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Gene regulatory network inference in long-lived
C. elegans reveals modular properties
that are predictive of novel aging genes

Manusnan Suriyalaksh,1,5 Celia Raimondi,1,5 Abraham Mains,1 Anne Segonds-Pichon,1 Shahzabe Mukhtar,1

Sharlene Murdoch,1 Rebeca Aldunate,2 Felix Krueger,1 Roger Guimerà,3,4 Simon Andrews,1

Marta Sales-Pardo,4,5,6,* and Olivia Casanueva1,5,*

SUMMARY

We design a ‘‘wisdom-of-the-crowds’’ GRN inference pipeline and couple it to
complex network analysis to understand the organizational principles governing
gene regulation in long-lived glp-1/Notch Caenorhabditis elegans. The GRN has
three layers (input, core, and output) and is topologically equivalent to bow-
tie/hourglass structures prevalent among metabolic networks. To assess the
functional importance of structural layers, we screened 80% of regulators and
discovered 50 new aging genes, 86% with human orthologues. Genes essential
for longevity—including ones involved in insulin-like signaling (ILS)—are at the
core, indicating thatGRN’s structure is predictive of functionality.We used in vivo
reporters and a novel functional network covering 5,497 genetic interactions to
make mechanistic predictions. We used genetic epistasis to test some of these
predictions, uncovering a novel transcriptional regulator, sup-37, that works
alongside DAF-16/FOXO. We present a framework with predictive power that
can accelerate discovery in C. elegans and potentially humans.

INTRODUCTION

Reductionist single-gene perturbation approaches using Caenorhabditis elegans as a model organism

have led to fundamental discoveries in aging (Kappeler et al., 2008; Kenyon, 2011). Two important path-

ways include the highly conserved insulin-like signaling (ILS) pathway (Kappeler et al., 2008; Kenyon,

2011) and the signals from the germline shown to regulate lifespan in worms, flies, and mammals (Hsin

and Kenyon, 1999; Flatt et al., 2008; Benedusi et al., 2015). Although both pathways converge on the key

transcription factor DAF-16/FOXO, hundreds of other genes contribute to longevity (Kenyon, 2010). The

complexity of the aging process calls for the use of in silico systems approaches that can provide a frame-

work to understand the organizational principles governing gene regulatory interactions in aging animals

and that can be used to predict aging genes.

Several studies have constructed gene regulatory networks (GRN) from genetic epistasis experiments (Gunsa-

lus and Rhrissorrakrai, 2011; Costanzo et al., 2016; Kuzmin et al., 2018). The most comprehensive study in

C. elegans queried 65,000 functional interactions and identified 350 genetic interactions (Lehner et al.,

2006). Although aging could be studied using an epistasis-based strategy, the time required to probe

genome-wide interactions using lifespan assays severely limits the coverage of the network. In fact, a funda-

mental hurdle in the field is that lifespan assays are time-consuming, even in short-lived C. elegans (Soltow

et al., 2010; De Magalhães, 2014). Luckily, the high coverage of transcriptomics data opens the door to

genome-wide network construction and offers the possibility of studying aging from a systems point of

view. During the last decade, GRN inference (NI) methods have used time-series transcriptomics data to infer

functional relationships between genes (Greenfield et al., 2013; Siahpirani and Roy, 2016) and have led to the

successful identification of lifespan-modulating genes in dietary restricted C. elegans (Hou et al., 2016). How-

ever, a genome-wide, comprehensive GRN is still lacking in the aging field.

As a consequence, there is no clear systems view of the organization of the regulatory processes affecting

aging nor of those that can lead to a longer life. GRNs are often viewed as hierarchical structures with a
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pyramidal shape in which a few top regulators control downstream genes in a linear fashion with a few inter-

action loops (Yu and Gerstein, 2006; Erwin and Davidson, 2009). However, the complexity of the aging pro-

cess—and of the longevity pathways that counteracts it—suggests that a hierarchical, linear structure may

not be a suitable description. Previous work has considered biological networks in general as well as GRNs

as an information processing system (Csete and Doyle, 2002; Friedlander et al., 2015). Under this framework

the flow of information in biological networks resembles an hourglass or bow-tie structure, where complex

input signals are integrated by a small core layer and de-coded information is further relayed into a large

output layer (Csete and Doyle, 2002; Friedlander et al., 2015).

Several developmental GRNs (i.e., drosophila embryonic epidermal patterning) have hourglass structures

in which the core ‘‘selector’’ genes integrate information from patterning genes in input layers and relay

information into an output layer (Csete and Doyle, 2002; Stern and Orgogozo, 2009; Friedlander et al.,

2015). In other bow-tie structures such as metabolic networks, input substrates are converted into output

products via a core made up primarily of carriers and precursors (Ma and Zeng, 2003; Csete and Doyle,

2004). The layered topology of these networks has been shown to have both functional and evolutionary

implications. In developmental GRNs, modulated expression of the core genes has the largest phenotypic

impact and is composed of genes that are hotspots for the evolution of novel phenotypes (Mann and Car-

roll, 2002; Stern and Orgogozo, 2009). In metabolic networks, the existence of a core results in a reduction

of enzyme requirements (decreasing genome size) to convert substrates into products (Csete and Doyle,

2004; Tanaka et al., 2005; Zhao et al., 2006).

In this study, we advance the state-of-the-art by developing a ‘‘wisdom-of-the-crowds’’ GRN inference

approach coupled to complex network analysis tools to understand the organizational principles govern-

ing gene regulation in long-lived animals and to unveil new insights into key longevity pathways. We used

temporally resolved transcriptomics data obtained from Notch receptor glp-1(e2144)ts mutants, together

with a manually curated contextual database, to infer the first genome-wide GRN of the germline longevity

pathway C. elegans. We used a stochastic block model Bayesian inference approach to find the large-scale

organization of the GRN and discovered a layered structure that is topologically equivalent to bow-tie/

hourglass networks, referred to as input-core-output network. To test the functional significance in the

context of aging, we performed a genetic screen on 80% of the regulators distributed throughout the

network layers and identified 50 novel lifespan regulators, 86% of which have human orthologues and

36% of which are associated with human diseases. The majority of the genes and known key aging modu-

lators such as DAF-16/FOXO and the insulin receptor DAF-2, are enriched in core modules, confirming

network topology as a good predictor of functionality.

Gene ontology analysis reveals that biological function is heterogeneous across network layers. The input is en-

riched in genes that control the energetic status (such as ATP and protein production) and this information is

relayed to intermediary genes at the core that control downstream transcriptional programs. This flow of infor-

mation is in line with the known regulatory roles played by ILS which responds to energetic/nutritional stressors

by activating homeostatic programs (Murphy et al., 2003; Kenyon, 2010). We generated a data-rich map using

both in vivo reporters of metabolic targets and gene expression assays which reveal an intricate relationship

among fat accumulation, SODenzymes, and lifespan, as well as a set of novel regulators sharing an intermediary

pathway with DAF-16/FOXO and ILS. The systems approach finally led to the identification of pathway depen-

dency of a novel lifespan regulator thatmodulates lifespan throughDAF-16/FOXO, confirmedby epistasis anal-

ysis. We have thus applied a powerful approach to studying aging from a systems point of view, which has un-

veiled that the organization of regulatory interactions has a core of interconnected genes that modulates aging

processes. Our work opens the window to a new generation of studies to unravel the systemic complexity of

aging processes in C. elegans and pave the road for similar approaches in humans.

RESULTS

Network inference of genome-wide gene regulation for long-lived C. elegans

Our aim was to build a network of gene interactions from transcriptomics data of the long-lived glp-

1(e2144)ts mutant (referred to as glp-1(ts) hereafter) (STAR Methods). We selected glp-1(ts) mutants for

two reasons. First, animals are devoided of F1 embryos providing reliable transcriptional profiles from ag-

ing somatic tissues without the contamination of younger tissues from F1 embryos. Second, the biology of

the germline longevity pathway is under-explored compared to other longevity pathways (Lemieux and

Ashrafi, 2016).
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Adopting a network inference (NI) approach, we inferred genome-wide GRNs from a high-density tran-

scriptomics time series of 12,884 genes of glp-1(ts) animals from larval stage 4 (L4) until day 10 of adulthood

(a total of 113 libraries) (see STAR Methods and Figure S1A). To obtain reliable GRNs, we devised an NI

pipeline based on a ‘‘wisdom-of-the-crowds’’ approach (Marbach et al., 2012; Hill et al., 2016) which con-

siders the GRNs obtained using multiple NI tools; and in addition, expanded the approach by also consid-

ering several combinations of input information and introducing a statistical filtering approach to extract

signals from noisy transcriptomics data. In what follows, we detail the NI pipeline illustrated in Figure 1

(STAR Methods): from the selection of algorithms and input data, to the filtering, consensus-building

and evaluation steps used to build GRNs.

Benchmark studies suggest that inferredGRNs improve by combining results from several algorithms (Mar-

bach et al., 2012; Hill et al., 2016) and by adding existing knowledge of regulatory interactions as a prior in

the inference process (Marbach et al., 2012; Siahpirani and Roy, 2016). Therefore, we considered three NI

tools that can incorporate priors in the inference process (STAR Methods): Inferelator (Arrieta-Ortiz et al.,

2015), MERLIN-P (Siahpirani and Roy, 2016) and Time-lagged Ordered Lasso (Nguyen and Braun, 2018)

(TOL). Unlike yeast (Costanzo et al., 2016; Kuzmin et al., 2018), C. elegans lacks a comprehensive contextual

database of regulatory interactions for adult animals to be used as priors. We, therefore, manually curated

380,023 interactions from 289 young adult wild-type (WT) C. elegans datasets (Tables 1 and S1; STAR

Methods). As prior information we used physical data inferred from techniques providing direct binding

information of regulators to DNA (i.e. ChIP-Seq, eY1H and motif analyses; Table S2) and filtered them

with adult-specific, ATAC-seq open regions to ensure high accuracy (Figure S1B; STAR Methods; Miraldi

et al., 2019, Pique-Regi et al., 2011). As a gold standard (WT-GS) we used functional data obtained from

loss or gain of function interventions (Table S3).

Network inference tools take three inputs: (1) Regulators: a set of genes whose expression can affect the

expression of other genes; (2) gene expression time series including potential target genes whose

expression levels can be affected by regulator genes; and (3) priors: known regulatory interactions be-

tween regulators and targets. The inference process returns a network of directed regulatory interactions

(edges) between regulators and targets. Note that some input regulators may appear only as targets in

the final GRN.

Figure 1. Wisdom-of-the-crowds gene regulatory network inference pipeline. Main datasets

113 time series transcriptomics datasets obtained from glp-1(e2144)ts long-lived sterile mutants (Figure S1A). We consider two time series lengths: L4 until

day 10 time series and a shorter time series from L4 until day 3—the time frame of maximal gene-expression variability, known to improve results of network

inferences (Muldoon et al., 2019). We generated randomized time series data by shuffling both the time and gene dimensions. Input variables. We

considered three different input variables to NI tools: time series length, regulator set and five different sets of priors as shown (Tables S2 and S17; STAR

Methods). Network inference. For each input combination, we ran the three network inference tools: Inferelator, MERLIN + P, and Time-lagged Ordered

Lasso (TOL) and obtained 50 gene regulatory networks (GRN). For each GRN, we also obtained the distribution of edge scores from a network inferred from

the randomized data. Filtering and consensus. We filtered edges using the distribution of edge scores built from randomized data, and set a cutoff at 5%

significance. We then grouped networks based on their edge similarity, and obtained a consensus network per group (9 in total) (Tables S4 andS5). We

evaluated all 9 networks and all possible combinations of them using functional data as gold standard (Table S3); and precision fold enrichment (PFE) and

area under fold enrichment curve (AUFE) as metrics (Figure S1E; STAR Methods). Final networks.We selected three final GRNs which scored relatively high

for both PFE and AUFE. The figure shows the numbers of nodes and edges for each of the selected GRNs (Table S6).
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To assess the effect of the input information on output GRNs, we considered different combinations of

input regulators (2,795 genes, which are either in GenAge database (Tacutu et al., 2018) (22.6%), known

transcription factors in C. elegans (25.8%), or display high-variability in their expression (51.6%); STAR

Methods), time series length, and sets of priors; and inferred a total of 50 GRNs with binary, directed edges

from regulators to targets (Table S4). Despite the fact that NI approaches aim to minimize the number of

regulatory interactions (for instance, by explicitly incorporating regularization terms in the regression), the

inferred GRNs are very dense. On average each regulator has more than 653.6 targets, almost two-fold the

maximum number of regulators per target reported in ModERN’s ChIP-seq datasets of 350 (Kudron et al.,

2018), suggesting that the number of interactions is overestimated. Each of the NI methods produces

different scores for each predicted interaction and there is no standard objective criterion to filter edges

that is not based on ad hoc knowledge (Arrieta-Ortiz et al., 2015). Therefore, to identify spurious interac-

tions, we compared the edge scores of each network to the distribution of edge scores obtained from a

randomized time-series for each input combination and retained interactions that fall below the 5% signif-

icance level, reducing to almost a third of the number of targets per regulator (224 on average).

We analyzed the accuracy of inferred networks against WT-GS and found that none of the GRNs performs

systematically better than the others (Figures S1C and S1D). Therefore, as a final step in our pipeline, we

considered all 50 GRNs to build consensus networks. First, we identified nine groups of networks based

on edge overlap (Figure S1E; STAR Methods). Then, for each group we built a consensus network by keep-

ing all unique edges and evaluated the nine consensus networks and all possible combinations of them

(Table S5). We finally selected three networks that had relatively high scores when tested against WT-GS

(Figure S1F, Table S6; STAR Methods). The selected networks contain only 49.6% of the original input reg-

ulators. Encouragingly, the set of regulators in the selected networks have a significantly larger fraction of

known aging genes (Tacutu et al., 2018) (33.3%; enrichment of 10% with respect to the input set;

pvalue<0.0001), and of human orthologues (60.9%; enrichment of 16% with respect to the input set;

pvalue<0.0001).

In the GRN inference field, ‘‘wisdom-of-the-crowds’’ refers to the combination of outputs from multiple NI

algorithms. Our pipeline embodies a broader combinatorial approach that considers not only different NI

methods, but also different sets of priors, regulators and length of time series input, which are further com-

bined into consensus networks. Our results show that this broad ‘‘wisdom-of-the-crowds’’ combinatorial

approach improves the accuracy of inferred GRNs in metazoans (Figures S1D–S1F).

