-free networks as &, the establishment of links.

function of the network sizé& for different values oim. As
before, we find the modularity by optimizing E¢L) using
simulated annealing. As for ER graphs, the modularity ap
proaches a finite value for largé and decreases with the
connectivitym.

We are unable to derive a general expression for th
modularity of scale-free networks. However, for=1 the
scale-free network is a tree. Thus,

2
Ms(Sm=1)=M;p(§ =1 _Tg- (20)
V
For larger values ofn, we find numerically that, at a fixed
network size, the modularity is a linear function ofrd./The
simplest possiblansatzfor the modularity that verifies this
condition and Eq(20) simultaneously is

2

\’S) '

—a

=

MSF(Sm):(a+— 1-—= (21)

As we show in Fig. 2, this approximation works well far
=0.165+0.009.

Recently, several works have reported the existence of
modules in complex networks and suggested that some evo-

Tutionary mechanism must enhance modularity. This state-

ment is based, in the best cases, on the fact that the modu-

éarity is large enoughand relies implicitly on the assumption

that random graphs have low modularity.

Our results enable one to defisgatistically significant
modularity in networks. We argue that, just as it is already
done for the clustering coefficient and other quantities, the
modularity of complex networks must always be compared
to the null caseof a random graph. The analytical expres-
sions we have derived provide a convenient way to carry out
such a comparison.
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