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Statistics of lowest droplets in two-dimensional Gaussian Ising spin glasses
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An approach to determine the value of the zero-temperature thermal exponentu in spin glasses is presented.
It consists in describing the energy level spectrum in spin glasses only in terms of the properties of the lowest
energy droplets and the lowest droplet exponents~LDE’s! l l ,u l that describe the statistics of their sizes and
gaps. We show how these LDE’s yield the standard thermal exponent of droplet theoryu through the relation
u5u l1dl l . The present approach provides a new way to measure the thermal exponentu without any
assumption about the correct procedure to generate typical low-lying excitations as is commonly done in many
perturbation methods including domain wall calculations. To illustrate the usefulness of the method we present
a detailed investigation of the properties of the lowest energy droplets in two-dimensional Gaussian Ising spin
glasses. By independent measurements of both LDE’s and an aspect-ratio analysis, we findu(2d).
20.46(1),uDW(2d).20.287 whereuDW is the thermal exponent obtained in domain-wall theory. We also
discuss the origin of finite-volume corrections in the behavior of the LDEu l and relate them to the finite-
volume corrections in the statistics of extreme values. Finally, we analyze some geometrical properties of the
lowest energy droplets, finding results in agreement with those recently reported by Kawashima and Aoki@J.
Phys. Soc. Jpn.69, 169~2000!#. All in all, we show that typical large-scale droplets are not probed by most of
the present perturbation methods, since they probably do not have a compact structure as has been recently
suggested. We speculate that a multifractal scenario could be at the roots of the reported discrepancies on the
value of the thermal exponentu in the two-dimensional Gaussian Ising spin glass.
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I. INTRODUCTION

Despite three decades of work in the field of spin glass
major issues related to their low-temperature behavior
remain unresolved.1 Although important achievements hav
been obtained in the understanding of mean-field theory2 the
appropriate treatment beyond mean-field to include sh
range interactions is yet to be found. Due to the absence
successful analytical approach to deal with this problem,
present state of our knowledge is often misguided by a n
accurate, if not confusing, interpretation of the numeri
data. This situation has generated a hot debate abou
correct physical interpretation of the available numeri
data. Leaving aside the long-standing controversy whe
replica symmetry breaking is or not a good description of
spin-glass phase,3 there are still unresolved issues which a
not as striking but show our ignorance about some fun
mental questions.

One among these problems is the correct value of
thermal exponent in two-dimensional~2D! Gaussian Ising
spin glasses~GISG’s!. This question has received attentio
from time to time during the last two decades, but n
enough to settle it definitively and explain the origin of som
of the reported discrepancies. The study of the low-T prop-
erties of the 2D GISG’s starts with the work by McMillan
who proposed4 that thermal properties in spin glasses a
determined by the scaling behavior of the typical largest
citations ~commonly referred to as droplets! present in the
system. This idea has been further elaborated and exte
to deal with equilibrium and dynamical properties of sp
glasses in a scenario nowadays referred to as droplet mo5
0163-1829/2003/67~18!/184421~16!/$20.00 67 1844
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The low-T behavior in spin glasses is determined by a sp
trum of large scale gapless droplets with typical lengthL and
energy costE;Lu, u being the thermal exponent. As thes
droplets correspond to flipping some domains of spins~as-
sumed to be compact clusters!, the energy cost of these ex
citations arises from the set of unsatisfied bonds on th
surface. The striking low-T behavior in spin glasses arise
from multiple energy cancellations occurring at the surfa
of the droplet. These cancellations can be seen as the r
of a competition between energy and entropy effects: as
droplet becomes progressively larger there are more av
able conformations for the surface to minimize the ene
cost of the unsatisfied bonds. In the absence of cancellat
one would expectu5(d21)/2. However, as these cancell
tions are very important, the inequalityu,(d21)/2 holds
andu is by far less than the maximum value (d21)/2. The
value of the thermal exponentu characterizes the low-T
critical behavior as it is related to the correlation length e
ponentn wherej;T2n by the identityn521/u. McMillan
also used domain-wall renormalization group ideas to int
duce a practical way to determine the leading energy cos
these low-lying large-scale excitations.6 The method consists
in measuring the energy defect of a domain-wall spann
the whole system obtained by computing the change of
ground state energy when switching from periodic to anti
riodic boundary conditions in one direction. Several wor
have used McMillan’s method to determine the value ofu in
two and three dimensions.7,8 Hereafter, in order to keep th
discussion as clear as possible, we will denote byuDW the
estimate of the exponentu obtained by domain-wall calcu
lations. The initial value foruDW reported by McMillan is
©2003 The American Physical Society21-1
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uDW520.281(5) for pretty modest lattice sizesL5328.
Recent numerical results with much more powerful alg
rithms have reached sizesL.500 and confirmed the initia
result with much larger accuracy9–11 uDW520.287(4).
These studies would definitively close the problem if it we
not by the existence of other alternative estimates of the
ponentu, largely consistent among them, which yield a qu
different valueu.20.47(2). We will denote this estimate
by uTF as several of these methods use transfer matr12