In vivo and in silico validations of the GRNs

We used in silico and in vivo approaches to assess the accuracy of the selected networks. To measure local

accuracy, we tested in vivo whether the expression levels of predicted target genes are affected when the

predicted regulator is perturbed. Using RNA interference, we knocked down ten random regulators (com-

mon to the three networks) and quantified expression levels of the predicted targets (36.6 targets per gene

on average) by high throughput RT-qPCR. To better assess regulator-target relationships, we exploited the

Table 1. Summary of mechanistically inferred TF-gene, and gene-gene interaction database

Data source

Data

type

Number

of unique

TFs

Number of

TF-gene

interactions

Number of

TF-gene inter

actions after

ATAC-seq filters

Number of

TF-gene inter

actions applicable

to our dataset

Number of

final unique

TF/gene requlators

modERN

CIS-BP Fuxman

Bass,2016

ChiP-seq 118 185,977 101,597 49,340 57

Motif 202 479,330 132,732 78,260 273

eY1H 366 21,714 18,214 13,501 334

Total unique applicable TF 495/892a = 55.49%

Knockout

experi-ments

RNA-seq/

Microarray

127,480 97,900 126

Total unique requlators (TFs and genes) 621

aAccording to Kudron et al. (2018), C. elegans has 958 predicted TF genes. However, many of these have been classified as RNA-binding or chromatin-remodel-

ing factors, leaving 892 sequence-specific TFs.
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inherent technical variability of the RNAi technique (Kamath and Ahringer, 2003) (Figures S2A and S2B) and

calculated the Pearson correlation coefficient (PCC) between the changes in expression levels of regulator-

target pairs from at least six replicates (Figure S2B, Table S7, STAR Methods, https://s-andrews.github.io/

wormgrn/qpcr/)

To determine whether the knockdown (KD) of a regulator affects a target, we chose the PCC cut-off value at

the inflection point of a curve obtained when plotting the average precision versus cut-off values (PCC =

0.75, Figure 2A). Overall, 61.71% of the interactions in the inferred GRNs (including positive and negative

interactions) are recovered in vivo; however, the overall precision for positive interactions is equal to

11.74% (mean precision of positive interactions for KD regulators equal to 10.21%; AUPR = 0.193) (Fig-

ure 2B, Table S7). These results suggest that inferred GRNs have a high number of false positive interac-

tions, but the number of false negative interactions is very low. Indeed, the observed accuracy at recovering

interactions is significantly larger than the random expectation obtained by rewiring the positive interac-

tions in the inferred networks (Z score = 7.95), but the precision is not (Z score = �1.70). Nonetheless,

the precision is higher than the expected precision of a random network between the initial set of

Figure 2. In vivo and in silico validation of the inferred gene regulatory networks

(A and B)In vivo validation. We knocked down ten regulators selected at random using RNAi expressing bacteria from

larval stage 4 (STAR Methods). We calculated PCC between the relative change in expression levels of regulator and

target pairs (ddCt) obtained from at least six independent biological replicates. We considered an interaction correctly

predicted in vivowhen the size of its PCC is higher than corresponding PCC cutoff values. (A) Mean proportion of correctly

predicted interactions of the final 3 networks as a function of Pearson’s correlation (PCC) size cutoff. (B) Correctly

predicted in vivo interactions for each regulator. Each dot represents the PCC of the ddCt values between one target and

one knockdown regulator (Xaxis). The red lines indicate the PCC cut-off (PCCR |0.75|). At the top, we show the proportion

of correctly predicted interactions per regulator (Table S7).

(C) In silico validation of network topology. We compared structural modules in the GRNs to five empirical gene modules,

obtained from RNA-seq datasets specific to glp-1(e2144)ts (Table S9; main text, STAR Methods). For each one of the

GRNs, we display the maximum robust Z-scores of Jaccard similarity index between each empirical module and a

structural module. A significant robust Z score (robust Z score> 1.96, pvalue of 0.05 based on a right-tailed Fisher’s exact

test) indicates that an empirical module was recovered by a structural module. The right most plot summarizes the

number of empirical gene modules recovered by each inferred network and modules recovered by randomizing gene

membership to structural modules with the same number of genes.
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regulators and targets, which is equal to 0.9% (STARMethods, for similar analyses see Marbach et al., 2012;

Siahpirani and Roy, 2016; Miraldi et al., 2019). We also find that as we increase the number of tested targets

per regulator, the number of correctly predicted edges for each regulator fluctuates less and approaches

the mean precision (Figure S2C). The apparent convergence toward the mean suggests that despite this

being a very partial validation (we only tested targets for 10 out of 1396 regulators), the errors we observe

are unbiased (Figure S2C).

From these observations, we hypothesize that if errors affect all nodes in the same way, the global structure

of GRNs should still capture the biologically relevant organization. To test this hypothesis, we described

the global structure of GRNs by grouping genes into structural modules and then assessing whether struc-

tural modules in the GRNs are significantly correlated with empirical modules obtained from orthogonal

RNA-Seq data. To obtain structural modules, we used stochastic block models (SBM), which assume there

exist underlying groups of genes with the same connectivity patterns that give rise to the observed

network. Following a Bayesian approach, we selected the SBM that best describes each GRN to define

its structural modules (Peixoto, 2014; Vallès-Català et al., 2018) (Tables S8A–S8C; STAR Methods). To

obtain empirical modules, we curated published transcriptomics datasets of young adult glp-1(ts) animals

in response to loss of function of regulators (GLP-GS, Table S9). Because we inferred our networks from the

observed changes in gene expression, we considered as empirical modules the groups of genes that

respond to a genetic modification in a similar manner, and divided genes into five empirical modules ac-

cording to the levels of observed gene expression changes (Figure 2C; STAR Methods).

We use two different approaches: a topological approach, using the Jaccard similarity index, and an infor-

mation-theoretic approach, using the adjusted mutual information. Using the Jaccard similarity index we

find that structural modules recover at least three empirical modules in 5 of the 9 GLP-GS datasets, and

on average 2.8 modules across the three selected networks–more than the (at most) one module we expect

to recover if we distribute genes in groups at random (Figure 2C; STAR Methods). Using the adjusted

mutual information, we find statistically significant correlations between structural modules and empirical

modules (Figure S2D; STARMethods). The significant similarities we observe indicate that the global struc-

ture of the inferred GRNs is biologically meaningful.

Topological analysis of the aging network defines input, core and output layers

Our analysis shows that NI tools overestimate the number of interactions in an unbiased way, and that despite

the presence of errors at a local level, the large-scale structure of the networks is well-correlated with biological

function. We therefore focus on analyses of the structural modules, the regulatory interactions among them as

well as their content. Inwhat follows, wediscuss results for the largestGRNwe inferred (Table S6A), but the same

holds true for the remaining GRNs (Figures 3A–3F, S3, and S4, Tables S6B and S6C). We find that the network

structure is topologically equivalent (99.8% of the interactions follow this pattern; STARMethods) to a ‘‘bow-tie’’

or ‘‘hourglass’’ structure with three regulatory layers: input, core, and output (Figures 3A, S3A, andS4A; STAR

Methods). As in hourglass/bow-tie structures observed in biology (Friedlander et al., 2015), modules in the input

layer (top regulators) regulate any other modules but are exempt from regulation from below; modules in the

core are regulated bymodules in the input layer and regulatemodules in the output layer; finally,modules in the

output layer do not regulate any other modules.

In this input-core-output network, we observe that regulators with human orthologues are evenly distrib-

uted across modules, suggesting a conserved structure (Figures 3C, S3C, and S4C). In an hourglass model,

topology is predictive of functionality. For example, genes essential for epidermal patterning in drosophila

are concentrated at the ‘‘core’’ typically the smallest of all layers (Csete and Doyle, 2002; Friedlander et al.,

2015). In a bow-tie model, the same holds true. In metabolism, the existence of a bow-tie knot of common

carriers and precursors that link metabolic substrates to metabolic products allows the robust regulation of

metabolic processes (Csete and Doyle, 2004). The input-core-output network is more reminiscent of meta-

bolic networks in that the core is thick, containing a larger number of genes than the thin waist of hourglass

developmental networks (Figures 3B, S3B, and S4B). The thick core of the input-core-output network thus

raises a question regarding its functional importance in an aging context.

Genetic screen identifies novel and conserved aging genes

To experimentally test the functional roles of the three structural layers, we performed a two-step blind screen

on 80% of the regulators randomly distributed across all modules. First, we measured survival rate at day-16 of
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adulthood after knocking down gene function on 1,120 regulators (Figure S5A, Table S10; STARMethods). We

validated the screen performance by blindly finding two independent RNAi clones of daf-16 (daf-16i) and age-1

(age-1i), two well-established regulators ofglp-1(ts) lifespan (Lin et al., 2001; Berman and Kenyon, 2006) (Figures

S5B and S5C). In this screen we find that 26% of the knockdowns (287 genes; 169 shorter, and 118 longer life-

span) altered themean survival ofglp-1(ts)mutants by at least 20% and that among those, 62% (179 genes) have

already been linked towild-type aging inGenAge (Figure 4A), a significant enrichment compared to the original

set of regulators (pvalue<0.0001, STAR Methods).

Next, we selected 93 candidates that showed the largest lifespan change and had not previously been linked to

aging (Figure 4B, Table S11), and assayed the lifespan of them by monitoring the percentage of survival of glp-

1(ts) worms treated with RNAi from larval stage 1 (L1) at twelve time points in triplicate (Figures 4C andS5C, Ta-

ble S12). Six geneswere excludeddue to abnormalmorphology; and 50 conditions showed a significant change

in lifespan (22 shorter, and 28 longer lifespans; Figures 4B and 4C, black dots and Table 2).

As an initial characterization, we addressed their level of conservation. As shown in Figure 4D and Table 2,

86% of the novel genes have corresponding human orthologues and 36% of them have been linked to a

human disease (Table S13). Among the novel aging genes, 58% of them encode for genes with DNA bind-

ing roles, including transcription factors (such as Zinc-finger proteins, TATA box and Homeobox containing

genes), and 12% of genes contain AT-Hook and SWI-SNF domains, typical of chromatin binding

Figure 3. The global organization of the gene-regulation network reveals an input-core-output structure with aging modulators at its core

(A) Global organization of the network and GO enrichment for each structural module. Each node represents a module. We obtained modules using a

Bayesian model selection approach with hierarchical stochastic block models (Table S8; STARMethods). The area of the nodes is proportional to the number

of genes it comprises (shown in b); edge thickness is proportional to its weight (we only represent edges with weight >260– see STAR Methods for a table of

edges). The network has three main layers: input, core and output. We list novel aging regulators in each module; we include daf-16 and age-1 (red) for

reference. Boxes show GO enrichment terms of the regulators in each module following the color code of the network nodes (P: Process, (F) Function, (C)

Component).

(B) Number of genes in each module. Bars follow the same color code of nodes in (A). Gray bars show network totals.

(C) Number of regulators, number of regulators with a human orthologue and number of regulators in GenAge.

(D) Number of known essential genes in glp-1 C. elegans (Table S11) that appear as regulators in the network.

(E) Number of tested and confirmed aging genes in the second screen (see text). *,** show enrichment with respect to the random expectation of hits given

the number of non-GenAge regulators in each module (* pvalue <0.1, ** pvalue <0.05).

(F) Number of regulating genes that cause defects in body morphology (from Kamath and Ahringer, 2003). These results are for the largest consensus GRN

(max AUFE) and are consistent with the results of the other networks (Figures S3 and S4).
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Figure 4. Two-step RNAi screening uncovers 50 novel modulators of the germline longevity pathway, many of them conserved in human and

involved in the modulation of wild type lifespan

(A) Normalized percentage of survival at day 16 (D16) of adulthood for glp-1(e2144)ts;rrf-3worms grown in the presence of RNAi from larval stage 1 (L1). Data

has been normalized to the survival of glp-1(e2144)ts at D16 of adulthood fed with bacteria expressing an empty vector (L4440) which corresponds to �50%

survival (Table S10). Blue dots indicate knockdown of genes which have previously been linked to aging according to GenAge.

(B) Two-step screening strategy and summary of the results. The left gray box depicts the first screen (A) where 1016 regulators were tested–48% of them are

already classified as aging genes (GenAge). Among the genes which showed significant glp-1(e2144)ts;rrf-3 lifespan changes and were not in GenAge, 93

candidates with largest change were re-screened using high-resolution lifespan assays (pink box). The second screenmonitored worms at twelve time points

in triplicate (STAR Methods). Numbers indicate the number of genes following the color code of the boxes.

(C) Normalized mean survival for glp-1(e2144)ts;rrf-3 worms treated with RNAi from L1 stage. Mean survival was calculated by averaging the percentage of

survival at D19 of adulthood of three biological replicates. Normalization was relative to the mean survival of control animals fed with bacteria expressing

L4440 at D19 adulthood. pvalues were calculated using a logrank test for each replicate and combined using Fisher’s method. Bonferroni was applied for

multiple comparison correction (Table S12).

(D) The pie chart represents the proportion of genes in the 50 newly-discovered aging genes with a human orthologue and/or a human disease linkage.
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complexes. In addition, we find genes encoding metabolic enzymes (carboxypeptidase, adenosyl-hydro-

lase, and ubiquinone oxidoreductases); a glutamate receptor, a gene encoding a protein folding chap-

erone and several novel genes of unknown function (Table 2).

Most of the general biological roles of these genes have been linked to aging in wild-type animals (Tacutu et al.,

2018), therefore we hypothesized that their function is not specific to the germline longevity pathway, but that

they also play a conserved role during normal aging. To test this hypothesis, we measured the percentage of

survival of a normal-lived sterile mutant, the fem-3(q20)tsmutation which causes worms to possess a normal so-

matic gonad that produces no oocytes but excess sperm (Barton et al., 1987). Indeed, we observed that the ef-

fect on the survival rate of fem-3(ts) andglp-1(ts) animals under sameRNAi conditions are significantly correlated

(Spearman’s ⍴ = 0.742, pvalue = 1.63 10�9), indicating that the novel aging genes have a species-wide rather

thanmutant-specific role (Figure 4E, Table S14A). To rule out spurious effects caused by the L1 larval RNAi treat-

ment, we investigated whether the identified genes caused similar changes to lifespan if they were knocked

down only during adulthood.We find that the identified lifespan-altering genes are genuine. Themean survival

rates of glp-1(ts) worms treated with RNAi from the L1 larval stage are strongly correlated with those treated

from L4 larval stage (Spearman’s ⍴ = 0.735, pvalue = 5.5e-10), with only 8% of the tested genes showing small

significant differences between treatments (Figure S5D, Table S14B).

Aging genes are enriched in the core module of the network

The analysis of the distribution of the genes in the input-core-output network highlights the importance of

the role played by genes at the core for the longevity of glp-1(ts) animals. Most of the 50 novel genes

concentrate in the largest core module (Figures 3E, S3E, and S4E). While this concentration could be ex-

plained by the large size of the core (pvalue = 0.094), it is in line with the fact that known regulators in Gen-

Age are exclusively located in core modules (Figures 3C, 3D, S3C, S3D, S4C, and S4D). Furthermore, reg-

ulators shown to shorten glp-1(ts) lifespan are also primarily located in core modules, including all 80

previously known glp-1(ts) aging regulators, the key longevity gene daf-16 (Figure 3D, Table S11), and

19 of the 22 novel lifespan-shortening genes uncovered in this study, a significant enrichment compared

to a uniform distribution of genes across modules (pvalue = 0.021 for modules at the core, 19/22; pvalue =

0.045 for the largest core module, 18/22) (Figures 3A, 3E, S3E, and S4E). Note that we also found that genes

causing developmental defects (Kamath and Ahringer, 2003) are not enriched in the input modules (Figures

3F, S3F, S4F), ruling out the bias that the RNAi treatment on L1 larvae can introduce by favoring the enrich-

ment of developmental genes over aging genes.

