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ABSTRACT: Structural annotation of metabolites relies
mainly on tandem mass spectrometry (MS/MS) analysis.
However, approximately 90% of the known metabolites
reported in metabolomic databases do not have annotated
spectral data from standards. This situation has fostered the
development of computational tools that predict fragmenta-
tion patterns in silico and compare these to experimental MS/
MS spectra. However, because such methods require the
molecular structure of the detected compound to be available
for the algorithm, the identification of novel metabolites in
organisms relevant for biotechnological and medical applica-
tions remains a challenge. Here, we present iMet, a
computational tool that facilitates structural annotation of metabolites not described in databases. iMet uses MS/MS spectra
and the exact mass of an unknown metabolite to identify metabolites in a reference database that are structurally similar to the
unknown metabolite. The algorithm also suggests the chemical transformation that converts the known metabolites into the
unknown one. As a proxy for the structural annotation of novel metabolites, we tested 148 metabolites following a leave-one-out
cross-validation procedure or by using MS/MS spectra experimentally obtained in our laboratory. We show that for 89% of the
148 metabolites at least one of the top four matches identified by iMet enables the proper annotation of the unknown
metabolites. To further validate iMet, we tested 31 metabolites proposed in the 2012−16 CASMI challenges. iMet is freely
available at http://imet.seeslab.net.

The great success in the characterization of genes,
transcripts, and proteins is a direct consequence of two

factors. First, such molecules result from the concatenation of a
small set of known monomers, namely, nucleotides and amino
acids. Second, existing technologies and bioinformatic tools
allow for the amplification and subsequent accurate character-
ization of the sequence of monomers. Metabolomics, in
contrast, aims to identify and elucidate the structure of
metabolites, which are not sequences of monomers and do
not result from a residue-by-residue transfer of information.
Instead, the large diversity of metabolites in living organisms
results from a series of chemical transformations catalyzed
mainly by enzymes.
The putative identification and structural annotation of

metabolites in complex biological mixtures can be addressed by
mass spectrometry (MS) and/or tandem mass spectrometry
(MS/MS). The use of accurate mass of MS peaks for
metabolite annotation1−5 may entail high false positive rates

because it only provides molecular formulas, despite recent
implementations of network-based algorithms.6,7 Therefore, as
for the identification of proteins in proteomics, structural
annotation of metabolites mostly relies on MS/MS analysis.
However, predicting MS/MS spectra for metabolites is much
more challenging than for peptides. As a result, annotating
metabolites relies on their MS/MS spectra being present in
reference databases.8−11 In the simplest situation, the sample
metabolite and its MS/MS spectra are already included in a
reference library, so that the metabolite is annotated by
matching both the intensities and the mass-to-charge (m/z)
values of each fragment ion to values from pure standard
metabolites in the spectral library. Unfortunately, only ∼10% of
the known metabolites reported in databases such as HMDB12
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and METLIN13 have annotated spectral data.14 Furthermore,
chemical standards required to acquire MS/MS data are not
available for other metabolites, and so, the size of MS/MS mass
spectral libraries is not expected to grow significantly to solve
the problem. To assist the structural annotation of this
substantial percentage of known metabolites lacking MS/MS
spectra in databases, efforts have emerged recently to
heuristically predict MS/MS fragmentation patterns in silico
and compare these to experimental MS/MS spectra.15−23 Other
methods use machine learning techniques24,25 to predict the
spectra. These methods require the structure of the detected
compound to be available, from databases of known
metabolites (e.g., HMDB, PubChem26), computationally
predicted metabolite databases,27 or uploaded structures by
the user.
In the most challenging case, the sample metabolite is

completely unknown; that is, the structure of the metabolite is
not described. The description of novel metabolites in
prokaryotic and eukaryotic organisms is precisely one of the
next frontiers for metabolomics research.28−33 Existing
computational approaches to this problem only use neutral
losses and characteristic fragment ions as signatures for unique
chemical functional groups. These approaches have proved to
be effective for classifying very specific lipid structures such as
acyl-carnitines (e.g., fragments at m/z 85.0284 and 60.0808),
glycerolipids, glycerophospholipids (e.g., fragment m/z
184.0730), and sphingolipids.34−36 However, there is no tool
that allows good structural annotation of metabolites when the
correct molecular structure is not available.

