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Abstract

Understanding evolutionary relationships between species can shed new light into the rooting of the tree of life and the origin of eukaryotes,
thus, resulting in a long standing interest in accurately assessing evolutionary parameters at time scales on the order of a billion of years. Prior
work suggests large variability in molecular substitution rates, however, we still do not know whether such variability is due to species-specific
trends at a genomic scale, or whether it can be attributed to the fluctuations inherent in any stochastic process. Here, we study the statistical
properties of gene and protein-family sizes in order to quantify the long time scale evolutionary differences and similarities across species. We first
determine the protein families of 209 species of bacteria and 20 species of archaea. We find that we are unable to reject the null hypothesis that the
protein-family sizes of these species are drawn from the same distribution. In addition, we find that for species classified in the same phylogenetic
branch or in the same lifestyle group, family size distributions are not significantly more similar than for species in different branches. These two
findings can be accounted for in terms of a dynamical birth, death, and innovation model that assumes identical protein-family evolutionary rates
for all species. Our theoretical and empirical results thus strongly suggest that the variability empirically observed in protein-family size
distributions is compatible with the expected stochastic fluctuations for an evolutionary process with identical genomic evolutionary rates. Our
findings hold special importance for the plausibility of some theories of the origin of eukaryotes which require drastic changes in evolutionary
rates for some period during the last 2 billion years.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Species, and their corresponding genomes, evolve and adapt
over time. Until recently, it was widely accepted that the lineage
of any species could be represented by a branch in a
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phylogenetic tree. Recent discoveries have pointed out that
processes such as lateral gene transfer also play an important
role in evolution, making the redefinition of the “tree of life”
one of the “biggest challenges in evolutionary biology”
(Doolittle, 1999).

The current consensus is that all living species belong to one
of three different domains: bacteria, archaea, and eukaryotes
(Woese et al., 1990). However, the evolutionary relationships
between these three domains of life are still hotly debated
(Dagan and Martin, 2006; Kurland et al., 2006, 2007; Martin
et al., 2007). Specifically, there is still no agreement neither on
where the “root” of the tree of life lies nor on the origin of
eukaryotes. Current theories trying to explain the origin of
eukaryotes can be roughly divided between those, such as the
“Neomuran” theory (Cavalier-Smith, 2002a,b), that surmise that
eukaryotes and archaea are “sister” branches originating from a
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bacterial common ancestor, those that surmise that eukaryotes
arose from the symbiosis of a bacterium inside an archaean host
(Doolittle, 1998; Martin and Müller, 1998), and those that
hypothesize that eukaryotes are an ancestral lineage completely
independent from prokaryotes (Kurland et al., 2006). At the root
of the controversy lies the fact that tracing the evolution of
genomes on the time scale of billions of years is extremely
difficult.

A large body of literature is devoted to the construction of
phylogenetic trees given a pool of taxa (Kuhner and Felsenstein,
1994; Huelsenbeck, 1997; Sanderson, 2002). In particular,
many authors developed statistical tools suited to hypothesis
testing concerning the point of divergence of a pair of species
and the evolutionary rates along the different branches
(Huelsenbeck, 1997; Liò and Goldman, 1998; Fares et al.,
2006). In the simplest scenario, that of the so-called “molecular
clock,” genes accumulate mutations over time at a specific and
fixed substitution rate. There have been claims that substitution
rates are variable and change from branch to branch
(Huelsenbeck, 1997; Welch and Bromham, 2005).

Inferring evolutionary parameters at the genomic level from
molecular substitution rates is not a trivial task. A common
approach is to look at silent site substitution rates between
paralogous genes to, for instance, infer gene duplication rates
(Lynch and Conery, 2000). A caveat is that silent substitution
rates are estimated to take values on the order of 0.005/Myrs
(Ochman and Wilson, 1987), so that, over a billion years one
would expect a silent site to have changed about five times.
Therefore, it would not be possible to infer evolutionary rates on
the billion year scale by comparing silent sites, since two sites
may be the same, but that would not warrant that they had not
changed in a billion years. In addition, due to lateral gene
transfer, we know that genes of a single species may have
different evolutionary histories (Doolittle, 1999; Zhaxybayeva
et al., 2005). Therefore, the comparison between pairs of
paralogous or orthologous genes may not provide information
about within species evolutionary rates.

A second caveat is that, although it seems reasonable to
assume that, for instance, the need for a species to adapt to
abrupt environmental changes may trigger a higher rate of
change in the species' genome, there is no obvious argument
why a high mutation-rate period must extend beyond the short
time for adaptation. This second caveat suggests two questions
worth pursuing.

First, whether on the time scale of billions of years genomic
evolutionary rates are species-dependent, with some species
having mutated more frequently over time, or whether all
species have evolved in a similar fashion, so that frequent
mutation periods resulting in, for instance, more gene
duplication events, can be seen as stochastic fluctuations of a
single evolutionary process.

Second, if one can determine genomic evolutionary rates for
species in the three domains of life on the time scale of billions
of years, what can one say about the origin of eukaryotes?
Obviously, the analysis of the dynamical evolution of species,
cannot by itself solve the debate on the rooting of the tree.
Nevertheless, one can investigate differences in rate patterns
implied by the main theories of the origin of eukaryotes. For
instance, in the Neomuran scenario, archaea and eukaryotes
arose from a specific class of bacteria that underwent a dramatic
transformation during the period from 850 to 580 Myrs ago. A
plausible mechanism for such transformation is that the
bacterial ancestor of eukaryotes and archaea evolved with
dramatically larger evolutionary rates for a period of 270 Myrs.
If this were the case, one would expect to find clear differences
between the genomic evolutionary rates of bacteria, and those of
archaea and eukaryotes.