Gene Ontology analysis reveals that biological functions are heterogeneously distributed across modules

(Figures 3A, S3A, and S4A). Input modules are enriched in genes that modulate the generation of energy

(ATP), proteins (via translation regulation) and other structural components of the cell (Eden et al., 2009).

Core modules are enriched in genes that control metabolism and play regulatory functions in the nucleus

and the mitochondrion, which have been linked to aging (López-Otı́n et al., 2016). The output module is

enriched in genes that control chromatin including histones, histone acetylation, and basal transcriptional

regulation (Figures 3A, S3A, and S4A). The organization of the network is consistent with the conserved reg-

ulatory role of known longevity pathways, where nutrient/energetic stress is communicated via insulin re-

ceptor DAF-2 (in ILS pathway) or via KRI-1 (in the germline longevity pathway) to the transcription factor

DAF-16/FOXO, master regulator of stress and metabolic genes (Kenyon, 2010). The fact that most

longevity genes are within the thick, tightly connected core module showcases the complexity of the reg-

ulatory interactions that govern the germline longevity pathway. One key question is then how the novel

aging regulators interact with daf-16/foxo and ILS as part of the core modules.

Global characterization of the novel aging genes reveals genes sharing the same metabolic

features and pathways as DAF-16/FOXO and ILS

To provide a global characterization of the novel longevity genes regarding keymetabolic activities related

to FOXA/PHA-4, ILS and DAF-16/FOXO, we generated a data-rich map using in vivo transcriptional

Figure 4. Continued

(E) Correlation between the rank of normalized mean survival of glp-1(e2144)ts;rrf-3 worms and fem-3(q20) treated with bacteria expressing 50 dsRNAs from

L1 stage. (Table S14A). We ranked genes according to the mean percentage of survival of long-lived glp-1(e2144)ts at D19, and the mean percentage of

survival of normal lived fem-3(q20)ts at day 13 (D13). The RNAi conditions correspond to the novel aging genes. We used Spearman’s ⍴ to quantify the

correlation between the ranked lists of genes (⍴=0.742, pvalue <2 x 10�9).
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Table 2. Novel aging genes

Name

Human

orthologue

Human

disease

Molecular

function

% Lifespan

change at D19

c2-adjusted

pvalue

Attf-3 High mobility group (HMG) HMG/Chromatin

remodeling

�45.96 1.65E-50

f33h1.4 Uncharacterized �45.96 9.11 3 10�48

Attf-6 High mobility group HMG/Chromatin

remodeling

�45.96 8.59 3 10�44

Gei-3 CIC Yes Transcriptional repressor �44.38 2.38 3 10�32

b0261.1 BDP1 TF �43.33 5.64 3 10�25

f23b12.7 CEBPZ DNA binding �42.07 2.59 3 10�21

Lin-13 ZNF423; ZNF462;

and ZNF786.

Yes Zinc finger protein �41.94 1.10 3 10�29

Pqm-1 Sal-like protein 2 TF �41.9 1.14 3 10�15

Hmg-1.2 HMGB1, HMGB3 Yes HMG �41.53 1.10 3 10�19

Taf-5 TAF-5 TATA box TF �41.06 1.04 3 10�28

Daf-16 FOXO (CONTROL) Yes TF �40.09 4.21 3 10�35

b0336.3 RBM26 RNA binding �39.53 3.92 3 10�21

Lin-35 RBL1; RBL2 Yes Transcriptional corepressor �35.8 3.89 3 10�19

Gei-17 PIAS2; PIAS3, STAT 4 TF �34.55 7.61 3 10�16

Erm-1 EZR, MSN, RDX Yes Ezrin-radixin-moesin protein �34.52 1.01 3 10�13

c27a12.2 ZNF791 Yes Zinc finger protein �33.3 3.46 3 10�12

Sdc-3 CPA3 (A3); CPA4; CPB2 Yes Carboxypeptidase �32.63 2.98 3 10�7

f26a10.2 ZBTB32; ZFP91-CNTF Yes TF �31.57 4.51 3 10�14

Isw-1 SMARCA1 (SWI/SNF related) Predicted to be TF �29.18 5.04 3 10�13

Swsn-7 ARID2 Yes Chromatin remodeling �24.35 3.46 3 10�7

Nfyc-1 NFYC TF �15.5 1.79 3 10�4

Sup-37 Uncharacterized �13.74 1.32 3 10�14

y56a3a.18 ZNF593 Zinc finger protein �7.531 2.19 3 10�6

Zgpa-1 ZGPAT Zinc finger protein 8.194 1.32 3 10�2

Zip-3 ATF5 TF 14.23 6.06 3 10�4

r12 3 102.7 Uncharacterized 16.05 4.49 3 10�2

Ahcy-1 AHCY Yes Adenosyl-hydrolase 16.24 2.69 3 10�2

Ztf-3 Zinc finger protein 394 Zinc finger protein 17.51 3.93 3 10�6

Mgl-2 GRM1 and GRM5 Yes Glutamate receptor 19.19 1.48 3 10�5

d2005.6 Membrane-associating

domain; and Marvel domain

20.18 1.83 3 10�7

Ham-2 PRDM16 Zinc finger protein 20.24 4.83 3 10�3

Lin-36 DNA and metal ion binding 20.78 2.43 3 10�3

Tkt-1 Uncharacterized

(CONTROL)

Transketolase 21.01 1.09 3 10�7

Swsn-4 SMARCA2 Yes SWI/SNF-chromatin

remodeling

21.05 5.00 3 10�4

c04f5.9 Zinc finger protein 319 Zinc finger protein 21.13 2.28 3 10�3

Sox-4 SRY Yes Sox protein 21.54 4.00 3 10�2

Hmbx-1 HMBOX1 Homeobox TF 21.86 6.44 3 10�4

Nhr-120 HNF4A; NR2C2 RXRB Yes TF 22.97 4.05 3 10�4

c01f6.9 ZNF706 Zinc finger protein 23.83 2.79 3 10�4

(Continued on next page)
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reporters. First, we quantified in a semi-automatic manner (STAR Methods) the in vivo expression of a

target of the pha-4/FOXA transcription factor, lgg-1. LGG-1 is a protein present at the membrane of phag-

ophore and autophagosome (Wu et al., 2012) and PHA-4/FOXA is a key determinant of glp-1ts lifespan

(Lapierre et al., 2011). We found that the aging genes: hmg-1.2i ang gei-17i trigger a significant increase

of LGG-1 signal (Figure S6A) suggesting that both hmg-1.2 and gei-17 could modulate lifespan via PHA-

4. We studied two other in vivo reporters and used daf-16 and age-1 -a key PI3 kinase downstream of

DAF-2- as controls. The first is DHS-3, which localizes to the worm’s main fat storage compartment, the in-

testinal lipid droplets (LD) (Na et al., 2015). We observed that in the glp-1(ts) animals LD stores increased

under daf-16i while remaining unaltered under age-1i (Figures S6B and S7, Table S15). In parallel we used a

transcriptional reporter to monitor the expression of superoxide dismutase 3 (sod-3), a direct target of

DAF-16 that functions to detoxify oxidative stress in mitochondria (Honda and Honda, 1999). As expected,

age-1i increased sod-3 transcriptional activation while daf-16i has the opposite effect (Honda and Honda,

1999; Furuyama et al., 2000) (Figures S6C and S7, Table S15).

We observed a significantly higher sod-3 transcriptional level in those that led to a longer lifespan than

those that led to a shorter lifespan (t-test, pvalue = 13 10�4; Figure S6C). We also observed a positive cor-

relation between lifespan and LD accumulation, but only up to a certain LD accumulation level; animals with

LD accumulation beyond this level have shorter lifespans (Figure S6A). The combined relationship between

these two variables and lifespan delineates three groups of genes. The general trend is that long-lived

worms accumulate more LDs and display higher sod-3 transcription levels, similar to age-1i (Figure 5A,

Table 2. Continued

Name

Human

orthologue

Human

disease

Molecular

function

% Lifespan

change at D19

c2-adjusted

pvalue

Dnj-11 DNAJC2 Hsp40 24.06 2.15 3 10�3

Dmd-9 Isoform 1 of Doublesex-

and mab-3-related

transcription factor 2

DNA binding TF 24.49 6.50 3 10�4

Nhr-47 Isoform HNF4-Alpha-8

of Hepatocyte nuclear

factor 4-alpha

TF 24.58 3.83 3 10�2

Nhr-84 Nuclear receptor

subfamily 2 group

E member 1

TF 24.99 3.90 3 10�3

Sop-2 Polycomb protein 25.22 1.85 3 10�2

Ztf-14 GLIS1; GLIS3; ZXDA Yes Zinc finger protein 26.38 1.99 3 10�9

Somi-1 Uncharacterized 26.79 5.76 3 10�8

Nra-2 Ncln Nicalin 27.38 2.88 3 10�3

Nhr-7 Uncharacterized TF 27.39 2.93 3 10�3

Nhr-193 HNF4-Alpha-2 TF 28.08 2.82 3 10�6

Age-1 PIK3CA, PIK3CD

(CONTROL)

Yes Kinase 30.07 1.05 3 10�13

Hmg-1.1 High mobilty group Chromatin remodeling 30.68 1.58 3 10�7

Nduf-6 NDUFS6 Ubiquinone

oxidoreductase

31.34 7.48 3 10�8

c34b2.8 NDUFA13 Yes Ubiquinone

oxidoreductase

33.87 2.02 3 10�15

We list the novel aging genes, its human orthologues, human disease linkage, their known function, and mean lifespan

change at day 19 of adulthood upon knockout in glp-1(ts) animals. pvalues from the logrank survival statistical test on 3 in-

dependent biological values were combined using Fisher’s method and adjusted using Bonferroni correction (Table S12). TF:

transcription factor. Although pqm-1 has been shown to be involved in the ILS pathway (Tepper et al., 2013), it is missing in

GenAge and has not been described in glp-1(ts). daf-16, age-1, and tkt-1 are shown as controls. Table S13 lists other controls

which also match expected results.
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Figure 5. Global characterization of the novel aging genes reveals genes sharing the samemetabolic features and

pathways as DAF-16/FOXO and ILS

(A) Comparison of the in vivo fluorescence measures of sod-3p:GFP versus dhs-3p::dhs-3::GFP in glp-1ts animals at day 4

of adulthood. dhs-3p::dhs-3::GFP is a translational reporter which localizes to the intestinal lipid droplets (LD). sod-

3p:GFP is a transcriptional reporter for the expression of superoxide dismutase 3 (sod-3), a direct target of DAF-16. Colors

correspond to lifespan phenotype as shown in the figure. L4440 is the control/empty vector (Table S15).

(B) Novel aging genes sharing known aging and metabolism targets with daf-16 and age-1. The top panel shows Venn

diagrams of the number of shared targets of 6 novel aging genes with age-1 (red) and daf-16 (green). Aging genes in

orange are those whose loss of function leads to a decrease in the glp-1ts lifespan, and genes in blue are those whose loss

of function decreases the lifespan. Their corresponding survival curves are shown in the bottom panel. The middle panel

plots Pearson’s correlation between shared targets and a novel aging gene (Y axis) and age-1 or daf-16 (X axis) (Table

S16). The bottom panel presents the survival curves of glp-1ts worms grown at 25�C upon the knockout of the 6 novel

aging genes (blue/orange), age-1 (green) or daf-16 (red) (Table S12). Control animals fed with an empty vector are shown

in black. pvalues were calculated using a logrank test.

(C–D) show a lifespan epistasis experiment where sup-37 and sdc-3 RNAi was fed to either glp-1ts (C) or glp1ts; daf-

16(mu86) (D) from L1 at 25C. The epistasis was evaluated with a Mantel-Cox logrank test. To evaluate the pvalues of 3

biological replicates we used a Fisher test (Table S20).
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green circle). Interestingly, RNAi treatments that cause uncoupling between fat store accumulation and

sod-3 transcriptional activation, tend to result in shorter lifespan, a group that includes the daf-16i control

(Figure 5A, yellow circle). A third clear group is one that is short-lived, leaner and has lower sod-3 transcrip-

tional output than controls (Figure 5A, red circle). Taken together these results show a systematic relation-

ship between SOD enzymes, and fat accumulation and lifespan in glp-1(ts).

To determine if the intricate relationship also exists in the wildtype context, we analyzedsod-3 and dhs-3

signals after RNAi treatments in fem-3(ts) animals, and have compared it to the glp-1(ts) results (Fig-

ure S8). We found that sod-3 and dhs-3 signals follow the same pattern in both mutants glp-1(ts) and

fem-3(ts) (Spearman’s ⍴=0.466, pvalue=0.0005; Spearman’s ⍴=0.89, pvalue=1.47 3 10�18 respectively);

suggesting that the relationship between SOD enzymes, fat accumulation, and lifespan is conserved.

Taken together these results suggest that most of the candidates will have a similar effect in the wildtype

context.

To investigate further, we generated a new gene-interaction network based on high-throughput gene

expression assays of 19 novel regulators. We also included age-1i and daf-16i to contextualize our findings.

In the glp-1(ts) longevity pathway, DAF-16/FOXO activity acts independently of the AGE-1/ILS pathway,

which represents a parallel synergistic pathway to the germline longevity pathway (Berman and Kenyon,

2006). We used RNAi to decrease the expression of the regulators and measured their impacts on 177

genes related to aging and metabolism (Table S16). We then used PCC to construct a weighted, directed

gene-interaction network (https://s-andrews.github.io/wormgrn/qpcr/).

We first use the network to characterize the interaction of aging genes with several longevity modulators

that are key to fat remodeling including pha-4, daf-12, nhr-49 and hlh-30 (Van Gilst et al., 2005; Lapierre

et al., 2011, 2013; Wang et al., 2015). As shown in Figure S6B, we have identified several aging genes

that show functional interactions with these regulators while influencing lipid accumulation. From this

data, we predict the pathway membership of a handful of novel aging regulators including sup-37, gei-

17, hmg1.2, f26a10 and somi-1 (highlighted in Figure S6B).

Using the PCC network, we also analyzed correlations with daf-2 and daf-16 (Figure S6E) as well as other

known targets downstream of daf-16 and the ILS component age-1. We noticed a group of aging modu-

lators that share a regulatory pattern with either daf-16 or age-1 (Figure 5B, Venn diagrams). These mod-

ulators encode proteins with diverse functions: nuclear protein (somi-1); transcription factors (hmbx-1,

zgpa-1, sup-37); heat shock protein (dnj-11) and a mitochondrial oxidoreductase (nduf-6). The regulatory

pattern revealed a striking systematic response. About 60% of the tested genes phenocopy the regulatory

pattern of age1i, with correlations in the same direction as age-1i and in the opposite direction to daf-16i.

Conversely, some genes -such as sup-37- phenocopy the regulatory pattern of daf-16, with correlations in

the same direction as daf-16i and in the opposite direction to age-1i (Figure 5B, middle and bottom

panels). These regulatory patterns suggest that these genes act as mediators of lifespan through overlap-

ping mechanisms with either glp-1/daf-16 or ILS.