To help in the annotation of metabolites that cannot be
retrieved from databases of molecular structures, we have
developed iMet. Its two only inputs are the electrospray
ionization (ESI) quadrupole time-of-flight (Q-TOF) MS/MS
spectra and the exact mass of an unknown metabolite. To
increase the accuracy, the isotopic pattern of the intact
unknown ion can be optionally supplied. Given these inputs,
the algorithm identifies metabolites in a reference database that
are likely to be structurally very similar to the unknown
metabolite. Finally, iMet produces a list of candidates, ranked
by their similarity to the unknown metabolite. The algorithm
also suggests the chemical transformation that is most likely to
separate each of the candidates from the unknown metabolite.

■ EXPERIMENTAL SECTION

Basic Principle of iMet. Metabolites can be represented as
nodes in a network; two metabolites A and B are connected,
that is, are neighbors, if one can obtain the chemical structure
of B by a chemical transformation of A and vice versa (see
Figure 1A). By a chemical transformation here, we mean the
addition or removal of a moiety or a conformational change. By
definition, neighbor metabolites are structurally more similar
than a typical pair of non-neighbor metabolites, so that this
structural similarity should be reflected in their MS/MS spectra
because the fragmentation pattern of a metabolite highly
depends on its chemical structure. Therefore, from the MS/MS
spectrum of a metabolite that is not annotated in the network, a
trained algorithm should be able to locate possible neighbors
on the basis of spectral similarity.

Figure 1. Neighbor metabolites. (A) An example of neighbor metabolites. Phosphorylation of glucose. Glucose (glu) is transformed into glucose-6-
phosphate (glu-6P), while adenosine triphosphate (ATP) is dephosphorylated into adenosine diphosphate (ADP). Following the definition of RPs
in KEGG, glu and glu-6P are one chemical transformation (phosphorylation) away from each other. The same applies to ATP and ADP. (B) ROC
curve of the structural similarity of neighbor and non-neighbor metabolites on the basis of the Dc. The AUC is 0.96, indicating that neighbor
metabolites have higher structural similarity than non-neighbor metabolites. The blue circle marks the maximum discrimination point. (C) False
negative rate, i.e., ratio of RPs with a Dc below (green) a certain Dc value, and false positive rate, i.e., ratio of non-RPs with a Dc above (red) a certain
value, as a function of that value. Black line corresponds to the sum of the other two curves. The black circle indicates the minimum of this curve,
which corresponds to the maximum discrimination point.
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To train one such classifier, we make use of the concept of
reactant pair (RP) as defined in the KEGG database.37 In
KEGG, substrates and products of a known biochemical
reaction are paired according to their chemical structure using
graph theory38 (as in Figure 1A). There are over 15 000 RPs
defined in KEGG, including more than 9000 catalogued as
being the “main” RP (the rest include generic reactions,
symbolic reactions, and pairings with small molecules like
oxygen, water, etc.). Because the metabolites forming a RP are
structurally similar by definition, the two metabolites in a RP
are neighbors in the network, so we use RPs as ground truth for
the neighborhood. (Note, however, that not all neighbor
metabolites are annotated as RPs in KEGG. This occurs, for
example, when there is no described biochemical reaction that
can transform one into the other, even though they are
structurally very similar. Thus, the network of RPs in KEGG
and our data set of neighbor metabolites is a subgraph of the
full network of neighbor metabolites that potentially exist in
nature.)
Construction of the Classifier. We used the R package