Similarly, the theory postulating the existence of a
unicellular eukaryote predator as the ancestor of eukaryotes
(Kurland et al., 2006) entails major episodes of genome
reduction of non-predator unicellular organisms that gave rise
to fast-growing prokaryotic species. This hypothesis, despite
not having been fully elaborated, could in principle involve
sudden changes in the evolutionary rates of some species. In
contrast, in the scenario postulating the merging of a bacterial
symbiont into an archaean host, there is a priori no reason why
one should expect bacteria and archaea to have evolved
according to different genomic evolution rates.

In order to address these questions, one needs to compare the
long time scale evolution of different genomes. A simple, yet
powerful, way to quantify the long time scale evolutionary
differences and similarities across species is to study the
statistical properties of gene and protein-family sizes, that is,
groups of genes and proteins with significant similarity at either
structural or sequence levels, and which are presumably
descendants of a common ancestor (Brenner et al., 1995;
Koonin et al., 1995; Huynen and van Nimwegen, 1998; Yanai et
al., 2000; Karev et al., 2002, 2003, 2004; Harrison and Gerstein,
2002; Unger et al., 2003; Reed and Hughes, 2004). The advent
of high-throughput techniques has enabled researchers to tackle
this matter in an unprecedented way. A rapidly increasing
number of bacterial genomes have been fully sequenced (van
Nimwegen, 2003), making it possible to undertake a large scale
comparative study of the genomes of many different species.

1.1. Statistical properties of protein families

In a single species, gene and protein families span a broad
range of sizes n (Brenner et al., 1995; Koonin et al., 1995), with
cumulative distributionsP(n) that decay as a power law (Huynen
and van Nimwegen, 1998; Yanai et al., 2000; Unger et al., 2003)

P nð Þfn�a: ð1Þ

This power-law behavior has been explained in terms of gene
birth (duplication), death (loss), and innovation (de novo
acquisition) (BDI) models (Huynen and van Nimwegen, 1998;
Yanai et al., 2000; Karev et al., 2002, 2003, 2004; Reed and
Hughes, 2004). In these models, the exponent α characterizing
the protein-family size distribution directly reflects the rates at
which genes are duplicated, lost, and acquired de novo. The
exponent thus provides a proxy for the evolutionary processes
that shape the genome of a given species on time scales on the
order of a billion years.
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Note that, in such an analysis, the specific function or
sequence of the members of a given family is not taken into
account. A BDI process merely describes the growth of family
sizes with some “effective” rates (that is, rates at a much larger
scale than molecular rates) that are the same for each element of
a family. For the specific case of protein families that are
organism/superkingdom specific, we expect these families to
have appeared more recently than non-specific protein families.
In virtue of the BDI model, younger families will be on average
smaller in size than older families. Thus, considering these
families or not will only affect the head of the distribution and
not the tails of the power law, which carry the information on
the evolutionary rates on the billion year time scale. Therefore,
in our analysis, we do not need to give any special treatment to
families that are organism or superkingdom specific (archaeal or
bacterial), since eliminating these families from the analysis
does not change the results we report.

Cross-species comparison of protein-family size distribu-
tions enables us to test whether different species have evolved
with different “overall” evolutionary rates. For example, BDI
models have been used in conjunction with empirical distribu-
tions of gene and protein families to estimate evolutionary rates
for different species and to assess the relevance of each
mechanism (birth, death, and innovation) in the evolution of a
specific genome (Yanai et al., 2000; Karev et al., 2002, 2004).

Currently, the consensus on this issue is that protein-family
size distributions for different species are characterized by
different values of α. However, the significance of such
difference in the estimated values of α has not been rigorously
quantified. Each species typically has only tens to a few
hundred families with more than three proteins, so that the tails
of the family size distribution and, therefore, the evolutionary
parameters inferred from them have, unavoidably, a large
uncertainty. To assess whether differences in the empirical
distributions are only due to stochastic fluctuations or represent
a significant difference in the evolutionary rates of species at a
genomic level, one needs to make a systematic comparison
between a large pool of organisms. If some groups of species
have evolved with different evolutionary rates, one expects to
find clear differences in the comparison of protein-family size
distributions. Instead, if all species have evolved with the same
overall evolutionary rates, one will find no significant
differences among the family size distributions for the whole
pool of organisms.

Here, we analyze the protein-family size distributions of 229
species—20 archaea and 209 bacteria (see Supplementary
Material for a list of species). We find that all species studied
have protein families whose sizes are consistent with a common
universal distribution, and that this finding is mostly unaffected
by the choices of the method being used to identify protein
families. Our findings imply that the observed differences in the
empirical distribution for different species can be fully
accounted for by stochastic fluctuations in the evolutionary
process and do not require species-specific trends. Furthermore,
we do not observe any significant additional similarities
between species in the same phylogenetic branch in comparison
to species in different branches. We do not observe any
differences between species with the same lifestyle (parasitic
and non-parasitic), either. Our empirical findings are supported
by numerical simulations of a dynamic BDI model with fixed
evolutionary parameters. Therefore, we conclude that the
statistical properties of protein-family sizes are consistent with
the hypothesis that, for time scales on the order of billions of
years, bacteria and archaea evolved with identical genomic
evolutionary rates.

Our results have significant implications of our findings on
the plausibility of current theories for the tree of life and the
origin of eukaryotes. Although not conclusive, the comparison
of prokaryotic protein-family size distributions with those of
four eukaryotes (S. cerevisiae, P. falciparum, C. elegans, and
D. melanogaster) is consistent with the hypothesis that all
genomes evolved with the same genomic evolutionary rates.
Thus, our findings are not consistent with any theory that
surmises drastic changes in evolutionary rates on the billion
year time scale. In order to assess whether from the comparison
of protein-family size distributions one could detect differences
in species having evolved with different genomic rates for a
certain period of time, we perform numerical simulations of a
dynamic BDI model for the specific scenario of the Neomuran
hypothesis. We find that we should be able to detect large
differences in evolutionary rates, even if those differences are
restricted to a period of only about 270 Myrs—the time during
which the Neomuran revolution is hypothesized to have
happened (Cavalier-Smith, 2002a).