We tested both sup-37 and sdc-3 as candidates belonging to the DAF-16/FOXO pathway. While both

regulators phenocopy daf-16i in terms of fat accumulation and sod-3 expression levels, according to

the PCC network, only sup-37 shares a high number of key aging and metabolic targets with daf-16 (Fig-

ure 5C; Table S16). To test if sup-37 and not sdc-3 work in the same pathway as daf-16, we treated both

glp-1(e2131) and glp-1(e2141); daf-16(mu86) with either an empty vector or a vector containing dsRNA

against sup-37 or sdc-3 from the L1 stage of development. We found that sdc-3i;glp-1(e2141);daf-

16(mu86) has a significant shortened lifespan compared to the same animals fed with empty vector to

(pvalue < 0.0001 on a logrank Mantel Cox test) whereas sup-37i;glp-1(e2141);daf-16(mu86) maintains

the same lifespan as glp-1(e2141);daf-16(mu86) (Figure 5D). This result confirms our prediction that

sup-37 -but not that of sdc-3- is dependent on daf-16. This encouraging result suggests that the pre-

sented data-rich maps are useful tools to guide mechanistic analysis in the context of the germline

longevity pathway.

DISCUSSION

We developed a new ‘‘wisdom-of-the-crowds’’ NI pipeline which successfully extracts meaningful informa-

tion from noisy whole-worm transcriptomics data, along with integrating a database of 402 orthogonal
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multi-omics datasets. From the WormExp, modERN, Cis-BP, and GEO databases, we manually identified

context-specific datasets, reconciled and curated 380,023 interactions in young adult C. elegans, freely

accessible to the community. We obtained for the first time, genome-wide GRNs that are contextual to ag-

ing in C. elegans whose modular structure is biologically meaningful, providing a systems-view of the reg-

ulatory interactions underpinning the aging process. This study presents a novel approach that integrates

NI with large-scale network analysis tools applied to networks containing many errors at the ‘‘local’’ level,

typical of NI-derived networks. Our work provides a compelling example where a network that contains un-

biased errors at a local level, can be predictive as long as the global structure is robust. The study led to the

discovery of 50 novel regulators of glp-1(ts) longevity, augmenting the number of regulators of the pathway

by 62.5% and the majority of which have an identifiable human orthologue. This pipeline presents a min-

imum of 4.8% hit rate, more than a two-fold increase compared to the blind genetic screening in the

glp-1(ts) which reported a 2.1% success rate (Berman and Kenyon, 2006). Although the fold change may

seem modest, we present a pipeline that allows the contextualization of aging modulators in relation to

information flow, providing additional mechanistic value to the findings.

Overestimating the number of interactions is unavoidable with current NI tools (Barbosa et al., 2018).

Indeed, new methods have been recently developed that may improve future results; non-parametric

approaches to correct for noisy transcriptional (Aalto et al., 2020) and the use of context-agnostic prior in-

formation, both improve the accuracy of the networks (Wang et al., 2018). Future work using both our

comprehensive ‘‘wisdom-of-the-crowds’’ GRN pipeline in combination with other methods that correct

for noisy or sparse information may improve overall accuracy of local edges.

We find that the topology of our inferred input-core-output network is predictive of functionality in aging.

The aging network shows the typical inter-modular pattern of connections and the distribution of key func-

tional roles as classic bow-tie networks. Our GRNs have a thick core similar to the knot of bow-tie architec-

tures of metabolic networks. In these networks, the conversion of heterogeneous substrates to heteroge-

neous output products cannot be streamlined into a few central reactions, hence the metabolic core is a

complex subnetwork of interlinked biochemical reactions. Similarly, aging is a complex process where hun-

dreds of genes and interventions can trigger early senescence in response to a multitude of external fac-

tors. In light of this knowledge, it is not surprising that a longevity pathway activates a broad number of

health-promoting activities. The challenge in the field is to map this interlinked web of age-modifying

genes, most of them located in the core module.

One interesting finding from the structure of the network is the very consistent Gene Ontology enrichment

across layers. The top tier layers are enriched by genes that play key metabolic and structural roles, including

ATP/energy supply as well as genes involved in the synthesis of proteins. The core is enriched in genes that

are involved in transcription, signaling and metabolism and contains many of the key genes that control the

long life of germline-less animals. Finally, the outer layer is enriched in genes that modulate global chromatin

organization including histones, histone acetylation, and core transcriptional components. The hierarchical dis-

tributionwhere energy (ATP andamino acids) is at the top endof the chain, whereas chromatin organization is at

the lower end suggests amodel of causality where energy supply constraints and perhaps shapes the landscape

of the network, such that the core relays the ‘‘available energy’’ into the global transcriptional status of the chro-

matin. The role of chromatin in the aging process has been unclear, with some studies suggesting that aging is

caused by the progressive opening of chromatin with aging. Our results suggest that the global transcriptional

landscape of a long-lived organism is the end result of multiple layers of regulation. But this model may be too

broad a generalization because we find some epigenetic modulators (specifically the HMG complex) have a hi-

erarchically distinctive regulatory role at the core of the network.

With regards to the biological insights, this is the first time a DAF-16 target and fat stores have been sys-

tematically studied across a large number of aging genes. Based on these relationships, we delineated

groups of genes with similar phenotypes and therefore propose lifespan predictor parameters. First is

that the transcriptional activation of sod-3 is positively correlated with longevity (Figures 5A and S6C).

Furthermore, these results show that in the control of germline-less animals, sod-3 is not fully activated

and that its expression can be further enhanced. This corroborates the finding that in the germline

longevity pathway, DAF-16 is activated independently of ILS. Removal of ILS further extends glp-1(ts) life-

span presumably by an additive or synergistic effect on DAF-16 activation (Berman and Kenyon, 2006). The

notion that this group of genes may work in the ILS pathway is further strengthened by the results shown by
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the gene interaction network, where genes in this category share a similar gene expression profile with age-

1i and daf-16i (Figures 5B and S6E).

From our mechanistic studies we have placed the transcriptional activator sup-37 alongside with daf-16

regulation. sup-37 has been previously identified as a DAF-16 target by chromatin precipitation analysis

(Wook Oh et al., 2006) further strengthening our findings. It is interesting to also notice that the PCC

network also shows that sup-37 as a positive regulator of daf-12, pha-4 and the PTEN homologue and

ILS pathway component daf-18, suggesting that it may act as a linker between multiple branches of the

germline longevity pathway. Our limited but encouraging validation strategy indicates that data-rich

maps are powerful tools to guide mechanistic predictions. Future work should be done to establish if

the other predicted interactors of ILS- including the transcription factor zgpa-1 and the heat shock protein

dnj-11- work in combination with the daf-2 pathway to extend glp-1(ts) lifespan.

Second, our results show that we observe that an increase of fat accumulation is positively correlated to

lifespan up to a threshold. Beyond a certain amount of accumulated fat, if sod-3 is not concomitantly acti-

vated, animals have a shortened lifespan (Figures 5A and S6B). This relationship is expected, since fat meta-

bolism causes an increase in mitochondrial reactive oxygen species (ROS) production and SOD enzymes

are known to limit ROS toxicity (Ighodaro and Akinloye, 2018). We have also made a number of new mech-

anistic predictions linking longevity genes that are involved in fat remodeling and autophagy (Figure S6B,

such as pha-4, daf-12, hlh-30 and nhr-49). Additional work will be required to establish the validity of these

connections.

Our approach is the first that attempts to tackle aging modulation by fully embracing its systems-wide

complexity inC. elegans. We have shown that despite the noisy transcriptomics data and the shortcomings

of available NI methodologies, systems approaches are able to extract biologically meaningful information

contextual to aging. Future studies drawing upon our work will be able to refine and expand our findings to

other model organisms as well as humans.

Limitations of the study

Although the large-scale organization of the network is informative about the location and overall role of

aging modulators, the network is to noise to yield high quality information about specific targets of these

regulators that help fully map aging pathways. We still need to develop NI tools that are able to deal with

complex regulation data and provide locally reliable gene-regulatory networks. Finally, our results are

context dependent (i.e., valid for glp-1 animals), up to what extent our results exactly translate to wild-

type animals will require further experiments.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

N, N0-dimethyl-4,40-bipyridinium dichloride Sigma Item No. M2254; CASNo: 75365-73-0

L-(�)-Dithiothreitol Sigma Item No. D9760; CASNo: 16096-97-2

3-oxo-cholest-4-en-26-oic acid/

D7-Dafachronic acid

Cayman

Chemicals

Item No. 14100; CASNo. 23017-97-2

C20H31O2, Na Arachidonic acid Cayman Chemicals Item No. 10006607 CASNo. 6610-25-9

N, N0-dimethyl-4,40-bipyridinium dichloride Sigma Item No. M2254; CASNo: 75365-73-0

Critical commercial assays

Power SYBR Green Cells-to-Ct kit Invitrogen Item No. A25599

96.96 Dynamic Array IFC Fluidigm Item No. SKU 100-6173

Deposited data

Time-series RNA-seq Generated in house GEO accession: GSE166512

DAF-12 ChIP-ChIP datasets in

young adult worms

Hochbaum et al. (2011) GEO accession: GSE28350

HSF-1 ChIP-seq datasets in young adult worms Li et al. (2016) GEO accession: GSE81521

Curated physical prior dataset Raw data taken from public databases Zenodo repository https://zenodo.org/

record/4382337#.YA6jculKhhE

Network related and experimental datasets Generated in house: TF-gene interactions

valid in young adult C. elegans (day 1

until day 4 adulthood)

Zenodo repository https://zenodo.org/

record/5499464#.YA6h1OlKhhF

Gene interaction database based on qRTPCR

experiments

Generated in house: 5,497-edge gene

interaction network (both positive and negative

edges) from 19 novel ageing genes and 10

randomly selected regulators (Tables S7 and S16)

Zenodo repository https://zenodo.org/

record/5499464 https://s-andrews.

github.io/wormgrn/qpcr/

Experimental models: Organisms/strains

glp-1(e2144)III Caenorhabditis Genetics Center WB strain:CF1903

fem-3(q20) ts IV Caenorhabditis Genetics Center WB strain:JK816

ldrIs1 [dhs-3p::dhs-3::GFP + unc-76(+)]. dhs-3::GFP Caenorhabditis Genetics Center WB strain:LIU1

muIs84 [(pAD76) sod-3p::GFP + rol-6] Caenorhabditis Genetics Center WB strain:CF1553

glp-1(e2144)III; ldrIs1 [dhs-

3p::dhs-3::GFP + unc-76(+)]

This study strain:MOC269

fem-3(q20) ts IV; ldrIs1 [dhs-

3p::dhs-3::GFP + unc-76(+)]

This study strain:MOC267

fem-3(q20) ts IV; muIs84 [(pAD76)

sod-3p::GFP + rol-6]

This study strain:MOC274

glp-1(e2144ts) III; muIs84 [(pAD76)

sod-3p::GFP + rol-6]

This study strain:MOC313

rrf-3(pk1426) II, glp-1(e2144)III This study strain:MOC308

glp-1(e2141) III Caenorhabditis Genetics Center WB strain:AGD1032

glp-1(e2144)III Caenorhabditis Genetics Center WB strain:CF1903

fem-3(q20) ts IV Caenorhabditis Genetics Center WB strain:JK816

ldrIs1 [dhs-3p::dhs-3::GFP + unc-76(+)]. dhs-3::GFP Caenorhabditis Genetics Center WB strain:LIU1
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

daf-16(mu86); glp-1(e2141)III Caenorhabditis Genetics Center WB strain:AGD1048

glp-1(e2141ts) III; adls2122

[lgg-1p::GFP::lgg-1 + rol-6(su1006)]

Caenorhabditis Genetics Center WB strain: MAH42

Oligonucleotides

OL010 R sma-10

CCGGTCTTGGAGTTCCTGTG

All oligos were

designed in house

Does not apply to

any oligos in this list/ NA

OL011 F bcat-1 TCCCGGAGCAAAAGTTCTTCA

OL012 R bcat-1 TTCTGGACGGAACATGCGAA

OL015 F elo-1 ACACGAAACGATTTGTGGCTA

OL016 R elo-1 AGGATTGAAGCCTGAATAGTAACAT

OL017 F ech-8 GGCTCAGTGGTCTCTTCCAAAT

OL018 R ech-8 GCGATTGCAATTCCTCTTCCC

OL009 F sma-10 AAGTTGCAAGTCTACCAAGCG

OL019 F gba-4 GGATTTGGAGCTGCATTCACTG

OL020 R gba-4 CCCGAGACCATCATCGGAAAA

OL021 F ttx-3 AGGGTTCTGCAGGTTTGGTT

OL022 R ttx-3 ATTGATGCCAATGGGGCAGA

OL023 F asp-3 ACGATGTTGTCTGCTTCGGA

OL024 R asp-3 AGCGACGAAGGTGATTCCTG

OL025 F acs-7 ATCGGGTACAACTGGAAAACCA

OL026 R acs-7 CGTTGGCATCGAAGAATCTCA

OL027 F lpr-3 TAGGACAGGTTGTCCCACCA

OL028 R lpr-3 GGGAGGGCAATTGGTTGTTG

OL029 F lin-3 ACTACTGTCATCACAACGCGA

OL030 R lin-3 AACCCTGTGGACAATGGCAA

OL035 F best-17 CTGGATGAAGGTGGCAGAGG

OL036 R best-17 ATCGCCATGCCTCTCGAAAT

OL041 F daf-2 GGAAGAAGAGAATCTCGGCCC

OL042 R daf-2 CGAGCTTCGCTGCTGCTTA

OL043 F nduf-6 CGGACAAGCGTGGGATCAAT

OL044 R nduf-6 AATCCTCTGGAGGGCGTTGA

OL047 F nuo-6

TTCTTCGACCAGCTGCCAAC

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL048 R nuo-6 GCAGAAATTCGGTCTTTCCGTG

OL051 F nhr-62 (Ver.2) ACCTGGTATGCGTAGTCTGC

OL051 F nhr-62 (Ver.2) ACCTGGTATGCGTAGTCTGC

OL052 R nhr-62 (Ver 2) CCGGTTGTGCCAAACACTTC

OL053 F nhr-17 (Ver.2) TCATCCACACGGCGTTTTCT

OL054 R nhr-17 (Ver.2) AGCAACGT

TTCGAAATCCACA

OL55 F abu-11 AGGAGAATGTGTTCCTCCGC

OL56 R abu-11 GTTGGTTTGAGCTGGTTGGC

OL57 F fmo-2 TCGACATGGTCTTCTCTATGGC

OL58 R fmo-2 TGACGACTCATTCGTTTCGTG

OL61 F lpr-5 GGAGAAGCCACCGGATCAAT

OL62 R lpr-5 CCCTTTCCTTTCACCAAGGC
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL69 F gipc-2 GCCGTTCTAGAAGCCGATCA