“randomForest” for the classifier.39 We trained the classifier
with a data set that contains 825 RPs (see Table S3 for a
complete listing of the RPs used). These are all the RPs for
which we have MS/MS spectra. We also included in the
training set an additional 49 175 randomly chosen pairs of
metabolites. Therefore, we trained the algorithm with 50 000
pairs of metabolites, a set deliberately enriched with non-RPs.
This enrichment reflects the reality of our database and of
nature in general, that is, that any two random metabolites will
not have, in general, a similar molecular structure. All of the
spectra used in the training stage were taken from our database
which includes spectra for 5060 metabolites (see “MS/MS
database” section below). We need the training compounds to
be in KEGG because we use KEGG RPs as our ground truth for
the compound neighborhood.
The classifier uses the following features: (i) the cosine

similarity between the MS/MS spectra of the two metabolites
at all available collision energies; (ii) the mass difference
between the two metabolites. The random forest40 classifier has
the advantage of automatically taking care of the nonmonotonic
relationship between mass difference and probability of the
neighborhood, as well as the complex nonlinear similarity
patterns between MS/MS spectra at different collision energies.
The classifier tries to predict whether the two metabolites are
neighbors or not. In order to compute the cosine similarity, we
discretize each spectrum in equal intervals of mass width δm. In
this way, for each spectrum, we can construct an intensity
vector v in which element υi corresponds to the relative
intensity of m/z values in the interval [mi, mi + δm]. (Note that
we use δm = 0.01 Da, and we disregard relative intensity values
below 1% of the highest m/z value.) Then, the cosine similarity
c between spectra v and u is simply the dot product of the two
vectors divided by the product of their norms.

υ
=

∑
c

u

v u
i i i

(1)

Our classification algorithm also takes into account exper-
imental mass errors. Specifically, we introduced a shift in the
exact mass of every metabolite of the training data set, changing
its mass to a value randomly drawn from a Gaussian
distribution centered around the exact mass of the metabolite
and a standard deviation of 0.0025 Da. In this way, the

algorithm correctly deals with the experimental error of the
unknown target metabolite.
On the basis of the accurate m/z measurement of a

protonated (M + H)+ or deprotonated (M − H)− precursor
ion of the unknown metabolite (mass error <0.005 Da), its
MS/MS spectra, and its experimental isotopic distribution
when available, the trained classifier yields a sorted list of
candidate neighbors of the unknown metabolite, chosen from
among the 5060 compounds included in our database.
Moreover, iMet uses the most common chemical trans-
formation between RPs to predict the unknown metabolite’s
chemical formula.
All in all, iMet outputs a sorted list of candidate neighbors of

the unknown metabolite on the basis of mass difference and
MS/MS spectral similarity. For every candidate, and given its
mass difference with the unknown metabolite, iMet gives the
chemical transformation (group of atoms) that converts the
candidate into the unknown metabolite. The reliability of the
prediction is given as a numerical score (s), whose value goes
from 0 for the least reliable to 1 for the most reliable candidate.

iMet Step by Step. The general procedure followed by the
algorithm is as follows (see the Supporting Information and
Figure S1 for a detailed description of each step): (1) Obtain
spectral similarities and mass differences between the unknown
metabolite and each of the metabolites in the database. (2)
Classify each of the metabolites in the database as candidate
neighbors or non-neighbors of the unknown metabolite. (3)
Determine the chemical transformation needed to transform
each candidate neighbor into the unknown metabolite. (4)
Prioritize those candidates that, aplying their assigned chemical
transformation to their own chemical formula, yield the same
final chemical formula for the unknown metabolite (formula
consensus). (5) If provided, compare the isotope pattern of the
unknown metabolite with the theoretical isotope pattern
computed for each chemical formula proposed by each
candidate. (6) Output the candidate neighbors ranked
according to their score.

MS/MS Database. Our database is composed of 29 242
MS/MS spectra from 5060 different compounds obtained from
the databases HMDB,12 MassBank,41 and METLIN13 obtained
with a Q-TOF instrument and at different collision energies
and ionization modes. Although HMDB contains ∼45 000
compound entries, only ∼8% of those compounds have ESI
MS/MS spectra. A similar percentage of the compounds in
METLIN has this type of spectra.