2. Materials and methods

2.1. Protein sequence alignment

We study the genomes of 209 bacteria and 20 archaea stored
in the GenBank database (Benson et al., 2006). We use BLAST
(Altschul et al., 1990, 1997) to compare all pairs of protein
sequences for each species, obtaining the expectation values (E-
values) and bit scores for each comparison. To avoid hits for
very common amino acid sequences, we use the low-entropy
filter in our comparisons. To estimate E, we use the model of
random sequences proposed in (Karlin and Altschul, 1990;
Dembo et al., 1994).

2.2. Protein families

From either the E-values or bit scores b obtained for each
pairwise comparison, we determine protein families by using
two different algorithms: the TribesMCL algorithm (MCL)
(Enright et al., 2002, 2003), and a transitive clustering algorithm
(TCL) (Brenner et al., 1995). Ideally, for a pair of proteins the
E-value and b should not depend on the order in which the
comparison is done. However, it is well known that BLAST
comparisons can be slightly asymmetric, thus we symmetrize
them by using the most restrictive comparison value, that is, the
smallest E-value or largest b.

The MCL algorithm obtains the protein families from the bit
scores b for the pairwise comparison of the whole pool of
proteins for a single species see (Enright et al., 2002). The TCL
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algorithm considers that a pair of proteins is related if the E-
value is smaller than a certain threshold Et. Since organisms
typically have on the order of a thousand proteins, we set
Et =10

−6 to minimize the rate of false positives. We define a
protein family as a set of proteins that satisfy two conditions: (i)
each protein is related to, at least, one other protein in the family,
and (ii) none of the proteins from one family is related to
proteins belonging to another family. This is equivalent to the
assumption that evolutionary relationships are transitive—that
is, if proteins A and B are evolutionarily related, and A and C
are evolutionarily related, then B and C are also evolutionarily
related (Brenner et al., 1995; Koonin et al., 1995).

We define the size n of a protein family as the number of
proteins it contains. As done in other contexts (Tatusov et al.,
2001), we put a threshold nt on the minimum size of the families
considered, which for the results we show is nt =4. Obviously
such choice limits our analysis to a “small” fraction of the total
genome of a species (on average, 29% for TCL and 10% for
MCL). There are, however, two main reasons for not including
data for small family sizes in our analysis. First, despite many
genomes being completely sequenced, the expression in vivo of
all the sequences that are identified as “proteins” has not been
proved. Therefore, it is sensible to assume that proteins
belonging to families of a certain size are more likely to be
“real” proteins. Thus, by not including data for small families in
our analysis, we eliminate the bias due to the way proteins are
identified.

Second, we compare empirical results with the outcome of a
BDI model (Section 2.5), which is predictive for large values of
family sizes, that is, for the tails of the distributions. Therefore,
the proper comparison of the distributions has to be made for
large family sizes only. Nevertheless, we have analyzed the
distributions for nt = 2 (see Figs. S-2, S-3, and S-4 in
Supplementary Material), which corresponds to analyzing on
average 47% of the genome for TCL and 20% for MCL, and the
results are very similar to those obtained for nt =4, that is we do
not observe any phylogenetic pattern in the protein-family size
distributions (see Section 3).

The reason why we use two different algorithms is that they
give complementary answers in some specific cases, thus we
can evaluate the robustness of our results. Compared to the TCL
algorithm, the MCL algorithm generates families that are fairly
small, since even some pairs of proteins with significantly large
bit scores/small E-values can be classified into separate
families. Therefore, if there is a false positive, the TCL
algorithm will probably group that pair of proteins within the
same family, whereas MCL would not. On the other hand, if
there is a weak but real match signal between a pair of protein
sequences, that is a high E-value, the TCL algorithm would
classify the two proteins within the same family, whereas MCL
would not.

We have checked that for the matches between protein
sequences we identify, the number of amino acids per match is
large enough to truly represent an evolutionary relationship. For
a typical species (B. subtilis), 95% of the matches we find are 97
amino acids or longer, the shortest match being of 20 amino
acids. The median and mean of the distribution of amino acids
per match are of 230 amino acids and 286 amino acids,
respectively.

2.3. Comparison of protein-family size distributions

For each species Awith protein-family sizes {nA}={n1
A, n2

A,
…}, we compute the cumulative distribution PA(n) of family
sizes, which gives the probability of finding a protein family of
size equal to or greater than n. The cumulative distribution is
defined as PA nð Þ ¼ Pl

n V¼n pA n Vð Þ, where pA(n) is the fraction of
families of size n in {nA}.

Then, we compare the distributions of all possible pairs (A,
B) of species in the set {S}= {A,B,…,L,…} using the
Kolmogorov–Smirnov (KS) test (Press et al., 2002). The
significance value r returned by the KS test quantifies the
likelihood that the two sets of protein-family sizes {nA} and
{nL} have been drawn from the same distribution. An r value
greater than 5% is typically taken to indicate that one cannot
reject the hypothesis that the two sets of protein-family sizes
were drawn from the same distribution.

In our analysis, however, we want to test the null hypothesis
of whether the whole pool of family size sets has been drawn
from the same distribution. Thus, because we are making a large
number of pairwise comparisons—(208×19)/2 in total—we
expect some r values to be smaller than 5% even if the sets of
proteins family sizes are in fact drawn from the same
distribution.

To determine if the empirical significance values we obtain
from the KS test deviate from those expected from the null
hypothesis, we generate artificial sets of protein-family sizes by
randomly distributing the actual protein-family size values
among different species. With this procedure, we generate sets
that, by construction, are drawn from the same distribution. The
specific way in which we generate such sets is the following.
First, we pool the sets {nA} of protein-family sizes of all the NS

species in {S} together, thus obtaining a superset N =∪{nA}.
Each random sample comprises NS random sets of protein-
family sizes, such that each set has the same number of protein
families as its corresponding empirical set. That is, suppose that
we have two empirical sets {nA} and {nB} with pA and pB
protein families, respectively. Then the superset N ={nN} has
pA+pB protein-family sizes. Each random sample consists of
two sets {nRA} and {nRB} of pA and pB elements, respectively,
that are drawn at random from N .