OL70 R gipc-2 TGAAGCTAAAACGGCAGGCT

OL71 F nhr-76 TCGTAACGCCGTAGTGATGG

OL72 R nhr-76 CGAGAAGACCAGCCTCATGT

OL73 F cup-16 AGGAAGATCGCATCAGTTGGG

OL74 R cup-16 AGAGAGCACTTAACGGCTTCAA

OL75 F tatn-1 CGTATTACCCCACTTCCGGG

OL76 R tatn-1 GATCCTTGCGGTTTGGCTTG

OL81 F tre-5 CGAGCTAACGCAATTGACCG

OL82 R tre-5 CATTGTCCAGGCGCTGTTTC

OL85 F mak-1 AGCTATTGCCATTCCTGGAGC

OL86 R mak-1 TTTCGGCAACCGTATCAGGA

OL87 F hsp-70 CGATGAAGTTGTCTTGGTTGGG

OL88 R hsp-70 TGGAGCAGTTGAGGTCCTTC

OL89 F tnt-4

TTGAATGAGCGTTCCCGTCA

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL90 R tnt-4 TGGACCTTTGGTGGATGTCTT

OL91 F nhr-23 GCCAATACTGCCGTCTCAAA

OL92 R nhr-23 TGCATTCGAACCTCATCTTCT

OL93 F aagr-4 ACCAAGCAGGAGCTTTCCAG

OL94 R aagr-4 AGCTTCAGTTGTGTTGTCTGC

OL97 F pqn-13 AACTTGCGGACAACAAGCTC

OL98 R pqn-13 AGGTTTGCTGGCACTGTGG

OL99 F faah-2 GTATCGCCAGCTCTTCCACA

OL100 R faah-2 ACAGATCCTGCAGCATAATCCA

OL101 F abu-13 GTGAAGCAATGTCGCAAGGG

OL102 R abu-13 GCTCGGCGAGTTCTCTATCC

OL107 F F56F10.1 CCTCCATTCGATGCAAACACA

OL108 R F56F10.1 TGTGCTGTTGCTCTGTCCAT

OL109 F clec-186 AGCCTGTCCACAAGGATTCG

OL110 R clec-186 CGGAGCATCATCCGGTACAT

OL111 F nas-36 AGCAAAATCTACCGATGCCGA

OL112 R nas-36 CACCCCAATCTGCCCATACA

OL115 F dlat-1 CGCCAAAAGCTCAGGACTTG

OL116 R dlat-1 TGCTTTGGCAGATTTCCACTG

OL117 F cnp-3 CACTTCCAATGCCACCACAATC

OL118 R cnp-3 ATACGGCATCATTGGAGGCA

OL119 F R08B4.3 GCAGTCGTCATATGGGATGGT

OL120 R R08B4.3 AGCGTATCGACGTAGTCTGC

OL121 F Y14H12B.1 TGCACATGGGATGGTTGTGA

OL122 R Y14H12B.1 CCGCGTCGATGGAATCTCAG

OL123 F mccc-1 GCAGGTACCGTCGAGTTCAT

OL124 R mccc-1

AGATCCGTGCCTGTGATAGC

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL125 F C25H3.9 AGGACTATCCAACAGAACCACA

OL126 R C25H3.9 TTCGTGGTGCTCAACATCCG
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL127 F dpyd-1 AGATGACAACGGCAAGTGGT

OL128 R dpyd-1 AAAGCCGACAAAACTGCGTC

OL129 F mlc-3 CGGACAGGAGTTCAAGCGTA

OL130 R mlc-3 GGTTCCTTGCTCCTTCTCCT

OL131 F aqp-7 TATCTTCGGAGCCTGGTCCT

OL132 R aqp-7 GTCGGTGGCAAGTTTCAGTG

OL133 F K12C11.1 TGCTAGTAAAATCGCGTCGGA

OL134 R K12C11.1 TGTGACGGAACAGACTCTCC

OL135 F fbxa-85 GCTGATCCCAATCCAGAGATTAGT

OL136 R fbxa-85 TTGCCATGCTCAATTGCGAG

OL137 F unc-10 GCCAATGTTGGCTTCCAGTG

OL138 R unc-10 TCTCCTAGCACCGGTGAGG

OL141 F phb-2 CACTCAACGCCAACAGGTTT

OL142 R phb-2 GCTCGGTGAGGGAAACATCA

OL143 F hpl-2 CCACCGGGACATCGAATTCTT

OL144 R hpl-2 CGGTTTGCGCTTCAGTCATC

OL145 F prdx-3 TCTGGAACTGTCCGTCACAC

OL146 R prdx-3 GGCAAACCTCTCCGTGCTTA

OL147 F haf-9 AGGAAGCCAAATGTCAGGAGG

OL148 R haf-9 TCAGCGTCCAAAGCAGATGT

OL149 F nuo-5 GAATGAGATCGCTCCCCACC

OL150 R nuo-5 GGGAGACGTCAACGTCGATT

OL153 F egl-9 GTGTACATATTGTGGAAGCTCGTG

OL154 R egl-9 CAATCGAGTTGCTGGTGCTC

OL155 F grl-16

AGACCAACGAAGCTGTCGAG

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL156 R grl-16 TCGAGGTTGTCCTTCTCGTTC

OL157 F coq-5 AGACATTCGCCTACCGCAAA

OL158 R coq-5 CGCGAGATGGTTGGATATCTCT

OL159 F asp-14 CAACCAAGCAAAGTCGTCGT

OL160 R asp-14 CGGTCTCCGATCACAACAGT

OL161 F Y69A2AR.18 CAACCTCAGAGCTGCCTGC

OL162 R Y69A2AR.18 GGAAAATTGGGGCGTCGAAA

OL163 F abu-10 TATTGTCGCCCTGGCACTTT

OL164 R abu-10 GATGGTGGATTGTTGGCAGC

OL165 F rmh-2 GATGGATGTCACCCGTCGAA

OL166 R rmh-2 GCAGGACACTGGTTCCTCAT

OL167 F immt-1 ACGAGCTCTTGTGGAAAGCC

OL168 R immt-1 GAGTCCGGATGACTTGCTCC

OL169 F f17h10.1 AGCTTACAGACCCGATCCGA

OL170 R f17h10.1 TGGCGAGAAGACCTCCCATA

OL171 acd-1 F ACTGATGGACACATGAGAGCAA

OL172 acd-1 R TCACTGAGAAGTTGCGTGACA

OL173 ahcy-1 F CTGCAACGTTGGTCACTTCG

OL174 ahcy-1 R GTAACGGTCAACCTGTGGCT

OL175 art-1 F ACAAATCGCCTGGAAGACTGT
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL176 art-1 R GTAGCATTGACAGCGGCTTG

OL177 atp-2 F AGTCGCTGAGGTGTTCACTG

OL178 atp-2 R GGTGGTCGAGTTCTCCCTTG

OL179 asp-17 F TGGGGTCACTTATGTTCCGC

OL180 asp-17 R CCGTGTCGGAAATTACCTGATTG

OL183 bli-6 F GGCTTCAGAAATGGAGGTGGA

OL184 bli-6 R

CGGAAGTGTGATACATACCGAAAG

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL185 clec-265 F ACACAAACTTTGCAGTTGGAGA

OL186 clec-265 R AGAATCTGGGCATGGCTGAG

OL187 bli-1 F TGCCCAGAACTATCCAAGGTTT

OL188 bli-1 R CCGGCTCTCTACCGTAATTGT

OL189 clec-75 F GGTGTTCAGCCAATCTCCGA

OL190 clec-75 R GCAAACGGCACTAGATAACACA

OL191 col-109 F GATCGCTGGAAACCTGACCA

OL192 col-109 R AGGCTTTCCGTTACGTCCTG

OL193 dld-1 F GTCGCTGTCCAGAACGACT

OL194 dld-1 R GACGAGATCGGCATCTTGAGT

OL195 dod-19 F TGGGCAGAAAACACTCCTTGA

OL196 dod-19 R GCTGTAATCAGATAGGCGGACT

OL197 fkb-1 F GCGTTCAGAAATCCAGAAAGGG

OL198 fkb-1 R ATTCTTCATTGCGAGTGCGG

OL199 folt-2 F GGCCACAGTTTGTGGTCTATTC

OL200 folt-2 R CGTTTTGAAAAACCGCCTGC

OL201 grsp-2 F GCTCAGGGATCCCCAGGTC

OL202 grsp-2 R CCATCCTCCAGATGAACCGA

OL203 lec-10 F TATCACAACCCCGGTGTCC

OL204 lec-10 R TTCTTGTGATGTCCGTGACGA

OL205 lips-15 F GGGTCAGCAACCTTGAATGC

OL206 lips-15 R GTGTTCGGGTAGTGGGACTG

OL207 lpd-5 F CTGGAACTGCGGATCCACTC

OL208 lpd-5 R CTCCTCGACGTCAAACTCCC

OL209 dpy-13 F ATCGCCGTGCTTTCGGTTT

OL210 dpy-13 R CTTGCAGGTAAGGGCTTCGT

OL211 ell-1 F

ACCAGCTTCTAAGCTCAACCC

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL212 ell-1 R AGTGTCACGTGATGGTGGTG

OL213 mec-12 F TCGGAGGATCCGATGACTCT

OL214 mec-12 R GCGGATTTCGTCAATGACAGT

OL215 mec-7 F GCAATCAGCAGTATCGTGCC

OL216 mec-7 R CAGCGGTGAGATAACGTCCA

OL217 mrpl-32 F ACTGCACAAAACTTGCCAATGA

OL218 mrpl-32 R GCGAGTTACTTTCTTTGGTTTGC

OL219 mrpl-4 F GGACTTTGTGTTGCTCTCACTC

OL220 mrpl-4 R GAGCTTCGCAAAGATCAATCCA

OL221 mrps-26 F CTGCCATGTCACAAATGGACG

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL222 mrps-26 R TAGAGAACT

TTCTTCGATGGAGGC

OL223 mrps-30 F AGGAAGCTAAACAAATGCTCGAC

OL224 mrps-30 R TGAATCCATGAGTGTGAGCTTGA

OL225 oxy-5 F TCGGCCCAGTTGGAAAGATT

OL226 oxy-5 R AGCCAGTATTAACAGCCTCACA

OL227 pat-10 F CCGACAACATGGCTGAGGAT

OL228 pat-10 R GCTTTCCTCTGTCGAAGGCA

OL229 rack-1 F GAAGCTTACCGGAACCCTCG

OL230 rack-1 R GTCTTGTCGCGGGAAGATGA

OL231 rla-0 F GCTTGTCGAGCTTTTCGAGG

OL232 rla-0 R TCAGCATGTCCTCTCATGGC

OL233 rol-8 F ACGGTAGAGATGCTGAGGTT

OL234 rol-8 R ATTGGTCCTATAGCTCCCATTG

OL235 rpl-3 F GGATACGTCGACACCCCAC

OL236 rpl-3 R CTTGGATTTAGCCCAGTTGCTG

OL237 rps-11 F GTCGTTCGTCGTGACTACCT

OL238 rps-11 R

GTGGATATCTCTGAAGGCTGGG

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL239 rps-28 F AGAAACGTTAAGGGCCCAGT

OL240 rps-28 R AGTCGAGACCGACACTTAGC

OL241 rps-9 F CAGGCTCCAAACCCAGGTC

OL242 rps-9 R TTGTCTGCGGACACGGATG

OL243 sdha-2 F AGGAAGAGGAGTCGGACCAA

OL244 sdha-2 R GGTTTCCGAGATTCCTGGCA

OL245 sol-2 F TGCAGTGGAGGGTCTGATTG

OL246 sol-2 R TCCATGACCCTGTTCAACACA

OL247 taco-1 F AGAAGGGGCACTCGAAATGG

OL248 taco-1 R CTGCTCCACGGACCTTTCTG

OL249 tfg-1 F GCCAACGACTTGACACTCATC

OL250 tfg-1 R TGTCACCAAATCGCCTTCTTC

OL251 trap-1 F GCCAATGTTGTTCGCGAGTT

OL252 trap-1 R GTCTCAGCGTACTTCACGACA

OL253 tufm-1 F ACAAAGATCCTCGCCACATCA

OL254 tufm-1 R TTGATGGTGATACCACGGGC

OL255 ugt-25 F CAGTACTAGACGAACGACCACA

OL256 ugt-25 R CTCCAGCAGTCCATTTCTCCA

OL257 unc-62 F GGCATCCGATGGAGGGATCA

OL258 unc-62 R GTCCCCTGCTTGGTTGGAAG

OL259 unc-69 F AGTGCTCGGCCAGTACATT

OL260 unc-69 R AAAATCGTCGTCGTGAATGCT

OL261 vdac-1 F CGGATGGAAGGTTGGTGGAA

OL262 vdac-1 R CAACGGCAACTTGGGAAGAG

OL263 vhl-1 F TGGCTGAATCCATCAAAACAACC

OL264 vhl-1 R CTCCTAGCAACCCATGGATGA
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL265 trp-4 F

AATAAGAAAAGCGCCACGCC

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL266 trp-4 R GGGTCATGCATCTCAACCGA

OL267 vap-1 F CGGCTGCTCTAACACCAAGA

OL268 vap-1 R ACTTGTTTGGCTCAAGCCCT

OL269 mct-4 F GGCGGGAGGATTGATCTCTG

OL270 mct-4 R CAAGACCTCCCATCACTCCG

OL271 gst-10 F ACTTCACTATTCGAGGATTCGGA

OL272 gst-10 R CTTGCCATTCATTCCCCTCG

OL273 sams-3 F CGCTGAGAACGGACACTTTG

OL274 sams-3 R CCGTTTGAGATCGTTTTTCCTCC

OL275 B0491.5 F CGTGGCTACCATGAAGAGCA

OL276 B0491.5 R TTGGAGTCCAGTCTCCGAGT

OL277 C12D12.1 F CCGTTACAGTGCCGACTACA

OL278 C12D12.1 R TGGTTTGCTTACTTGTGCCA

OL279 C17F4.7 F TTTGCACACAATTGCCCGTT

OL280 C17F4.7 R TAGGGCTTATGCGCAGCC

OL281 C18D11.1 F TCGGATTGCAGTTCCTCCAC

OL282 C18D11.1 R CCACGGACGTCGTACACTTT

OL283 C40H1.8 F ATTGGTCTGTACAAGCCGGA

OL284 C40H1.8 R TGTACGGGAAAGTTTTGGTATGC

OL285 C55A6.7 F GTAACCGGATCCAATCGAGGA

OL286 C55A6.7 R TGAGAGCAGTTGCCTTATCAAC

OL287 dlat-2 F

ACTGAGGTCCGTGCCGA

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL288 dlat-2 R GGAGTGATAAGGCCGGTTGG