■ RESULTS

Neighbor Metabolites Share Structural Similarities. A
common way to compare chemical structures is by calculating
the similarity between the fingerprints of two molecules.
Fingerprints are representations of molecules that include in
one object all the relevant molecular structure descriptors. The
advantage of using molecular fingerprints is that they can be
objectively compared by means of a similarity coefficient.42

There exist different types of fingerprints and similarity
coefficients, which makes it impossible to establish a universal
criterion for structure comparison.43 It is then necessary to find
the combination of fingerprint type and similarity coefficient
that best suits each particular problem. In our case, our aim is to
discriminate RPs from non-RPs. After testing different
combinations (see the Supporting Information and Table S1
for a detailed explanation), we found that the circular
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fingerprint ECFP444 and the Dice coefficient45 (Dc) had the
largest discriminatory power.
To assess the structural similarity between neighbor

metabolites, we used a subset of the database consisting of
3836 metabolites, including 825 RPs (due to computational
constraints in terms of computation time and resources). We
compared all the possible pairs of structures in this subset and
computed the receiver operating characteristic (ROC) curve,46

to check if structural similarity could be used to discriminate
between RPs and non-RPs (Figure 1B). The area under the
ROC curve (AUC statistic) is an overall measure of
discriminatory power, which indicates how often RPs (and in
general, neighbor metabolites) have a higher structural
similarity than metabolites that are not RPs. The value of the
AUC found in this case was 0.96, indicating that, in the vast
majority of cases, two metabolites that are neighbors have a
more similar structure than those that are not. We also found
that 95% of the RPs have a Dc higher than 0.22. With the aim of
establishing the best threshold in a scale of 0 to 1 to separate
between RPs and non-RPs, we looked for the Dc value that
minimizes the classification errors. To do so, we calculated the
false positive rate (FPR) and the false negative rate (FNR) at
each value of the Dc. In this context, the FPR corresponds to
the proportion of non-RPs that have a higher Dc value than a
given threshold, while the FNR represents the ratio of RPs that
have a Dc value lower than that same threshold (Figure 1C).
Combining these two curves, we obtain the missclassification
ratio, that is, the ratio of pairs of metabolites that would be
incorrectly classified if we used a certain value of their Dc to
discriminate between RPs and non-RPs. We found that the
missclassification ratio is minimal for a Dc value of 0.32, with a
FPR of 0.09 and a FNR of 0.09, for a total missclassification
ratio of 0.18 (highlighted in Figure 1B,C). By using this value as
a threshold to separate between RPs and non-RPs, the
classification error is minimum. This is also the point that
maximizes the probability that a RP has a higher similarity than
this value, while at the same time maximizing the probability
that a non-RP has a lower value than this threshold (for a full
probabilistic interpretation, see the Supporting Information).
Neighbor Metabolites Have Similar MS/MS Spectra. In

order to numerically quantify the similarities between two MS/
MS spectra, we used the cosine similarity, as this method is
both time efficient and accurate (see the Supporting
Information and Table S2 for a discussion). To validate the
hypothesis that spectral similarity is indicative of the
neighborhood in the network, we quantified to which extent
metabolites that are neighbors have similar MS/MS spectra
(Figure 2). To this end, we considered those metabolites in
KEGG for which we had the experimental MS/MS spectra
from public databases (1157 metabolites including 568 RPs for
10 V spectra, 1147 metabolites including 556 RPs for the 20 V
spectra, and 1091 metabolites including 480 RPs for the 40 V
spectra) and compared their spectra using the cosine similarity
(Figure 2A,B).
We used the ROC curve to quantify the power of spectral

similarity to distinguish pairs of metabolites that are RPs in
KEGG (and, therefore, neighbors) from those that are not
(Figure 2C−E). In this case, the area under the ROC curve
indicates how often RP metabolites have a higher spectral
similarity than metabolites that are not RPs. For the three
collision energies 10, 20, and 40 V in negative ionization mode,
we found AUC10 V = 0.81, AUC20 V = 0.83, and AUC40 V = 0.80,
which indicates that the similarity between MS/MS spectra is