However, a word of caution is necessary here as the Mo
Carlo method and other approaches that are not base
transfer matrix methods report values compatible with t
estimate. For instance, Kawashima and Aoki used ano
method to estimate the stiffness exponent.13 The idea is to
generate a droplet inside a box of sizeL3L that includes a
fixed central spin, with the following procedure. First, th
ground state is found with a standard algorithms~we will
denote it by the reference configuration!. Afterward, the
spins at the boundaries of the box are fixed and the cen
spin is forced to flip respect to the reference configurati
The droplet of minimum energy that includes the central
versed spin and does not touch the boundaries is compu
The spanning length of the droplets generated in this w
allows us to define the fractal dimension of both the surf
~or perimeter for the two-dimensional case! and the volume.
It is found that these minimum energy droplets have a fra
volume dimension smaller than 2 and the thermal expon
is u520.42(5) in agreement with results obtained from M
methods14 and heuristic optimization algorithms.15 A similar
study of minimum energy clusters in the three-dimensio
Edwards-Anderson model also reports evidence thatuDW is
an upper bound to the actual value of the thermal expone16

The accuracy of previous estimates is poorer than the
ues obtained through the domain-wall method as they d
in one way or another, with all possible excitations and
only with the calculation of ground state energies. More
cently, another method has been used to estimate the val
u. It consists in perturbing the original HamiltonianH0 with
a termeP, whereP stands for the perturbation ande for its
intensity. For example,P can be the overlap between th
actual configuration and the ground state of the origi
Hamiltonian H0. As e varies the new ground state of th
total HamiltonianH5H01eP remains unchanged until
certain valuee5ec is reached where a excited energy lev
of H0 becomes the new ground state ofH. The overlap
between the old and the new ground states as well as
value of the shifting energy provoked by the perturbat
links its energy costE with its size providing another way to
estimateu. We will denote byuP the estimate obtained in
this way. This method has been recently used in the
GISG by Hartmann and Young17 reporting the valueuP'
20.31. Although slightly more negative thanuDW , uDW and
uP appear to be statistically compatible. Yet more accur
estimates are needed to confirm whetheruP5uDW .

This last method and the domain-wall method have
common the same feature, i.e., they perturb the orig
Hamiltonian in one way or another to probe the characteri
energy of excitations that are supposed to be the typical o
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that determine the low-T thermodynamic properties. In fac
the estimateuDW can be considered as a particular exam
of uP , where the perturbation consists in reversing all t
bonds in one of the surfaces of the box. This raises the
portant question whether the different estimates ofuP , ob-
tained by considering different class of perturbations, are
ferent. The question is rather subtle as there are nume
indications that indeed this could be the case. For instan8

measurements ofuP where the perturbation is a uniform
magnetic field yield a valueuP520.48(1) compatible with
the other competing set of valuesuTF .