For each random sample, we perform the pairwise com-
parisons between family size sets and obtain the distribution of
r values for that sample. To obtain the expected distribution of r
values under the null hypothesis that all protein-family sizes are
drawn from a common underlying distribution as well as the
95% confidence intervals, we repeat the same procedure 1000
times. If the empirical distribution of r values falls within the
confidence intervals of the distribution expected under the null
hypothesis, then we cannot reject the null hypothesis. The
comparison between both empirical and randomly generated
distribution is thus a stronger test than the comparison with a
significance level alone, since it enables us to test a null
hypothesis that considers the whole pool of species.
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Note that unlike in hypothesis testing for questions involving
phylogeny (Huelsenbeck, 1997), we perform a non-parametric
statistical analysis. This is because in our analysis we do not
make any assumptions on the specific shape of the distribution,
thus the proper test to use is a non-parametric one. Additionally,
it is a well-documented fact that null hypothesis are often
rejected when the pool of data is as large as the one we consider
(Savage, 1954; Ijiri and Simon, 1977). As we show later, from
our results we cannot reject the null hypothesis, that is, we
cannot reject that empirical distributions have been drawn from
a common underlying distribution, thus enabling us to draw
strong conclusions from our analysis.

2.4. Ordering of the matrix of r values

Our goal is to identify whether we can group species in {S}
in subsets of species with more similar distributions among
themselves. A common approach (Tsafrir et al., 2005) is to build
a similarity matrix, that is, a square matrix R of order N (the
number of species in {S}) such that each element Rij= r(i, j) is
the result from the comparison of the distributions of species at
positions (rows) i and j.

Species can be ordered in N!/2 different ways {O}
(considering that a given ordering of the nodes is equivalent to
its reverse ordering). For each ordering of the speciesOk({S})=
{Ok(A)= i, Ok(B)= j,…}, we have a different matrix R(Ok).
Block diagonal structures in matrices are indicative of clustering
of rows. Therefore, to identify different potential clusters, we
need to find the orderingO for which the structure of the ordered
matrix R(O) resembles as much as possible a block diagonal
matrix.

To quantify the goodness of each ordering Ok , we define a
cost function C(Ok) that weighs each element in the matrix with
its distance to the diagonal (Sales-Pardo et al., in press),

C Okð Þ ¼ 1
N

X

ij

R Okð Þijji� jj: ð2Þ

The best ordering Ô is the one that minimizes C. Obviously,
making an extensive search among the possible N!/2 possible
orderings is not viable. Therefore, to find an ordering close to
the best possible one, we perform simulated annealing—a
standard technique to solve optimization problems (Kirkpatrick
et al., 1983)—starting from a random ordering of the elements.

Once we find the best possible ordering of the species Ô,
we can easily compute the “distance” d(A, L) between any pair
of species A and L as the absolute value of the difference
between the position each species occupies in the best ordering
d(A, L)= ∣Ô(A)−Ô(L)∣.

To assess whether a group of s species are close in Ô, we
compute the average distance between them and we compare it
to the 95% confidence interval of the random expectation; this
is, we generate 1000 random orderings of N species, we
compute the average distance of the subgroup of s species for
every sample, and we compute the 95% confidence interval for
such distances. If the empirical average distance within a group
of s species falls below this interval, then we conclude that at
the 5% significance level, these s species are significantly closer
in the ordering, and, therefore, their family size distributions are
significantly more similar between themselves than to distribu-
tions of species in other groups.

2.5. Analysis of group patterns in protein-family size
distributions

To assess whether there are any “group” patterns in protein-
family size distributions, we group species following two
criteria: phylogeny and lifestyle. We classify species into groups
defined by each criterion and compute for each group the
average distance (see Section 4) and average similarity between
distributions. Then, we compare these empirical measurements
to the distance and similarity that one would expect to find by
chance.

By grouping species using phylogeny, our aim is to assess
whether traditional taxonomic classifications capture similari-
ties in evolutionary rates that are not detectable via global
analysis. By grouping species by lifestyle, we investigate
whether our analysis is affected by the size of the genomes,
which, in principle, limits the family sizes and could therefore
introduce some bias in the comparisons between distributions.

For the phylogenetic analysis, we group species according to
the NCBI taxonomy database (Wheeler et al., 2000). We
consider taxonomic groupings at two levels: domain and
phylum. The reason for such choice is that in order to make a
sensible assessment of whether there are any phylogenetic
patterns in family size distributions at a given taxonomic level,
one needs to have empirical data for at least two species
classified in the same branch and for several branches at that
level. For this reason, the phylum level is the deepest taxonomic
level that we can analyze.

At the domain level, species are classified into two groups
archaea and bacteria. At the phylum level, we only analyze phyla
for which we have enough species: Actinobacteria, Bacteroidetes,
Deinoccoccus-Thermus, Chlamydiae, Cyanobacteria, Firmicutes,
Spirochaetes, and Proteobacteria. Note that these are only phyla of
bacteria. All phyla for archaea as well as some phyla of bacteria
(Aquificae, Chlorobi, Chloroflexi, and Thermotogae) have a
single representative in the pool of species we consider. There-
fore, we do not consider species in these phyla at this level of
analysis, but we include these species in the results at the domain
level (see Table in Supplementary Material for a complete list of
all the species considered for each taxonomic group).