useful to identify neighbor metabolites. Comparing MS/MS
spectra in positive ionization mode gave similar AUC values
(AUC10 V = 0.81, AUC20 V = 0.84, and AUC40 V = 0.81). Note
that these metrics quantify the discriminatory power of the
spectral similarity when comparing only two MS/MS spectra
with the same collision energy and ionization mode.
Comparing points with the same value of spectral similarity
in the three ROC curves, we observed that MS/MS spectra
acquired at high collision energies have higher sensitivity but
lower specificity and conversely for low collision energies. For
example, the point at which the spectral similarity is 0.5 has a
sensitivity of 0.1708 in 10 V, that increases to 0.2518 in 20 V
and to 0.3938 in 40 V. The same point has a specificity of
0.9972 in 10 V, but it decreases to 0.9931 in 20 V and to 0.9797
in 40 V. We can find the same situation for the point with a
spectral similarity of 0.1, with sensitivities of 0.3292, 0.4802,
and 0.6104 and specificities of 0.9899, 0.9744, and 0.9214,
respectively, for 10, 20, and 40 V (Figure 2C−E). This implies
that trying to classify two metabolites as RPs or non-RPs by
comparing their spectra obtained at high collision energies
results in a highly conservative classification, discarding pairs
that are actually neighbor metabolites (low specificity or TNR)
but assuring that most of the metabolites classified as neighbor
metabolites are real neighbors (high sensitivity or TPR). In
contrast, spectral similarity becomes a poorer classification
method at low collision energies: while most of the neighbor
metabolites are correctly classified as such, some non-neighbor
metabolites are also labeled as neighbors. Finally, the analysis
reveals that information is usually nonredundant: some pairs of
metabolites have high spectral similarity at high collision
energies and low similarity at low energies, whereas for other
pairs the opposite is true.

Figure 2. Similarity of MS/MS spectra discriminates between
neighbor and non-neighbor metabolites. (A) MS/MS spectrum
similarity for two neighbor metabolites (spectral similarity 0.972)
and (B) for two non-neighbor metabolites (spectral similarity 0.011).
(C−E) Classification power of the cosine similarity. We show the
ROC curve for the cosine similarity when discriminating between RPs
and non-RPs in KEGG for different collision energies (10, 20, and 40
V) in negative ionization mode, with a total area under the curve of
(C) 0.81, (D) 0.83, and (E) 0.80, respectively. The three highlighted
symbols correspond to cosine similarities of 0.5 (blue dot), 0.1 (purple
diamond), and the first nonzero value (red triangle).
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These results indicate that, indeed, spectral similarity at a
fixed collision energy is predictive to some extent. As we show
next, however, the predictive power of spectral similarity can be
increased by considering spectra at different collision energies
simultaneously and combining them with mass difference and,
optionally, the isotopic pattern of the unknown metabolite (i.e.,
precursor ion).
Neighbor Metabolites Have Well-Defined Mass Differ-

ences and Chemical Transformations. To complement the
information obtained from the spectral similarity, we study the
differences in exact mass between neighbor metabolites (Figure
3). The mass difference between two metabolites corresponds
to the mass of the group of atoms added to (or removed from)
one of the metabolites to convert it into the other.

As before, we take the mass difference, Δm, between KEGG
RPs as ground truth. We considered 15 366 different
metabolites including 7862 RPs. Calculating the mass difference
for every pair of metabolites in our database and plotting the
proportion of RPs for each value of the mass difference yields a
curve that reflects the probability of two metabolites being
neighbors given their mass difference (although specific systems
may deviate from this general average pattern47).