OL289 C55B7.3 F TGTGACTCTGAGACTGCTCCA

OL290 C55B7.3 R ACACTTGTTGAGAACCGAGTGA

OL291 cpt-3 F GTTGGCGAAAATCGTCTCCG

OL292 cpt-3 R CGGTTTTTGCTCCATTCGGT

OL293 dct-8 F GCTTCCTTCGCAACCTCATTG

OL294 dct-8 R TTTCCATACATATTTCCTCCGGCA

OL295 eef-1A.1 F ATCACTGGAACATCCCAGGC

OL296 eef-1A.1 R CGCGAGTTTGTCCGTTCTTG

OL297 F23C8.5 F TGCTGTCAAGATCCGTGTCAA

OL298 F23C8.5 R TTGACGGCCTCCTCTAAAGC

OL299 F26G1.2 F GAAGAACGCGAGAAAGTGCG

OL300 F26G1.2 R CGTTGGATTCTTGCCCGATG

OL301 F33G12.6 F CTGCTGACGACATAAGAGGTGA

OL302 F33G12.6 R CGATTCGATCCCAACATGCTTC

OL303 fkb-7 F TATGCCAGGACTTGATAAGGGTC

OL304 fkb-7 R TGCTCTTGCTCTTTCTGCTCA

OL305 brp-1 F CTTCAAGAAAACCGAAACATCCG

OL306 brp-1 R TCCTGGATTTTCCGCAGAGTT

OL307 T19C9.8 F GTGTAGCTAGTTACCATGCTGGA

OL308 T19C9.8 R AACTTGGATTTGGTACCGGTGT
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL309 T21H3.1 F CCGTCAGTCCACAGGACAAG

OL310 T21H3.1 R GCAGCCCATGGAGTGTGAT

OL311 Y26D4A.21 F AAAATGTAAGAT

TCATCCAACCGAC

OL312 Y26D4A.21 R CTCGTCCGATTGAATTGCCTG

OL313 Y51H7C.13 F GCTATTGGAACCAAGTGCTGC

OL314 Y51H7C.13 R

TTTGGGATGGAAGGTTCGGG

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL315 Y54F10AM.5 F TCTTTGAAGCGTTCCTGCCT

OL316 Y54F10AM.5 R TGGTCGTCATGGCACTTTGA

OL317 Y51H1A.3 F GGAATTGGGGAGAGCTCGTG

OL318 Y51H1A.3 R CGATCGAGTTCCAGGTGGTG

OL319 Y71G12B.10 F GTTATGAGGTCTCGCTGGGC

OL320 Y71G12B.10 R GTTTTTCGGCTGGCACACTT

OL321 Y43F8B.1 F CGAGCAACTAGCCCAGAAGT

OL322 Y43F8B.1 R GAGCTCGGAATCAGCTACCC

OL323 lpl-1 F AGGTGTTAGGCATTTTGTGGAC

OL324 lpl-1 R ACCCATACACCTGTATTCGCA

OL325 atp-1 F AAACCGGAAAGACCGCCATT

OL326 atp-1 R GACAGCGACGTAGATGCAGA

OL327 mdh-2 F CTTCCAGCAAAGACCCTCGT

OL328 mdh-2 R AGAAGAGCGACCTTTGGAGC

OL329 paf-2 F AGTTGGTCATGTCATCCGCT

OL330 paf-2 R TTGCTTTTTGGAAGTCCGTTGT

OL331 str-7 F TTTCACATCAAACGGCAATTCG

OL332 str-7 R GGAGGAACGTGTGAAACAAGTAT

OL333 tag-120 F TATTTTCACTCTCTCGGCAGCA

OL334 tag-120 R TCCACTGCATACTGTGGTGAT

OL335 sucl-1 F GGGAGCTGCTCGTTTCTACA

OL336 sucl-1 R AGGTACCCTGCTTTCCTGTG

OL337 tald-1 F GAATTCGGGCTGCTAACACG

OL338 tald-1 R GGCGAGATTAGGGTGACTCC

OL339 tiam-1 F CCTTGTGATGAGCAGCCAGA

OL340 tiam-1 R ACGCGAAACATTCCAGCAAAT

OL341 rhy-1 F

TGACACTTGTCGTCATCGGAA

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL342 rhy-1 R TTCGAGGATCTTTCAGTGAGCA

OL343 dpy-2 F GAATTTTGTCAGGCATCCGCA

OL344 dpy-2 R ATCCAGCAGCCCTTTTCGTT

OL345 C16C10.4 F TGCATA

CTTGGATGGACTGTTCT

OL346 C16C10.4 R TCTGCCTGCACAATAGCGAA

OL347 glf-1 F CCGTGTCACAATTCTCAGCAG

OL348 glf-1 R TCTCTTCCTCGGTGATCGGA

col-129 F TCAATGATGTCAACAATTACTATGATGA

col-129 R GCCAGACGGTATTAGCATCG
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL335 sucl-1 F GGGAGCTGCTCGTTTCTACA

OL336 sucl-1 R AGGTACCCTGCTTTCCTGTG

OL337 tald-1 F GAATTCGGGCTGCTAACACG

OL338 tald-1 R GGCGAGATTAGGGTGACTCC

OL339 tiam-1 F CCTTGTGATGAGCAGCCAGA

OL340 tiam-1 R ACGCGAAACATTCCAGCAAAT

OL341 rhy-1 F TGACACTTGTCGTCATCGGAA

OL342 rhy-1 R TTCGAGGATCTTTCAGTGAGCA

OL343 dpy-2 F GAATTTTGTCAGGCATCCGCA

OL344 dpy-2 R ATCCAGCAGCCCTTTTCGTT

OL345 C16C10.4 F TGCATACTTG

GATGGACTGTTCT

OL346 C16C10.4 R TCTGCCTGCACAATAGCGAA

OL347 glf-1 F CCGTGTCACAATTCTCAGCAG

OL348 glf-1 R TCTCTTCCTCGGTGATCGGA

col-129 F TCAATGATGTCAACAATTACTATGATGA

col-129 R GCCAGACGGTATTAGCATCG

acdh-11 F TAATGCAGTCGCATCGTTGG

acdh-11 R

CCATTTGGACTGTGTTTGCCC

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

acdh-1 F TCCGAGCTTCATCCACTTGT

acdh-1 R TGCGTATTTGTAGCCTTTTCCA

acdh-8 F CCGCAGCTGAAGTTGACTCT

acdh-8 R CCTCCGAAGATCTGACAAGCA

acs-5 F GGGAGAATACGTGGCACCAG

acs-5 R AGCGATGAGCCATCTTTCCA

aip-1 F CTGGACGGATTCAATCACATC

aip-1 R TTGTAGAGAACGAGCCAGAGC

atg-18 F AGCCGCAAGGAGTAATCAAGTATC

atg-18 R TCCGTCTGATGTAGCAGCCAT

cct-4 F CAGCCACGACGATAATACAACAG

cct-4 R CAGGCGGTAGAGCAGGAAGT

cpt-4 F CGAGAACAGAGACGCTACGC

cpt-4 R TTCAACAGGTCTCTTCGCTCTT

cth-1 F GGAGCCGCTATCACTAATAATGAC

cth-1 R CGAATGGAGATGGAACACCT

dnj-11 F AGCAAGCCGACAAGGAGACA

dnj-11 R CATCTCTCCACGGTTCCAGGT

dod-17 F ATTCACACTCACTGTCGCTAACG

dod-17 TCGGTCCTGTGCTGTATTCGR

ech-6 F TCTATGCCGGAGAGAAGGCT

ech-6 R AACGCTGAGTACCTCCTGCT

elo-5 F ATGCACTGGTACCATCACGC

elo-5 R ACCCAAACCATATGGACAGCA

ets-4 F TCTCAAAGGACGCCGATCAC

ets-4 R CTGGGTGTCAAGACCGTTGT
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

fat-2 F

GTCCCGGCTCTTCGAGACTA

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

fat-2 R GAGGACAAAGGCAATGTAAGCA

fat-4 F AGTTTGCATTGAGCTCGAACAT

fat-4 R CCTCCCCAAAGCCAGTCAAT

fat-7 F GCCGTCTTCTCATTTGCTCTC

fat-7 R CTCATTGGTGTGGTTGCCTT

lbp-8 F GAGAGAAATTTGTTGAAATTGCTCCG

lbp-8 R TGAAAACAGAGCTGTGGTGGT

lbp-9 F TCGTGATGTGTCGAGCGTC

lbp-9 R ACGATGACGAGCTTTCCGTT

let-767 F GCAGCTGTGGCTTATCGTCT

let-767 R CGGTGACAACAGCCCAAGAA

lipl-4 F TGATGACTGTAATGATCCCATTGT

lipl-4 R CCATGATTTTATTAATTCCGGCGTA

mex-1 F TCGCAGAGCCACCAACAAGA

mex-1 R GATGAGGAAGAGGACCGATGC

mtl-2 F TGGTCTGCAAGTGTGACTGC

mtl-2 R GGCAGTTGGGCAGCAGTATT

nhr-80 F ATCACCGACGAGATCATGCC

nhr-80 R TCGAAACCCCCTTGAAAGC

oma-1 F CCAAGATATGAGCTACCAACGAA

oma-1 R CAGCGAGACGGTGGATAGGT

sbp-1 F ATCCGATTGGATTGCTCGCT

sbp-1 R GAGTGCTAGTTCCATCCGGG

sip-1 F CGGGTTCAGCAAGAGATCGT

sip-1 R CCAAGTCGACGTCCTTTGGA

tcer-1 F TGAGCCACGAAAATCAGGAGAA

tcer-1 R

CTCTACCTCTGCCGCCAAAA

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

vit-1 F AGCCAGAAGAAATCCGATCTTG

vit-1 R GCTCCACAGCTTCGTATCCA

vit-2 F TCCATCAAGAGCCACATCAAGA

vit-2 R CGAACTCAGCCTTGTCTCCA

cdc-42 F TCCACAGACCGACGTGTTTC

cdc-42 R TCCACAGACCGACGTGTTTC

pmp-3 F gttcccgtgttcatcactcat

pmp-3 R acaccgtcgagaagctgtaga

ire-1 F TACTTGCCACCACGGAGACC

ire-1 R CGTTGCCATCGTCATCATTG

OL001 F mdh-1 GAACCAAGGCTGGGCAATTC

OL002 R mdh-1 ACCCTCGATGGTAACTGGGA

OL003 F sams-1 CCAGCATTGGATTCGACCAC

OL004 R sams-1 TCCGACATCTTCTCCGTCCT

OL005 F far-3 GAGCTCATTGCTGGAGGACG

OL006 R far-3 TGCAGCAACTTGGGTTTCAAT

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact Marta Sales Pardo (marta.sales@urv.cat).

Materials availability

� C. elegans strains generated in this study are available upon request.

Data and code availability

d This paper does not report original code.We specify the tools we use in theQuantification and Statistical

Analysis Section.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

d RNA-seq and microscopy data have been deposited at Zenodo and are publicly available as of the date

of publication. Accession numbers are listed in the key resources table.

d The input data and gold standard datasets were generated with publicly available data. The main data-

set is listed in the key resource table. Other datasets are listed in Table S1 and available on zenodo.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL007 F sma-4 ATATCCGTTATTACCTCAAATGCCA

OL008 R sma-4 AGAAGACGCTTCGTCAAGAG

OL009 F sma-10 AAGTTGCAAGTCTACCAAGCG

OL010 R sma-10 CCGGTCTTGGAGTTCCTGTG

OL011 F bcat-1 TCCCGGAGCAAAAGTTCTTCA

OL012 R bcat-1 TTCTGGACGGAACATGCGAA

OL015 F elo-1 ACACGAAACGATTTGTGGCTA

OL016 R elo-1 AGGATTGAAGCCTGAATAGTAACAT

OL017 F ech-8 GGCTCAGTGGTCTCTTCCAAAT

OL018 R ech-8

GCGATTGCAATTCCTCTTCCC

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL009 F sma-10 AAGTTGCAAGTCTACCAAGCG

OL019 F gba-4 GGATTTGGAGCTGCATTCACTG

Software and algorithms

RStudio Version 1.2.5033 RStudio Team (2019) https://www.rstudio.com/

R language Version 3.6.3 R Core Team (2020) https://cran.r-project.org/

Prism GraphPad https://www.graphpad.com/

scientific-software/prism/

Cytoscape version 3.8.2 Shannon et al. (2003) https://cytoscape.org

Python version 3.8 Python Software Foundation https://www.python.org

Inferelator 2.0 Arrieta-Ortiz et al. (2015) https://github.com/flatironinstitute/

inferelator/blob/release/README.md

MERLIN-P Siahpirani and Roy (2016) https://github.com/Roy-lab/merlin-p

Time-lagged LASSO Nguyen and Braun (2018) https://github.com/pn51/

laggedOrderedLassoNetwork

SeqMonk Andrews (2021) https://www.bioinformatics.babraham.

ac.uk/projects/seqmonk/

Stochastic Block Model Peixoto (2014) https://graph-tool.skewed.de/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Most assays performed in this study used sterile glp-1(e2144)ts or fem-3(q20)ts C.elegans that were main-

tained at 16�C on NGM with OP50 E. coli. To induce sterility, L1 synchronised larvae were added to NGM

plates containing HTT115 E coli at 25�C.

Worm maintenance and synchronization to obtain time-series RNA-seq datasets

Worms were maintained at 16�C on NGM with OP50 E. coli. Synchronised experimental populations were

prepared by washing gravid adults and eggs from plates and bleaching in a freshly prepared solution of 1%

sodium hypochlorite and 1M potassium hydroxide. Eggs were allowed to hatch overnight at room temper-

ature in M9 solution (22 mM KH2PO4; 42 mM Na2HPO4; 86 mM NaCl; 1 mM MgSo4) to ensure all animals

arrested at the L1 stage. For time series transcriptomics, glp-1(e2144)ts was crossed with an mlt-10p::GFP

molting reporter (kind gift from the Frand lab) to identify the exact molting times and further aid synchro-

nisation. Conditional sterility was obtained by growing L1 larvae to adulthood at restrictive temperature

(25�C).

Worm maintenance and synchronization of worms exposed to environmental and metabolic

perturbations

The following treatments were used prior to obtaining transcriptomics using MOC82 (Table S18). For

oxidative stress the strain was treated at day 1 of adulthood (41 hours) and day 2 (65 hours) for 1 hour by

placing animals in 9 cm plates containing 200mM of Paraquat (N, N0-dimethyl-4,40-bipyridinium dichloride,

Sigma). To induce endoplasmic reticulum stress MOC82 worms were placed in 9cm plates containing 5mM

of DTT/ Dithiothreitol(Sigma) for 1hour at both day 1 (41 hours) and day 2 (65 hours) of adulthood. To induce

heat stress, MOC82 day 1 (41 hours) and day 2 (65 hours) of adulthood were subject to heat stress by placing

sealed 9 cm plates in a 34�C water bath for 30 minutes. For the following interventions, MOC82 animals

were treated at day 1(45 hrs), day 2(69 hours), day 3(93 hours) and day 4(117 hours). Dafachronic acid

(DA) treatment: 1mM D7-Dafachronic acid (3-oxo-cholest-4-en-26-oic acid/Cayman #14101), (as described

in Deline et al., 2013. In the case of DA, the stock was prepared in ethanol and kept at �20�C. Prior to use,

this was diluted 1:100 in PBS and 500ml dropped evenly over the lawn of HT115 plates prepared as

described. Animals were treated with 50uM of Arachidonic acid (C20:4n6, Cayman), using 9cmNGMplates

containing AA andNP40 0.01%. Both AA and DA plates also contained 10mg/ml Nystatin to prevent fungal

contamination. Controls were grown in NGM plates containing 10mg/ml Nystatin and no acid treatment

and NGM devoid of both, collected 45 and 69 hours after feeding and additional control was collected.