For the lifestyle analysis, we have manually grouped species
into two groups: parasitic and non-parasitic (following the
HAMAP database (Gattiker et al., 2003) and (Fitz-Gibbon and
House, 1999; House and Fitz-Gibbon, 2002)). We classify as
parasitic all organisms that are listed as symbionts, endosysm-
bionts, or parasites, because organisms living in any of these
ecological relationships have been found to have suffered a
genome reduction over time (Andersson and Kurland, 1998). We
classify as non-parasitic those organisms that are either free-
living or are animal or plant commensals (see Supplementary
Material Table 1 for a complete list of all the species considered
for each lifestyle group).



Fig. 1. Distribution of protein-family sizes for archaea and bacteria. Each individual curve shows the cumulative distribution of protein-family sizes for an individual species,
that is, the probability of finding a protein family of size equal to or greater than n, with n≥4.We show the cumulative distributions obtainedwith two different methods (see
Materials and methods): MCL (left) and TCL (right). Due to the small number of protein families per organism, typically 100, the distributions display large variability.
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2.6. Dynamical BDI model

In the BDI model for protein-family growth proposed by
Reed and Hughes (RH) (Reed and Hughes, 2004), each protein
can duplicate with rate λ and die with rate μ. Assuming that at
time zero the species has one family with a single protein, and
that the ages {τ} of protein families within a single species are
exponentially distributed f (τ) ∼ e−ρτ, one can show that the
cumulative P(n) distribution of protein-family sizes decays as a
power law P(n) ∼ n−α in the stationary state, with α=ρ/(λ−μ)
(Reed and Hughes, 2004).

In our dynamical BDI model, each protein can duplicate or
die with fixed rates λ and μ, respectively. In addition, we
consider that with fixed rate ρsim a mutation in some family of
proteins will be large enough that it will give rise to a new
family. Such multiplicative processes result in an exponential
growth of the number of families and an exponential
distribution of ages, as assumed in the RH model.

Note, however, that the observed rate of growth of the number
of families ρobs is not, in general, equal to ρsim. Because there is
a finite probability for a family to die, the observed growth rate
for the number of families will be smaller than the dynamical rate
ρobs ≤ ρsim (see Supplementary Material in Appendix).

Selection of parameters—We have selected the values of the
rates λ, μ, and ρ as well as the total time for the numerical
simulations tevol in order to enable the most accurate compa-
rison with the empirical data.

First, we fix λ=1, which sets the unit for time. Then, we fix
the exponent of the stationary cumulative distribution of family
sizes P(n) to the exponent empirically observed, qobs

k�lð Þ ¼ aemp.
We are thus free to select either ρ or μ with the constraints

μbλ or ρobs ≤ α. Once we select a value of ρobs—and therefore
ρsim—we can determine the total time of the simulation tevol.
We fix tevol so that a species will have on average a number of
families equal to the average number of families Nf empirically
observed—Nf≈1900 for the TCL method and Nf≈2500 for the
MCL method. Hence,

tevol ¼
ln Nf

� �

qobs
: ð3Þ
With these constraints, we can still have a free parameter, but we
have checked that a consistent selection of ρsim, μ and tevol
yields exactly the same results for the family size distributions.

Fig. 7 shows results for λ=1, μ=0.1, and ρsim=1.405,
which yield a ρobs such that the exponent of the cumulative
distribution is α=αemp=1.4; the total time for the simulations
is, from Eq. (3), tevol≈5 time units, where the term “time units”
indicates that the time is in units of λ. Simulations for μ=0.5
yield identical results (data not shown).

Note that for some choices of parameters we recover the
correct time scale for the evolutionary process considered.
Effective protein duplication rates λeff are on the order of one
protein per billion years (Lynch and Conery, 2000). Therefore,
for the total time T of the evolution of life (roughly 4 billion
years), T×λeff≃4. In our model, λeff=λ−μ and T= tevol= lnNf /
ρobs, therefore tevol � k� lð Þ ¼ lnNf

aemp
c5, which is of the same

order of magnitude as estimates in the literature.

3. Results

3.1. Comparison of protein-family sizes

First, we identify the protein families for each of the 229
species of archaea and bacteria using two different methods (see
Materials and methods): the TribesMCL (MCL) algorithm
(Enright et al., 2002, 2003) and a transitive clustering algorithm
(TCL) (Brenner et al., 1995). In Fig. 1, we show the distribution
of sizes of families with more than three proteins obtained for
each species using both methods MCL and TCL. In both cases,
we observe that protein-family size distributions display a large
variability from species to species, and yet all the curves display
heavy tails; most of the protein families have 10 or less proteins,
but there are some protein families with hundreds of proteins
(see Supplementary Material). Typically, each species has about
100 different families with more than three proteins; this small
number of families accounts for the large fluctuations in the
distributions.

To determine whether the differences between the individual
family size sets are significant or just an artifact of the small
number of families per species, we perform the Kolmogorov–
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Smirnov (KS) test for the two sets of protein-family sizes of
species A and B—{nA} and {nB}—as described in the Materials
and methods section. If the significance r value returned by the
KS test is high, it means that there is a large probability that the
pair of protein-family size sets being tested was drawn from the
same distribution.

With the r values obtained from all possible pairwise
comparisons between the 229 species of bacteria and archaea,
we construct a matrix R. Each element in the matrix Rij= r(i, j)
is equal to the r value for the comparison between the sets of
family sizes of species i and j. To find whether there are any
distinct clusters of species with similar distributions, we order
the R matrix so that the highest r values are closest to the
diagonal (see Materials and methods).

From the ordered analysis of the ordered R matrices (Fig. 2
A, B), we conclude that there are no distinct clusters of species
with higher r values among themselves than with the rest of the
species. Rather, we observe that the distributions are all similar
to each other for each of the two methods used to identify
protein families. Indeed, most significance values are larger
than 50%, implying that we can accept the null hypothesis of
there being a common underlying distribution with confidence.
However, because of the large number of pairs of species being
compared, one expects to obtain some low r values despite the
family size sets being drawn from the same distribution.