As we show in Figure 3A, this curve displays well-defined
maxima at specific Δm values. Therefore, it is much more likely
that two metabolites are neighbors if their Δm corresponds to
one of the maxima of the distribution in Figure 3A.
To understand what these Δm represent, we extracted 717

distinct chemical transformations (see Table S4 for a summary
of the 200 most common). Since each chemical transformation
implies a well-defined mass difference, the distribution of mass
differences among RPs is localized around certain values that
correspond to the most common interconversions of atoms
(Figure 3B). For example, 10.6% of all RPs correspond to the
net addition of an oxygen atom (Δm = 15.995 Da), 12.8% to
the net addition of H2 (Δm = 2.016 Da), and 4.3% to the
addition of a phosphate group (Δm = 79.966 Da). In summary,
a relatively small number of transformations account for a large
number of the observed RPs.

Cross-Validation of iMet Using 148 Test Metabolites.
To validate iMet, we run two cross-validation experiments, for a
total of 148 different metabolites tested. The first cross-
validation experiment consisted of 48 different metabolites
whose spectra were taken experimentally in our lab. The second
experiment consisted of a leave-one-out cross validation of 100
metabolites, taking their spectra directly from our database. We
excluded the spectra of all tested metabolites from the training
set and manually removed their entries from our database,
effectively turning them into unknown compounds for the
purpose of validation. We manually evaluated the output of the
algorithm in terms of the distance in chemical transformations
from each of the candidates to the test metabolite. We
considered a candidate metabolite to be a neighbor of the test
metabolite if they were 2 or fewer chemical transformations
away. We also evaluated the performance of iMet by comparing
the similarity of the chemical structure of each candidate
proposed by iMet to the test metabolite. To do so, we used the
ECFP4 fingerprints and the Dc as described in previous
sections. We considered two metabolites (the unknown
metabolite and the candidate output by iMet) to be structurally
similar if the Dc of their molecular fingerprints was above 0.32
(see above). Although iMet is capable of finding an arbitrary
number of candidate neighbors, we restricted our analysis to
the top 4 candidates output by the algorithm (as ranked by
their score). Additionally, we evaluated the quality of the first
candidate output by iMet.
In the first validation experiment, we obtained in our

laboratory MS/MS spectra of 48 metabolites in different
conditions, for a total of 52 different tests as some metabolites
are tested in both positive and negative ionization modes
separately (all the test spectra can be found in Supporting File
1; see also Table S5 for cross-references in different databases
of the test metabolites used). To ensure structural and
biochemical diversity of tests, these include nucleotides and
nucleosides, both natural and unnatural amino acids, vitamins,
sphingolipids, polyamines and fatty acids, among others (see
Table S6 for a complete listing of pathways covered by these
tests). For these 48 metabolites, we ran iMet against our
reference database (see “MS/MS database” section above) and
evaluated the quality of each prediction. A total of 65% of the
top 4 candidates proposed by iMet were neighbors of the test
metabolite, meaning that they are 2 or less chemical
transformations away from it. Out of these top 4 four
candidates, 70% of the first candidates proposed by iMet
were neighbors of the test metabolite. In 85% of the cases, iMet
located at least one neighbor among the top four proposed

Figure 3. Ratio of neighborhood and of chemical transformation. (A)
Fraction of RPs that have associated a mass difference within a specific
interval. We constructed the figure using all compounds listed in
KEGG, with bins of 0.01 Da. (B) Percentage of all RPs in KEGG with
a certain mass difference. The most frequent mass differences
correspond to well-defined moieties. The seven most frequent
moieties (highlighted in the figure) account for 46% of all RPs.
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Figure 4. Cross-validation of iMet. (A) Results for three naturally occurring metabolites. The test metabolites are shown in the first column along
with their PubChem CID (123689, N(8)-acetylspermidine; 65131, 8-hydroxyguanosine; 389, ornithine) and the ionization mode as well as the
collision energies used to obtain the MS/MS spectra. The other columns contain the top four candidate neighbors ranked from highest to lowest
score, along with their PubChem CID, the iMet score, the proposed chemical transformation, and its evaluation. Each candidate neighbor metabolite
is colored according to the value of the Dc with the target metabolite, as shown in the colorbar. (B) Legend for the columns in (A). (C) Summary of
validation for 148 test metabolites (see Figures S4−S6). We display the number of top candidate neighbors that are neighbors as well as candidates
that are structurally similar to the test metabolite, as a function of the iMet score.
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candidates. Evaluating the results in terms of structural
similarity, we found that 78% of the top candidates identified
by iMet were, indeed, structurally similar to the target, with the
correct chemical transformations (Figure S4, see also Table S7
for complete results). For 91% of the cases, at least one of the
top four candidates suggested by iMet was structurally similar
to the target, and the proposed chemical transformation was
also correct.
For the second cross-validation experiment, we used 100