How is it that the value of the exponentuP could depend
on the type of perturbation? This is a very difficult questi
to answer, as our present knowledge is inadequate. We
offer only speculative answers. Strong discrepancies am
different types of perturbations could arise if a multifrac
scenario governs the statistics of excitations in spin glas
By definition, in all perturbation methods the probed lar
scale droplets are those which minimize the energy cost
constrained to maximize the value of the perturbation for
selected droplets. Therefore, among all possible large-s
low-lying droplets the perturbation method selective
probes those that maximally overlap with the perturbation
dependence of the valueuP on a given class of perturbation
could arise if the perturbation selectively probes one or
other topological property of the droplet. This rather aw
ward multifractal scenario is not new in the field of diso
dered systems. Multifractality is known to be present in t
localization problem in the strongly disordered regime.
multifractal scenario would imply the existence of differe
critical exponents atT50, depending on the type of pertu
bation applied. On the other hand, the fact that the va
estimated foruP when the perturbation is a uniform magnet
field appears to be consistent with the valueuTF , suggests
that maybe some types of perturbation can probe the rele
excitations while others may not. These good observab
which probe the typical excitations, could be called neut
observables in the same spirit as this term has been coine
describe observable dependences of the fluctuat
dissipation ratio~i.e., the effective temperature! in glassy
systems. Concomitantly, this ‘‘perturbation class dep
dence’’ issue is presently also debated in the different~but
related to a certain degree! field of glassy dynamics.

If the hypothetical multi-fractal scenario holds, then w
must face the question about what is the correct procedur
determine the thermal exponentu. As u determines the free
energy cost of droplets, the natural answer is thatu is given
by the lowest value among all possible estimates

u5minP$uP%. ~1!

With the present available data this relation suggests tha
estimateuTF is the correct value of the thermal exponent a
that uDW as well as many other estimatesuP are only upper
bounds to the true value.

The question we want to address in this paper is the
lowing. Is it possible to devise a method that is alternative
current perturbation methods, in which excitations are
selectively probed by the perturbation, but selected only
1-2
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STATISTICS OF LOWEST DROPLETS IN TWO- . . . PHYSICAL REVIEW B 67, 184421 ~2003!
cording to the correct balance between energy and entro
The main purpose of this paper is to show that the analysi
the statistics of the first or lowest excitations gives a posit
answer to this question. As we will see, the method we p
pose in this paper yields a consistent estimate ofu compat-
ible with the valueuTF , therefore supports the result th
uDW and many otheruP are only upper bounds to the actu
value ofu. A preliminary account of these results has alrea
appeared in Ref. 18.

The paper is divided as follows. Section II describes
basis of the lowest droplet approach and introduces the l
est droplet exponents. Section III shows the results obta
in the 2D GISG. Section IV analyzes a method to extract
value of the thermal exponentu. Section V presents a mor
powerful method to extract the value of the lowest drop
exponents based on an aspect-ratio analysis. Section VI
cusses the origin of the finite-volume corrections to the va
of the lowest droplet exponentu l as a problem of correction
in the statistics of extreme values. Section VII analyzes so
topological properties of the lowest droplets. Finally, S
VIII presents the conclusions. There are also two techn
appendixes. Appendix A presents the heuristic argument
u l52d for Gaussian spin glasses, and Appendix B expla
the transfer matrix method we used to obtain the low
droplets.

II. BASIS OF THE LOWEST DROPLET APPROACH

The purpose of this work is to show an alternative a
proach to determine the low-T behavior of spin glasses b
studying the size and energy spectrum of the lowest exc
tions by introducing two exponents (l l and u l) needed to
fully characterize the zero-temperature fixed point. A
through the paper we will denote these exponents as low
energy droplet exponents or lowest droplet exponents
short, and that we will abbreviate as LDE’s. The exponenl l
is the most important one and describes the probability
finding a large-scale lowest excitation spanning the wh
system, while the exponentu l describes the system-size d
pendence of the average energy cost of these lowest ex
tions.

The underlying theoretical background of the approach
the following. To investigate the leading low-temperature b
havior in spin glasses let us consider expectation values
moments of the order parameter by keeping only the gro
state and the first or lowest excitation. This approach w
introduced in Ref. 19 and can be shown to capture the l
temperature behavior at the leading order. The method
investigates the low-T properties based on a restricted ana
sis of the spectrum to the absolute lowest excitations has
been used for the study of the localized phase in the di
dered Anderson model.20 The present paper can be seen
the applicability of these ideas to the spin-glass case. At
end of the paper~see Sec. VIII! we will give reasons sup
porting the validity of our approach.