To test whether the low r values obtained from the KS test
agree with the expectation for a common underlying
distribution in Fig. 3, we compare the empirical r values with
those we obtain from constructed sets drawn from a single
distribution (see Materials and methods). If we consider the
whole pool of species, we find that the observed r value
distribution for both MCL and TCL methods is very close to
the expectation for a common underlying distribution (Fig. 3 A,
B). Nevertheless, it has a slightly lower fraction of values r≃1
Fig. 2. Ordered R matrices. We show the ordered matrices of KS test r values for the
(archaea and bacteria) obtained using: (A) MCL and (B) TCL methods. We color eac
right hand side of the diagram. r→1 means that we cannot rule out the hypothesis th
samples could not have been drawn from the same distribution. We have ordered the
values with any a priori assumption on the taxonomic relationships among them. Th
of the references to color in this figure legend, the reader is referred to the web vers
and a slightly larger fraction of values rb0.01 than the ex-
pectation for a common underlying distribution. Low signif-
icance r values can arise in two possible cases: (i) species
comprise a small number of families, and therefore their family
size distributions are subject to even larger fluctuations than
other species; (ii) species comprise a very large number of
families, thus, because one would expect their family size
distributions to be smoother, even small fluctuations will result
in a small significance value. If we remove the ten species
which have the lowest average r values, which constitute only
4% of the species, we find that the empirical distribution agrees
remarkably well with the expectation for a common underlying
distribution, implying that we cannot reject the hypothesis that
all protein-family size distributions are drawn from the same
underlying distribution.

3.2. Combined protein-family size distribution

Our results show that there is a high likelihood that protein-
family sizes for all bacteria and archaea are drawn from the
same distribution. Thus, one can obtain a better estimate of the
exponent of the real underlying universal distribution by
pooling all sets of family sizes together. Fig. 4 shows the
probability density functions obtained for the whole pool of
bacteria and for the whole pool of archaea. Note that because the
global distributions are significantly smoother than individual
ones, here we can directly compare the probability density
functions we obtain from the empirical data and the numerical
simulations, as opposed to using the cumulative. It is visually
apparent that, for both methods, family size distributions for
archaea and bacteria are very similar. Indeed, at a 5%
significance level, we cannot reject the hypothesis that
protein-family sizes for archaea and bacteria are drawn from
the same distribution.
pairwise comparisons of family size distributions for the whole pool of species
h matrix element according to its r value, following the color code shown on the
at the two samples were drawn from the same distribution, r→0 means that the
matrix (see Materials and methods) to cluster organisms with a similar set of r

e arrows show the columns corresponding to archaea species. (For interpretation
ion of this article.)



Fig. 3. Probability density function of the KS test result r. In each plot, we show the KS test result distribution (black line) and we compare it with the “null”
distribution obtained from 1000 random samples with the same number of species and the same underlying family size distribution (red line). The regions shaded
in gray show the 95% confidence interval of the null distribution. If both empirical and null distributions are equal, then one can conclude that family sizes for the
different species are drawn from the same underlying distribution. Plots (A) and (B) show the results for the MCL and TCL methods, respectively. Note that in
both cases the fraction of values r≃1 is slightly lower than the expectation for a common underlying distribution and the fraction of values rb0.01 is slightly
larger than the expectation for a common underlying distribution. Plots (C) and (D) show the results for the MCL and TCL methods for the case in which we
remove the ten organisms which have the lowest average r value. Note that in both cases the agreement of the empirical distribution of r values with the null
distribution of r values is excellent.
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Additionally, the results we report are robust with respect to
the method used, since we cannot reject the hypothesis that
protein-family sizes obtained with different methods are drawn
from the same distribution. Power law fits to the probability
density functions of bacteria (Fig. 4) yield exponents αMCL=
1.3 ± 0.1 and αTCL=1.4±0.1 (Fig. 4). Note that if we plot a
power law that decays with an exponent 2.4, the line overlaps
with the two curves, implying that the exponent for the global
Fig. 4. Combined protein-family size distribution. We show the probability density fun
bacteria, with both methods MCL and TCL. Note that in both cases distributions for a
power-law decay with exponent 1+α=2.4. The solid lines correspond to the probab
(Materials and methods and Discussion). Note the agreement between simulations a
cumulative distribution obtained with both methods is compat-
ible with α=1.4, even though because of the small region
available for the fit to a power law, one can hardly distinguish
between curves with exponents in the range [2.3,2.5]. Thus, by
combining the protein families of 229 species and based on the
statistical analysis of the distributions of protein-families sizes,
we are able to obtain the best available estimate of the value of
the exponent for the distribution of family sizes.
ction of protein-family sizes for the whole pool of archaea and the whole pool of
rchaea and bacteria decay with the same slope. The dashed line corresponds to a
ility density function obtained from the numerical simulations of a BDI model
nd the empirical data.
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3.3. Average distance and similarity

The fact that we cannot reject the hypothesis that protein-
family size distributions for all archaea and bacteria are drawn
from the same distribution, however, does not exclude two
possibilities: (i) that species that are closer from a taxonomic
point of view have significantly more similar protein-family
size distributions; (ii) that species living in a parasitic rela-
tionship that have suffered a reduction of their genomes have
significantly more similar protein-family size distributions than
those of non-parasitic organisms.

To investigate this question, we analyze what is the average
similarity and distance between species classified into the same
taxonomic groups at two levels: the domain level (archaea or
bacteria), and the phylum level (see Materials and methods). We
also analyze the same quantities for species classified as either
parasitic or non-parasitic (see Materials and methods) for two
cases: considering the whole pool of species, and restricting the
analysis to bacterial species.