randomly selected metabolites (see Table S5 for cross-
references and Table S8 for the pathway coverage of these
tests) whose MS/MS spectra we took directly from our
reference MS/MS database. We followed a leave-one-out cross-
validation procedure, so that each metabolite was tested
individually by removing it from the database. In this validation,
78% of the top four candidates proposed by iMet were
neighbors of the test metabolite. Out of the top 4 candidates,
83% of the first candidates proposed by iMet were neighbors of
the test metabolite. In 92% of the cases, iMet was able to locate
at least one neighbor of the test metabolite among the top four
candidates. Taking into account the structural similarity
between candidates and test metabolites, we found that 67%
of candidate neighbors among the top 4 are structurally similar
to the test metabolite (Dc > 0.32), and 65% of the first
candidates were structurally similar to the unknown test
metabolite. In 88% of the cases, the algorithm correctly
predicted one of the top four candidates as being structurally
similar to the test metabolite (see Figure S5 and Table S9 for
the complete table of results).
Overall, combining both cross-validation experiments (the

experimental validation and the leave-one-out validation), iMet
was able to correctly identify a neighbor metabolite as the top
candidate in 79% of the cases (Figure 4). In 89% of the cases,
iMet proposed at least one neighbor among the top four
candidates. Using the structure similarity criterion, iMet
proposed a structurally similar metabolite as the top candidate
in 69% of the cases. In 89% of the cases, at least one of the top
four candidates was structurally similar to the test metabolite.
Using the Tanimoto coefficient48,49 to assess structural
similarity yielded very similar results (see Figure S6). In 88%
of the cases, the top formula proposed by iMet was the correct
formula of the test metabolite.
CASMI Challenge. To simulate another scenario of

metabolites not present in a database, we tested iMet using
metabolites proposed in the Critical Assessment of Small
Molecule Identification (CASMI) challenges from years 2012−
2016. We downloaded the spectra of 31 different metabolites
obtained using an ESI-QTOF mass spectrometer and that had
PubChem Compound ID. Since iMet is designed to allow
structural annotation of novel metabolites not present in
databases, we tested the 31 metabolites in CASMI against our
reference database of 5060 metabolites, which does not contain
any of these CASMI metabolites. These tests were conducted
without human intervention beyond downloading the spectra
and using them as inputs for iMet. For these 31 metabolites,
26% of the top candidates suggested by iMet were neighbors of
the test metabolite, and in 32% of the cases, iMet was able to
locate at least one neighbor of the test metabolite. In terms of
structural similarity, 42% of the top candidates were structurally
similar to the test metabolite, and in 48% of the results, iMet
was able to locate at least one structurally similar metabolite. In
48% of the cases, the top formula proposed by iMet was the
correct formula of the test metabolite.

It should be noted that 26 out of the 31 CASMI metabolites
were obtained by using other collision energies than those used
in the training set (10, 20, or 40 V). We tested them
nevertheless to evaluate the performance of iMet when
confronted with spectra obtained using inaccurate experimental
data (for example, we introduced spectra obtained at 25 V as if
they were obtained at 20 V or 35 V spectra as if they were 40
V). For these 26 metabolites, 27% of the top candidates
suggested by iMet were neighbors of the test metabolite (42%
of them were structurally similar), and in 35% of the results,
iMet was able to locate at least one neighbor among the top
four candidates (in 50% of the cases, at least one of the top four
candidates was structurally similar to the test metabolite).
These results (depicted in Table S10) suggest that iMet does
not substantially decrease its accuracy when using slightly
different collision energies as inputs.