Worm maintenance and synchronization for RNAi-screening

For L1 screen, glp-1(e2144), rrf-3(pk1426) or fem-3(q20)ts animals were bleach-synchronized as L1s and 25

to 50 synchronised L1 worms were grown in a 96- or 24-well plate at 25�C .

For L4 screen, glp-1(e2144), rrf-3(pk1426)were bleach-synchronized as L1 were added to OP50 seeded

plates and incubated at 25�C until the L4 stage. L4 worms were then gently washed 3 times with M9 in order

to remove OP50. Finally, 25 to 50 animals were added onto each well of the 24-well RNAi plates and incu-

bated at 25�C until scoring time.

Worm maintenance and synchronization for epistasis analysis

glp-1(e2141) and daf-16(mu86); glp-1(e2141) animals were grown at 25�C and fed from L1 with HTT115

bacteria.

Worm maintenance and synchronization for high throughput nanofluidic qPCR

Worms for this experiment were grown from L1 or from L4 onto RNAi plates, specified in figure legends

until day 2 of adulthood, when they were harvested to prepare cDNA.

Worm maintenance and synchronization for microscopy screening

glp-1(e2144); dhs-3p::dhs-3::GFP , glp-1(e2144); sod-3p::GFP and glp-1(e2144); lgg-1p:LGG:GFP worms

were grown on 12-well RNAi plates from L1 to day 4 of adulthood at 25�C.
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METHOD DETAILS

RNA-sequencing

Eggs were collected by bleaching and L1 larvae were hatched in the absence of food. Synchronisation was

obtained by adding L1 larvae to plates with HTT115 E coli strain containing the empty vector plasmid L4440

on standard NGM plates containing 50 mg/ml Carbenicillin and 1 mM IPTG until harvesting and grown at

25�C. The time of adulthood was estimated as time after feeding L1 larvae (as described in Figure S1) and

monitored visually using themlt-10p:GFPmolting reporter. Samples of at least 1,000 worms were prepared

as described in Hastings et al., 2019. The main dataset consists of 113 of ad libitum, environmental and

chemical perturbation transcriptomics—57 are steady-state time series at 19 sequential timepoints and

56 are perturbation time series at two or four timepoints. For PCR library enrichment, 13 cycles of amplifi-

cation were performed. Libraries were sequenced on an Illumina HiSeq 2,500 system by the Babraham

Sequencing Facility.

mRNA-seq quantitation and normalisation

The libraries were trimmed with trim galore version 0.4.4 The libraries were trimmed with trim galore v0.4.4

using default parameters (Krueger, 2021). Trimmed data were mapped to the C. elegans WBCel235

genome assembly using HISAT2 v2.1.0 (Kim et al., 2015) guided by splice junctions taken from Ensembl

version 75. Mapped positions with MAPQ < 20 and all non-primary alignments were discarded. MAPQ

score stands for theMAPpingQuality score. AMAPQ score of 20 represents that the probability of correctly

mapping a random read is 99%. Sequence processing was carried out by the BabrahamBioinformatics. Raw

counts were then generated using SeqMonk (Andrews, 2021). Due to overlapping exons found in

C. elegans genome annotation, only sequencing reads that were precisely matched to the genome assem-

bly were quantified.

The raw counts were then normalised using the mean expression of genes whose expression levels were

identified as consistent across all libraries. Table S19 lists the stably-expressed genes used for the normal-

isation. The analysis was performed in R.

RNA interference

RNAi by feeding was performed as described (Kamath et al., 2000). RNAi clones were taken from the Ah-

ringer’s RNAi library (Source Bioscience). Briefly, the clones were inoculated overnight at 37�C in LB plus

50 mg/ml ampicillin and were then seeded onto fresh RNAi plates composed by NGM plus 25 mg/ml car-

benicillin and 1 mM IPTG. Worms were exposed to RNAi bacteria from L1 or from L4 (specified for each

assay).

High throughput nanofluidic qPCR

cDNA from day 2 adult animals was prepared as described in (Chauve et al., 2020). Briefly, 10 worms were

lysed and RT was directly performed using the Power SYBR Green Cells-to-Ct kit (Invitrogen, 4402955). The

cDNA was then analysed using nanofluidic technology developed by Fluidigm using the standard protocol

adapted from Fluidigms’User Guide and by (Chauve et al., 2020). 1.25mL of the cDNA solution was used for

pre-amplification. Then, a 96.96 Dynamic Array IFC was used to measure the expression level of 96 genes in

96 different biological conditions. Primers used in RT-qPCR were designed to span exon-exon junctions

when possible or to have an intron between them. Primers are listed in Table S18. Melting curves were

examined to ensure primer specificity. Results were analysed using the standardDDCTmethod. Expression

levels of target genes were normalised using cdc-42, ire-1 and pmp-3 as reference genes. At least six bio-

logical replicates were analysed per condition. The coefficient of correlation between the knockdown ef-

ficiency and any tested genes was calculated using Pearson’s correlation coefficient.

Two-step glp-1(ts) lifespan screening

Glp-1(ts) lifespan screen 1. The initial screen included 1120 RNAi clones divided into 96-well plates.

Each 96-well plate was tested together and divided further into four 24-well plates. Each clone was initially

grown in liquid LB in 24-well plates. 25mL of each culture was seeded in duplicate on 24-well plates. A plate

was seeded in duplicate with the empty vector (L4440) as a negative control and vectors expressing daf-16

and age-1 as positive controls. Each clone was seeded in 2 independent wells of 24-well plates and 2 con-

trol plates were used with 24 wells seeded with L4440. 25 to 50 synchronised L1 worms were grown in each
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well. Contaminated plates, starved plates, or plates with outwardly defective or arrested animals were dis-

carded (104 conditions).

Glp-1(ts) lifespan screen 2. 93 candidates were selected based on novelty as explained in the main text.

The experiment was set-up as described above and the percentage of survival was assayed every 2 to

3 days (at days: 3, 5, 7, 10, 12, 14, 16, 17, 19, 21, 24 and 26) by scoring animals based on movement. Three

biological replicates were conducted and each of them included two technical replicates. To ensure the

identity of the genes that were knocked down, each one of the clones that significantly change the lifespan

was sequenced using M13 forward primer. Day 19 normalised percentage of survival was calculated using

the same procedure. For this screen, we used day 19 survival rate as we found that it is closer to the mean

survival.

Fem-3(ts) lifespan screen

To evaluate the effect of RNAi clones in normal lived animals we used fem-3(q20)ts.The experiment was set-

up at 25�C as described in the two-step glp-1(ts) lifespan screening, and the percentage of survival was as-

sayed at day 13 of adulthood, which is the time point when animals grown in bacteria expressing empty

vectors reached roughly 50% survival. fem-3(q20)ts survival at day 13 was compared with glp-1(ts) survival

at day 19, at which time both strains have reached 50% survival.

L4 glp-1(ts) screen

glp-1(e2144), rrf-3(pk1426) animals were grown as follows: bleach-synchronized L1s were plated onto OP50

seeded plates and incubated at 25�C until L4 stage. L4 worms were then gently washed 3 times with M9 in

order to remove OP50. Finally, 25 to 50 animals were seeded onto each well of the 24-well RNAi plates with

a Pasteur pipette.

Lifespan epistasis experiments

glp-1(e2141) and daf-16(mu86); glp-1(e2141) animals were grown at 25�C and fed from L1 with RNAi bac-

teria containing either empty vector (EV) or double stranded RNAi for sup-37 or sdc-3.

Microscopy

glp-1(e2144); dhs-3p::dhs-3::GFP , glp-1(e2144); sod-3p::GFP and glp-1(e2144); lgg-1p:LGG:GFP worms

were grown on 12-well RNAi plates from L1 to day 4 of adulthood at 25�C. On the day of imaging,

300mL of M9 with 100mM levamisole were used to transfer worms from the 12-wells RNAi plate to black

flat bottom 96-wells plate (CellCarrierTM-96, Black, clear bottom, TC Treated). Worms were washed 2 times

with 300mL of M9 containing 3mM of Levamisole (Sigma). The image of an entire well was acquired auto-

matically using a Nikon Ti-E microscope equipped with an Elements (using JOBS module) system and a

Hamamatsu Flash 4.0 v2 camera. The objective 10X was used. 5% of the laser was used with 200ms expo-

sure. These settings were identical for all experiments. Using FIJI image processing software, a mask was

applied to remove irrelevant information from outside the well. Then raw images were thresholded (using

"Huang dark’’ algorithm) to outline the worm body, the green channel was used for the dhs-3p::dhs-3::GFP

fluorescent reporter images and the bright-field channel was used for sod-3p::GFP fluorescent reporter im-

ages. This was used as a mask to measure the mean intensity per well and the background was then sub-

tracted. An in-house script was used to automatically analyse the images (available upon request). For each

fluorescence reporter, 3 to 4 biological replicates were analysed with 10 to 80 worms per condition. For the

statistical analysis, the fluorescence of the worms grown on bacteria with the empty vector L4440 was used

as a baseline.

Construction of a mechanistic TF-gene (physical) and gene-gene (functional) interaction

database

We built a WT functional interaction database that includes two types of interactions: TF-gene interactions

and gene-gene interactions. We identified TF-gene interactions from ChIP-seq data, motifs, eY1H assay,

and transcription start sites (TSS) from Ensembl version 75 (Aken et al., 2017). We filtered TF-binding sites

using ATAC-seq open regions. To identify TF-binding sites that are open fromChIP-seq andmotifs, we first

used bedtools intersect and bedtools merge commands (version 2.29.0, Quinlan and Hall, 2010) and only

kept TF-binding sites that overlapped with an open ATAC-seq region by at least one base pair. We then

inferred interactions from TFs to target genes by aligning TSS to the TF-binding sites from ChIP-seq and
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motifs, using the bedtools window command with 1000 bp window size. For eY1H data which already are

interactions between TF and genes, we only included an interaction if the TSS site of the target gene over-

laps with an open ATAC-seq region by at least one base pair according to the bedtools intersect output

(version 2.29.0, Quinlan and Hall, 2010).

We used the following sources of TF-gene interactions: 1) 115 L4 or young-adult ChIP-seq datasets from

ModERN (Kudron et al., 2018), 2) two young-adult ChIP datasets (GSE28350, GSE81521) (Hochbaum

et al., 2011; Li et al., 2016), 3) 202 unique TF DNA recognition motifs using ‘‘direct evidence’’ option

from CiS-BP motif database (Weirauch et al., 2014), obtained through RTFBSDB R package (Wang et al.,

2016), and 4) 13,501 TF-gene interactions from eY1H assay (Fuxman Bass et al., 2016). Regulatory se-

quences were obtained using biomaRt R package (accessed on 31st Oct 2017) (Durinck et al., 2009). This

study usedWBcel235/ce11 version of the C. elegans genome, andWormBaseWS260 genome annotations.

For gene-gene interactions, we based our curation on theWormExp v1.0 database (Yang et al., 2016) which

has compiled nearly all C. elegans published expression data over the past decade (last updated on 27/07/

2017) (Yang et al., 2016). Out of the 361 studies, 298 studies were in ’Mutants’, ’DAF/Insulin/food’, ’Devel-

opment/Dauer/Aging’, and ’Others’ categories, and were included in the curation. All 298 publications

were carefully read to filter for studies fulfilling the following criteria: 1) a minimum of three citations, 2)

the background was either N2 (i.e., which is wild-type), or mutants with N2 background, and 3) the age

of the worms at the time of harvest is L4 to day 4 of adulthood. We finally included 98 studies in the data-

base covering 126 different regulator genes. Table S1 lists the references and Table S3 lists the final data-

base of TF-gene and gene-gene interactions (WT-GS).

Definition of empirical modules

We curated nine eight glp-1(ts) studies, which included a total of 52 different RNA sequencing knockdown

datasets that we normalised using the DESeq2 pipeline (Love et al., 2014). Details of the quantitation and

GEO accession numbers are listed in Table S9. We divided each glp-1(ts) dataset into five empirical mod-

ules according to the levels of observed gene expression changes. These empirical modules contain genes

that show the same response to a genetic perturbation and therefore enable us to assess whether structural

modules that group genes according to the role they play within the GRN (see below) follow grouping pat-

terns similar to empirical modules.

� Empirical module 1- Differentially upregulated at greater than two-fold change (p-adjusted< 0.05)

� Empirical module 2- Differentially upregulated between 0 to two-fold change (p-adjusted< 0.05)

� Empirical module 3- Differentially downregulated at greater than two-fold change (p-adjusted<

0.05)

� Empirical module 4- Differentially downregulated between 0 to two-fold change (p-adjusted< 0.05)

� Empirical module 5- Not differentially expressed

QUANTIFICATION AND STATISTICAL ANALYSIS

Adjusted p-values for correlation calculation in RNAi knockdown experiments

In Tables S7 and S16 we show the results from experiments in which we knock down (KD) a regulator gene

using RNAi and look at the effect of this KD on the expression of a target gene in at least six replicate ex-

periments. To assess the effect of a KD in a target gene, we compute the Pearson Correlation Coefficient

(PCC) between DDCT values in the N replicates between KD regulator gene and target gene using the

‘‘cor’’ function with the default method, i.e. pearson correlation, in the base R library in RStudio Version

1.2.5033. Because the number of points is small (N=6, 7; we excluded KD with lower than 6 effective KD

from the analyses) and we look at correlations of many targets for a given KD regulator, correlation values

are highly dependent and we cannot use standard p-values and multiple testing corrections. Instead, we

use a resampling method to obtain a distribution of extreme correlation values for each KD and obtain

the p-value of the correlation values between a target gene and a given KD regulator from this distribution.

Specifically, we obtain a distribution of 1,000 extreme correlation values (absolute values) for each KD regu-

lator. To obtain each one of these extreme correlation values, we shuffle the vector of DDCT values of each

target using and compute PCCs between expression values of each target gene with the KD regulator; we
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then keep the largest PCC (in absolute value). After the 1,000 iterations we obtain a distribution of extreme

(largest in absolute value) PCCs conditioned on the expression vector of the KD and target genes and we

can compute the p-values of each observed PCC of that KD regulator with any target from this distribution.

Because to obtain this distribution we consider all of the expression vectors for all of the targets, we do not

need further adjustment of the p-values. We used python3 to implement the algorithm and scipy.stat-

s.pearsonr to obtain PCCs.

Statistics used to analyse significance in the two-step glp-1(ts) lifespan screening

Glp-1(ts) lifespan screen 1. Percentages of survival were obtained at day 16 of adulthood (D16) in worms

grown at 25�C. At that time, glp-1(e2144)ts;rrf-3(pk1426) animals grown in bacteria containing the empty

vector had reached about 50% of survival.

Percentage of survival: Number of dead worms
Average number of dead and alive worms at each timepoint* 100

For each condition, we performed two technical replicates. Because each 96-well plate was not tested at

the same time, we used control L4440 plates that were performed at the same time (same round of exper-

iments) for normalisation. For each round of experiment (96 clones), 24-well plates of control were analysed

and the average of percentage of survival was used. To normalise, we divided the % of survival of the test by

the average % of survival of the controls in the same round of experiments. We then calculated the mean of

the ratios of the two technical replicates. To obtain the normalised percentage of survival we added 50 to

this ratio (centering the result at 50 because D16 was considered to be the mean survival of the controls).