We consider that the similarity between a pair of species is
directly provided by the KS test r value and that the distance
between a pair of species is the difference between the position
of the species in the best ordering obtained for the R matrix
(Fig. 2 and Materials and methods). For a set of s species
grouped into the same domain or phylum, the average distance/
similarity is the average of the s(s−1)/2 pair distances/simi-
larities. To assess whether any group of species is significantly
close or similar, we compare these average quantities with the
95% confidence interval of the random expectation (see
Materials and methods).

Fig. 5 shows that, for both MCL and TCL methods, species
belonging to the same group either at a taxonomic (domain or
phylum) or lifestyle level are neither more similar nor closer in
the ordering than what is expected by chance, except for the
Fig. 5. Average similarity and distance between groups of species classified in the
(parasitic and non-parasitic) (Materials and methods). For each set of s species classifi
distance according to the best ordering found for the R matrix (right column) obtai
phylogenetic of lifestyle group. The black line shows the average distance/similarity e
confidence intervals for the average distance/similarity of groups of s species picked a
same group were ordered consecutively. Symbols circled in red indicate groups of spec
interpretation of the references to color in this figure legend, the reader is referred t
species in the phylum Chlamydiae, which are consistently and
significantly close in the ordering and similar according to the
KS test r values. A closer look at Chlamydiae species reveals
that they have a small number of families. Actually, Chlamydiae
are known to be obligate intracellular parasites with very short
genomes. Statistically, one expects sets with a small number of
families to have larger fluctuations. Therefore, if the distribu-
tions for these sets are located close to the center of the range of
variation of the sample, then any statistical test will return
higher significance values from the comparison of these sets
than if we considered a set with a large number of families. This
is precisely the case for many of the family size distributions of
Chlamydiae species. Indeed, for any of the pairwise compar-
isons with the remaining species, the r values are very high,
implying that family size distributions for species in this phylum
are not only significantly more similar between themselves but
to any other species belonging to a different phylogenetic
branch. For this reason, many Chlamydiae species are located in
the center of the ordered R matrix, and therefore the average
distance between them is small.

Note that, in spite of such finding, we do not observe that, in
general, parasitic organisms with shorter genomes have a larger
similarity between their distributions than what one would
expect by chance, implying that genome size does not introduce
any bias in our analysis. In fact, in order to completely rule out
such possibility we have checked that restricting our analysis to
those genomes of non-parasitic species yields the same lack of
taxonomic pattern found for the whole pool of species: If we
divide non-parasitic species into two taxonomic groups, archaea
and bacteria, the average similarity for each group is compatible
with the random expectation, meaning that family size
distributions for non-parasitic archaea are not more similar
between themselves than they are to those for non-parasitic
bacteria (Fig. S-1 in Supplementary Material).
same group at a taxonomic level (phylum or domain ), and at a lifestyle level
ed in the same group, we plot the average similarity (left column) and the average
ned for both methods, MCL and TCL. Each symbol corresponds to a different
xpected for a group of s species picked at random. The gray areas show the 95%
t random. Red lines correspond to the expected average distance if species in the
ies that are either significantly similar or significantly closer in the ordering. (For
o the web version of this article.)
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3.4. Dynamical BDI Model

The overall form of protein-family size distributions can be
understood in terms of birth (duplication with or without
mutations), death (loss) and innovation (de novo acquisition)
(BDI) of genes (Huynen and van Nimwegen, 1998; Yanai et al.,
2000; Karev et al., 2002, 2003, 2004; Koonin et al., 2002; Reed
and Hughes, 2004).

For the BDI model proposed by Reed and Hughes (2004),
one obtains a stationary cumulative distribution of family sizes
whose tail tends asymptotically to a power law (Reed and
Hughes, 2004) P(n) ∼ n−α, with a ¼ q

k�l, where λ is the
mutation rate, μ is the extinction rate, and ρ is related to the
creation rate of new families. Thus, the exponent of the
distribution carries the information about the ratio between
family creation ρ and protein creation λ−μ, but not about the
values of these rates themselves. In general, other properties of
the distribution depend also on these rates, so that, in principle,
one could use the predictions of the model and the empirical
distributions to estimate evolutionary rates (Yanai et al., 2000;
Karev et al., 2002).

However, our analysis of the empirical distributions reveals
that such estimations are in fact misleading. Because distributions
of protein-family sizes are statistically indistinguishable from one
another—at least for families of size larger than three—it is not
possible to infer any evolutionary differences between species
from the distributions alone. In fact, our results are compatible
with all species having evolved with the same evolutionary
parameters. Thus the variability empirically observed in the
family size distributions is fully accounted by stochastic
fluctuations of the same evolutionary process.

It remains to be understood, however, whether simple BDI
dynamics can reproduce the absence of phylogenetic similar-
ities in sets of family sizes we observe in the empirical sets of
family sizes (Fig. S-6 in the Supplementary Material). To
investigate this matter, we perform a numerical analysis of a
dynamical BDI model (see Materials and methods). We select
values for the evolutionary rates λ, μ, and ρ, such that the
expected exponent for the stationary family size cumulative
distribution is 1.4 (or 2.4 for the probability density function as
shown in Fig. 4).

To test for evolutionary patterns in family size distributions,
we generate a pool of 128 species following a hierarchical
phylogenetic tree in which at each divergence we duplicate the
number of species (Fig. S-6 in Supplementary Material). We let
each species evolve for a time equivalent to 3.9 billion years.
Then, as we do for the empirical sets of family sizes, we
compare the family size distributions—for family sizes larger
than three—of the whole pool of species using the KS test and
build the corresponding R matrix. Then, we compute the
average similarity and distance for groups of between species in
the same phylogenetic branch and compare them with the 95%
confidence interval of the random expectation.

We perform two types of experiment: (i) we space
divergences uniformly in time and (ii) we space divergences
logarithmically, so that all divergences occur at an early stage of
the total evolutionary time. Remarkably, as observed for the
empirical data, we find no evidence for stronger correlations
between family size distributions of species closer in the
phylogenetic tree (see Figs. S-4 and S-5 in Supplementary
Material). Indeed, the ordered R matrices are very similar to the
empirical data, showing no distinct clusters of species with
significantly similar distributions.