■ DISCUSSION
The structural annotation of novel metabolites in relevant
organisms is one of the next frontiers in metabolomics research.
We have built iMet on the grounds that many of the
metabolites that remain to be discovered and characterized
are probably chemically related and therefore structurally
similar to the existing ones in databases such as HMDB or
genome-based metabolic reconstructions,50,51 typically by the
addition, removal, or modification of a single group. iMet is
intended to provide key information, such as the molecular
formula of the novel compound, neighbor (structurally similar)
compounds, and the moiety (if necessary) to transform the
known neighbors into the unknown. iMet does not propose
structures de novo, but rather, it provides chemical information
for organic chemists to propose candidate chemical structures
based on chemical knowledge.28

We have systematically demonstrated that neighbor metab-
olites have similar MS/MS spectra, and furthermore, the MS/
MS spectral similarity has enough discriminatory power to
distinguish between neighbor metabolites from non-neighbor
metabolites. Our cross-validation and the CASMI challenges
demonstrate that iMet is only limited by the experimental MS/
MS library against which the unknown metabolite is compared
and to a lesser extent the space of chemical transformations. In
particular, iMet will fail to annotate correctly the neighbor
metabolite when no structurally similar metabolites are present
in the reference database. With databases having MS/MS
spectra for only 8−10% of their compounds,14 this may seem to
be a serious limitation. However, the reasonably high
percentage of well-annotated compounds in our results and
the structural properties of metabolic networks suggests
otherwise, anticipating that as the number of MS/MS spectra
from known metabolites rises in public databases so will the
predicting power of iMet. Regarding the space of chemical
transformations, our network of RPs is restricted to those
biochemical reactions described in the KEGG database, which
does not account for all chemical transformations occurring at
any biological system. The KEGG is, however, to our
knowledge the only database that systematically shows paired
substrates and products according to their structure trans-
formations using graph theory. The significance of using this
information is that we can compute the probability of two
metabolites being neighbors on the basis of the mass difference
between them, without taking into consideration other
attributes such as their chemical structures,52 functional groups,
chemical reactivity, or metabolic pathways.53 Rather, iMet uses
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a large set of chemical transformations described in biological
systems to propose chemical formulas and structures by adding
(or removing) a group of atoms to a known chemical structure.
This concept of chemical transformation is similar to that used
previously by other computational approaches aiming to reduce
the ambiguity in metabolite annotation.1−3,53,54 However, these
previous approaches, that do not make use of MS/MS data,
require that the interrogated metabolite falls into a known
metabolic pathway, and its chemical formula and structure must
be known and described in a database.1−3,54

■ CONCLUSIONS

Despite the existence of different computational tools that
predict fragmentation patterns in silico, none of these
algorithms are designed to annotate metabolites for which
there are no chemical structures available. iMet has the
potential to fill this gap. Our algorithm has proven itself to
be a valuable tool as a stand-alone application. In terms of MS/
MS information, we have systematically demonstrated that MS/
MS spectral similarity has enough discriminatory power to
distinguish metabolites that are one chemical transformation
away from each other. The cross-validation and CASMI
challenge results demonstrate that iMet is mainly limited by
the experimental MS/MS library against which the unknown
metabolite is compared. The predicting power of the algorithm
will increase as the number of MS/MS spectra from known
metabolites in the iMet reference database increases. This
version of the algorithm is intended to provide the molecular
formula of the unknown compound, structurally similar
compounds, and the moiety to transform the known neighbors
into the unknown, for organic chemists to propose candidate
chemical structures based on chemical knowledge. Future work
will head toward generating candidate chemical structures of
the unknown metabolite.
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