Glp-1(ts) lifespan screen 2. Day 19 normalised percentage of survival was calculated using the same

procedure. For this screen, we used day 19 survival rate as we found that it is closer to the mean survival.

To obtain survival curves, we combined the number of alive worms of the two technical replicates for each

time point and similarly for the number of dead worms. The percentages of survival were then calculated for

each time point and the mean sample size (the sample size may vary due to experimentation error) was

calculated. The values were used to construct survival curves using the survival R package. Each survival

curve was compared to the L4440 survival curve using the log-rank test. P-values were obtained for each

biological replicate and combined using Fisher’s method. Bonferroni multiple correction was then applied

and the conditions with a p-value lower than 0.05 were considered significantly changing the lifespan.

Statistics used to analyse lifespan epistasis experiments

The data was analysed with a log-rank (mantel Cox) test to measure statistical significance. Three replicates

have been performed and a Fisher exact test was used on the three log-rank p values to establish overall

significance. The software Prism was used to compute these values.

Statistics used to analyse microscopy data

Statistics were based on either one-way Anova or a mixed model (depending on the number of replicates)

followed by FDR. A two-stage step-upmethod of Benjamin, Krieger and Yekutieli was used to calculate the

statistical relevance of each condition compared to L4440. The software Prism was used to compute these

values.

ATAC-seq data reconciliation

Whole-worm young adult ATAC-seq data (Daugherty et al., 2017) were retrieved from from the Gene

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) (Barret et al., 2013) under accession

numbers GSM2385311 (4 datasets, young adult replicates and the input control). We re-quantitated the

samples using a 200 bp running window with a step size of 200. We only kept probes with lower than

5000 read counts and applied a post-quantitation normalisation using a matched distribution percentile

normalisation ("multiply to the 95.0 percentile" option in Seqmonk).

We applied hiddenDomains R package (Starmer and Magnuson, 2016) to each replicate separately, as we

deemed the input sample not viable. We considered regions with the minimum of 0.7 enriched probability

as open regions. Using the bedtools intersect and bedtools merge (version 2.29.0, Quinlan and Hall, 2010),

open regions which exist in at least two out of the three replicates were included as final open regions.
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Genome-wide C. elegans gene regulatory network inference

Gene input selection. To select genes whose gene-expression time series would be fed to network

inference algorithms, we applied a threshold of a minimum of log2-difference between the highest and

the lowest values across all time conditions. Out of 20,191 protein coding genes, 12,884 genes were above

that threshold and thus, RNA-seq data for these genes was used as input for the inference algorithms.

Network inference algorithm selection. We used Inferelator (Arrieta-Ortiz et al., 2015), MERLIN-P

(Siahpirani and Roy, 2016) and Time-lagged Ordered Lasso (Nguyen and Braun, 2018) (TOL) inference al-

gorithms to infer networks from time series RNA-Seq. The three methods use three types of input data: a

time series of gene expression data of a given length, a list of input regulators (genes which can regulate

the expression of other genes in the dataset; Table S17) and known regulatory interactions between genes

(priors, Table S2).

Input data. For Inferelator andMERLIN-P, we labelled replicates of the time series expression separately

and sequentially, and included both steady-state and perturbation libraries. For TOL, we only used steady-

state libraries so that the input for each condition is the average of the values across replicates. We consid-

ered five different prior sets as illustrated in Figure 1 showing data types included in each corresponding

set. We also considered three regulator sets (Table S17): a. 632 ageing-related genes from GenAge data-

base; b. 721 transcription factors (Kudron et al., 2018); and c. 1,442 high variability genes identified by ma-

SigPro R package (Nueda et al., 2014). For Inferelator and MERLIN-P, we used regulator types a and b as

input and 12,884 as targets. For TOL, we used genes in sets a, b, and c as regulators and targets (2,553

genes) to fit the tool’s requirement. Time-series lengths are either a full time series, L4 until day 10, or a

shorter time series, L4 until day 3 of adulthood. We used every possible combination of the three input vari-

ables in our inference (Table S4).

Implementation. Inferelator: the number of bootstraps was set to 100. Prior weight was set to 1.2 (Ar-

rieta-Ortiz et al., 2015). Remaining parameters were set to default values. MERLIN-P: All parameters

were set to default. Weights of priors were assigned according to their data type (ChIP-seq edge weight =

0.8; eY1H, motif edge weight = 0.6). TOL: TOL algorithmwasmodified to output the sum of all bs for all time

points for every gene. lmax was set to 5. lprior was 0.5 and lnon�prior was 1.

Consensus network building. We obtained 50 different directed, binary GRNs for the different combi-

nations of input data, prior and NI tool (Table S5). We then compared these networks by measuring their

edge overlap, i.e., the fraction of overlapping edges between pairs of networks. Using this as a similarity

metric between networks, we used hierarchical clustering (pheatmap R package) to identify distinct groups

of networks that have large edge overlaps. (See Table S5 for the inferred networks in each group labelled

by NI tool and input variables) p. For each group we build a consensus network as the union of all networks

within that group, i.e. by keeping unique edges of all networks within the group.

Significance calculation of enrichment of sets of genes by resampling

We use resampling to compute: 1) the enrichment of GenAge genes and orthologous genes that act as regu-

lators in our inferred GRNs with respect to the input regulator set; and 2) the enrichment of GenAge genes in

genes that have a >20% impact in lifespan with respect to genes than were tested in lifespan screen 1.

The resampling methodology works as follows: initially we have a set of Ng genes (for instance genes

tested in lifespan screen 1), in whichMg genes are labeled (for instance, Mg genes appear in GenAge Data-

base). Then we have a set of Nt (<Ng) genes (in the example, genes with >20% impact in lifespan with

respect to the control) in which Mt (<Mg) genes are labeled (in the example, they appear in GenAge).

We want to know what is the probability of finding Mt labeled genes in a subgroup of Nt genes from a

group Ng genes where Mg genes are labeled. To do that we generate 10,000 random samples of Nt genes

from the initial set of Ng genes and compute for each sample the number of labeled genes Nr. From this

distribution of {Nr} we can obtain the p-value of the observed fraction of labeled genes.

Performance metrics for validations against the gold standard

Our Gold Standard dataset covers a very small fraction of the possible regulators (<5%) in the network.

Usual performance metrics are hard to interpret since the fraction of data that is testable is a very small

ll
OPEN ACCESS

36 iScience 25, 103663, January 21, 2022

iScience
Article



amount of the potential number of interactions that can be inferred. Because of this, we resorted to per-

formance metrics that are more suitable to measure whether the observed signal differs from random or

not. Specifically, we use the precision fold enrichment introduced in (Roy et al., 2013) and the area under

the precision fold enrichment curve.

Precision fold enrichment. It measures the precision (that is the fraction of predicted positive interac-

tions that are positive in the GS) versus the probability that an inferred edge is in the GS set:

Precision fold enrichment ðPFEÞ =
p
n
k
K

where p is the number of correct predictions, n is the total number of edges inferred, k is total number of GS

edges, and K is the total number of edges that is possible to infer (#regulators x # targets). A PFE >1 indi-

cates that the precision is larger than what we would expect at random. It is important to note that PFE does

not have an upper bound. The upper bound depends in general on the size of the GS and that of the in-

ferred network. However, it is useful to compare different GRNs obtained for the same set of genes and

validated against the same GS as is our case.

Area under precision fold enrichment curve (AUFE). It is the area under the curve in which the x axis

indicates a PFE value and the y axis represents the fraction of regulators with a PFE value equal or larger

than that in the x axis. Note that while PFE is not bounded in theory, it does have a maximum (PFEmax)

for each network and GS validation set so that it can be computed.

AUFEmeasures how evenly distributed PFEs are across regulators in the GS validation set (measurable reg-

ulators). For networks with similar PFEmax values, the larger AUFE the better. To illustrate this idea, consider

two networks with the same PFEmax. In one network all measurable regulators, r, have PFEr equal to PFEmax,

so that AUFE is equal to PFEmax. In the second case, we have the same regulators so that all of them have

PFEr =0 except for one that has PFEr = PFEmax, so that AUFE=PFEmax/2, which is smaller than that of the first

(and preferred) situation.

Precision for empirical validation experiments and random expectation

We tested the effect of knocking down (KD) 10 different regulator genes on 190 targets (Table S7). We

looked at the change in expression of regulators and targets in at least 6 replicates and obtained the Pear-

son correlation coefficient for each regulator-target pair.

To validate the network, we used a PCC cut-off (PCCR |0.75|). For a regulator-target pair that has

a PCC R |0.75|, we consider the interaction a positive validated edge if the edge corresponding to

that regulator-target pair appears in at least one of our consensus networks, counting towards precision

and accuracy. If a regulator-target pair has a PCC< |0.75|, we take that as a negative empirical interac-

tion; if that edge does not appear in any of our consensus networks, we count that edge as a negative

confirmed interaction which counts toward the accuracy.

Because the precision and accuracy we report are cut-off dependent, we also measure the AUPR, that is the

area defined by the curve of (precision, recall) values we obtain by sweeping over all PCC cut-off values.

To obtain a random expectation, we make two types of assessments:

1. Naive expected precision. Assuming that the number of edges in the overall network is fixed and

given by our procedure of filtering for edges with low weight in the NI process -which is 313,562

for the target network-, if we were to distribute the observed edges among all the possible regulator

(2,795) and target (12,884) pairs, then the expected precision would be equal to the density of that

network: 313562/(2,795x12,884) =0.0087.

2. Expected precision/accuracy from randomising the networks. We made 100 randomisations of each

one of the three networks by using a double edge swap approach in which we select two edges at

random (u/ v) and (s / t) and we swap the targets between edges to obtain a rewired set (u/ t)

and (s/ v). This procedure preserves the degree of both regulators and targets and allows to assess

whether any observed network feature can be explained solely by the degree distribution of its
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nodes or not. Using the same procedure described above we calculated precision and accuracy for

each randomisation. We then obtained from this ensemble the expected average precision and ac-

curacy as well as their standard deviations to obtain Z-scores.

Bayesian model selection with stochastic block models (SBM) and definition of structural

modules

Stochastic block models are simple generative models that assume that there are underlying groups of no-

des in the network and that the probability that there is an edge running between nodes (i,j) only depends

on the groupmemberships of i and j. As generative models, SBMs are amenable to Bayesian inference, and

therefore to model selection techniques that allow us to find the best division of the nodes into groups.

Nodes in the same group have statistically similar connection patterns and are thus interpreted to play a

similar role in the network. Note that there is no a priori selection neither of the number of groups nor

of the interactions between the groups. SBMs have been shown in the literature to be appropriate models

for real network topology being successful at both error prediction (Guimerà and Sales-Pardo, 2009) and

community detection (Peixoto, 2014).

We use a minimum description length approach (MDL), which is equivalent to maximizing the posterior, to

find the best division of nodes into groups (https://graph-tool.skewed.de/; Peixoto, 2014). Specifically, we

use the MDL approach to identify the best SBM variant (non degree-corrected and degree-corrected with

and without hierarchical priors for the groups). Because the minimisation process is heuristic, we ran the

algorithm 1,000 times to identify the best model (with minimum description length, S) and therefore

best division of nodes into structural modules. We find that the best model is a degree-corrected SBM

with hierarchical priors. We therefore obtain a hierarchical tree of network divisions into structural modules.

Note that there is no a priori selection neither of the number of groups nor of the interactions between the

groups. The inference methodology finds the division into groups that best describes the observed

topology.

Input-core-output structure. We represent structural modules, m, at the second most coarse-grained

level in the hierarchy– level 1 (Figure S2D). We select this level because it summarises the networks and

it is the first level that is significantly correlated with empirical modules for the two smallest GRNs we select

(max AUFE and max PFE). In Figures 3, S3, andS4, connections between structural modules have a weight

equal to the number of connections between genes in the two modules. We only represent connections

with a weight > 260 to represent the main structure of the network of structural modules. All selected

consensus GRNs have an input-core-output structure. In networks with this kind of topology it is possible

to define three layers with different topological properties. The input layer has genes that are either

connected to genes in other layers or with genes within the same layer. The core layer has genes that

are connected either to genes in the output layer or to genes in the core layer. Genes in the output layer

only connect to genes in that same layer. This type of networks thus has a clear direction of ‘information’ or

regulatory flow from the input layer to the output layer.

To better characterize the input-core-output structure, the tables below show the aggregate connections

between the input, core and output layers.

max AUFE TO/FROM Input core output

input 18417 571 0

core 249216 8428 0

output 735 34526 1446

max PFE input 41287 761 0

core 226597 1438 0

output 164 8019 112

middle PFE/AUFE input 15026 474 0

core 247117 7681 16

output 209 9218 126
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Note that the majority of connections go in the direction input/ core/ output (89% on average) and that

most of the remaining connections are within layer connections indicating complex regulatory interactions

especially in the input layer; only 0.2% of the connections on average fall out of the main input-core-output

connectivity pattern.

Recovery quantification of empirical gene modules by structural gene modules

Topological approach using the Jaccard index. To measure the overlap between empirical modules

G ={G1,..G5} and structural SBM modules m, we compute the Jaccard index = mXG
mWG for each one of the

empirical modules against each one of the structural modules in the hierarchy level 1. We then generated

an expected distribution of random Jaccard indices by reshuffling cluster and group memberships 1,000

times. From this distribution we computed the robust Z-scores of the observed Jaccard indices.

The robust Z-score is a standardised score used when the distribution of values deviates from normality:

Robust Z� score =
x � median

1:4826 �MAD

where MAD is the median of the absolute deviation from the median:

MAD =median ðjxi � median xjÞ

For each empirical group, we selected the structural group with the maximum robust Z-score. If the

selected robust Z-score is >1.96 (p-value of 0.05 based on a right-tailed Fisher’s exact test), the correspond-

ing empirical cluster is considered to be structurally "recovered" in the network (Figure 2C).

Information-theoretic approach. The mutual information (Cover and Thomas, 2006) allows to compare

two partitions of items into groups. It measures the amount of ‘bits of information’ shared between the two

partitions. We used the python 3 scikit-learn implementation to compute the mutual information between

the SBM partition of nodes into groups at the different hierarchical levels and the empirical clusters. To

assess the difference between the measured mutual information and that expected at random, we

generate 10,000 randomised group assignments keeping the sizes of empirical and SBM clusters fixed.

From this distribution we obtain the Z-score of the observed mutual information (Figure S2D). We also

show the adjusted Z-score considering that for each network we perform 36 different tests (9 sets of empir-

ical clusters x 4 levels of SBM partitions).

ADDITIONAL RESOURCES

Gene interaction network interactive webpage

The webpage (https://s-andrews.github.io/wormgrn/qpcr/) plots a subnetwork of a chosen regulator

based on qRTPCR data (Tables S7 and S16). The edges can be filtered based on PCC and p-value of edges

(see Quantification and statistical analysis). Colour intensity of edges varies according to PCC values.
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