Furthermore, to assess whether there are significant
additional similarities between species in the same phylogenetic
branch, we compute the average similarity and distance for
groups of s species, with s=2, 4, 8, 16, 32, and 64, and we
compare them with the 95% confidence interval of the random
expectation (Fig. S-7 in Supplementary Material and Materials
and methods). We find that the fraction of points that fall out of
the 95% confidence interval is on average 6.1%. Thus, we
conclude that, as observed for the empirical data, the family size
distributions are neither significantly similar nor significantly
closer in the ordering.

Note that, in our numerical simulations, we know a priori
that all sets of family sizes we obtain are in fact drawn from the
same distribution, and yet we can reproduce the same variability
in protein-family size distributions that we observe empirically.

4. Discussion

Our findings strongly support the hypothesis that, when
viewed in time scales of the order of billions of years,
prokaryotic genomes have evolved with the same average
genomic evolutionary rates. Indeed, we find no taxonomic-
specific trend in the protein-family size distributions, or at least,
none that we could measure using the current taxonomic
classification of species. We also find that our analysis is not
affected by the fact that we consider parasitic species in our
analysis. Therefore, rate variations measured for events over
scales of millions of years appear to be temporal variations of
the same stochastic process.

How does this finding affect current hypothesis on the shape
of the tree of life and the origin of eukaryotes? Our findings
contradict any theory which puts forth a dramatic change in
evolutionary rates of bacteria and archaea at a genomic level.
Currently, there are two main classes of theories for the origin of
eukaryotes in which drastic changes in evolutionary rates may
be implicit: those surmising the bacterial origin of eukaryotes,
and those surmising the existence of an independent eukaryotic
ancestor. In what follows, we focus on the first class of theories,
because they have been extensively elaborated and offer a clear
framework to discuss our findings.

For the class of theories that surmise that eukaryotes and
archaea emerged from a common bacterial ancestor (Embley
and Martin, 2006), such as the Neomuran theory, the surmised
changes in the bacterial ancestor happen at a morphological
level. Even though, our analysis is restricted to the evolution of
protein families in sequence space, a plausible assumption is
that major morphological changes are the result of drastic
changes in the genome. In that case, one would expect archaea
and bacteria to have different evolutionary rates for protein
families. The Neomuran theory hypothesizes that around
850 Myrs ago a free-living bacterium suffered drastic changes,



Fig. 6. Ordered R matrix including eukaryotes. We show the ordered matrix of
KS test r values for the pairwise comparisons of family size distributions for
the whole pool of species (archaea and bacteria) plus four eukaryotic species
(P. falciparum, S. cerevisiae, C. elegans, and D. melanogaster) obtained using the
MCL method. We color each matrix element according to its r value, following
the same color as in Fig. 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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the most important affecting the proteins constituting the cell
wall. This event is hypothesized to have given rise to a new
clade, the Neomura, which are the common ancestors of archaea
and eukaryotes. Such drastic changes in the genome should in
Fig. 7. Testing the Neomuran hypothesis using the BDI model. We perform the follow
and ρ=1.405, we generate a pool of 128 species following the speciation scheme
corresponds roughly to 3.9 billion years (see Materials and methods and Fig. S-2 in S
the species (top half highlighted in the left panel) to evolve with a different innovati
show the results for ρ′=2ρ (top row), ρ′=4ρ (central row), and ρ′=8ρ (bottom row).
ordered so that species with more similar distributions are close to each other (Materia
average distance (according to the best ordering found) for groups of species in th
confidence interval for the random expectation. The average distance shows that spec
the species that evolve with the same rates and one for species that changed the inn
principle provide a signal detectable by our comparative
analysis of archaea and bacteria. We can detect no such signal.
Additionally, the comparison of the 229 prokaryotic species
with four species of eukaryotes (P. falciparum, S. cerevisiae, C.
elegans, and D. melanogaster) reveals no differences either
(Fig. 6), suggesting that all domains have evolved with the same
average genomic rates.

4.1. Limits on the detectability of changes in evolutionary rates

How drastic do changes in gene evolutionary rates need to be
in order to provide a detectable signature? To answer this
question we have performed numerical experiments using the
BDI model described in Section 3.4. In our numerical
experiments (Fig. 7 and Fig. S-8 in Supplementary Material),
we allow some species to evolve with a larger innovation rate
ρ′Nρ during the period of time during which archaea and
eukaryotes are hypothesized to have experienced the most
drastic changes, approximately between 850 and 580 Myrs ago
(Cavalier-Smith, 2002a). We assume that “drastic changes” in
the genome happened by creating new protein families needed
for performing new functions, thus, we select to keep the same
gene duplication and mortality rates while increasing the rate of
creation of new families. We have performed numerical
experiments for rates ρ′/ρ=2, 4, 8. Our results demonstrate
that by comparing protein-family size distributions one would
ing numerical experiment: Starting form a single species with rates λ=1, μ=0.1,
depicted on the left panel. The total simulation time is t=5 time units, which
upplementary Material for choice of rates and simulation time). We select half of
on rate ρ′Nρ during a period of time between 850 Myrs and 570 Myrs ago. We
For each case, we show the R matrix ordered following the tree (left panel) and
ls and methods). Finally, the rightmost column of panels shows, as in Fig. 5, the
e same branch of the tree of sizes 2,…,64. The shadowed area shows the 95%
ies ordering divides species into two groups of 64 species, one corresponding to
ovation rate ρ.
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be able to detect changes in the rates of evolution of protein
families as small as a two-fold increase. Indeed, for really
drastic changes in innovation rates (ρ′=8ρ) large differences in
genome evolutionary rates should be detectable, even if they
happened during a period of time of only 100 Myrs (Fig. S-7 in
Supplementary Material).
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