To generate the spectrum of lowest excitations we c
sider the following procedure. Let us consider a set ofNs
samples and for each of them we determine both the confi
rations of the ground state and the lowest excitation. Fo
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spin model the lowest excitation hasv spins overturned with
respect to the ground state~so the overlap between th
ground and that excited state isq5122v/V, V being the
volume of the system! and with energy cost or gapE. It can
be easily proved that the lowest excitation must be a c
nected cluster which we will generically call the lowest dro
let. If vs andE(s) denote the volume and excitation ener
of the lowest droplet for samples, in the limit whereNs is
sent to infinity, we can define the following joint probabilit
distribution:

P~v,E!5
1

Ns
(
s51

Ns

d~v2vs!d@E2E~s!#. ~2!

Using the Bayes theorem, this joint probability distributio
can be written asP(v,E)5gvP̂v(E), where

(
v51

V/2

gv51, E
0

`

dEP̂v~E!51 ;v. ~3!

gv is the probability to find a sample such that its lowe
droplet has volumev andP̂v(E) is the conditioned probabil-
ity for that droplet to have a gap equal toE. In what follows,
we separately discuss the scaling behavior of both distr
tions gv ,P̂v(E).

Before continuing, and for sake of clarity, let us make
important digression about nomenclature. There are twovol-
umesinvolved in the problem: the volumev of the lowest
excitation and the volumeV of the lattice. If not stated oth-
erwise we will refer to the volumev as the size of the exci
tation while volume will generally refer to the lattice volum
V. Thus, when we speak about finite-size excitations we u
ally refer to excitations withv finite, and finite-volume cor-
rections~which we will sometimes abbreviate as FVC! will
refer to the corrections affecting the distribution~2! due to
the finite volumeV of the lattice.

A. The lowest droplet exponentl l

The simplest scenario for the size distribution of the lo
est droplets is that all sizes occur with uniform probabili
The normalization condition~3! imposesgv;1/V. This situ-
ation is encountered in the 1D GISG5,19 with both free and
periodic boundary conditions. However, in the most gene
situation, this does not hold and low energy droplets
found with a probability that depends on their sizev. The
simplest and most general way to incorporate such a de
dence is to assume an ansatz solution forgv that factorizes
into a power lawA/Vl l11 with l l.0 and a coefficientA
[G(q) which depends only on the overlapq between the
ground state and the lowest droplet

gv5
G~q!

Vl l11
. ~4!

The behavior of G(q) can be guessed in both limit
q→1 ~the caseq→21 is equivalent in models with time
reversal symmetry which are those we are considering h!
andq→0
1-3
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G~q→0!→const, ~5!

G~q→1!→ 1

~12q!l l11
. ~6!

The first relation describes the scaling behavior for the nu
ber of droplets whose size scales with the total volume of
system. As these can only depend on the volumeV, G(0)
must converge to a constant. The second relation is co
quence of the fact that the number of droplets with finite s
v cannot depend onV in the largeV limit as these are no
affected by the boundaries. On the other hand, the distr
tion of finite size dropletsgv is self-similar as can be seen b
inserting Eq. ~6! in Eq. ~4! and using the relationq51
22v/V. This yieldsgv;1/vl l11, the same relation as fo
the large scale limit~5!, wheregV;1/Vl l11. A simple ex-
pression that interpolates both limits is given by

G~q!5S A1
B

~12q!l l11D . ~7!

Note however that, despite its simplicity, expression~7! is
only an interpolation and the most we can say aboutG(q)
concerns its asymptotic behaviors~5!,~6!.

The ansatz~4!, applied only to large-scale excitation
was proposed in Ref. 19. Note that althoughgv is defined for
discrete volumes, in the limitV@1, the values ofq for con-
secutive droplet sizesv→v11 become equally spaced b
Dq52/V. Therefore, in the limit,V@1, the functiong(q)
5(V/2)gv becomes a continuous function if expressed
terms of the variableq instead of the integer variablev,

g~q!5
1

2Vl l
G~q!. ~8!

A word of caution is in order. Although Eq.~4! diverges for
q51, leading apparently to a violation of the normalizati
condition ~3! for gv , it must be emphasized that no excit
tion hasq51 so there is a maximum cutoff valueq* 51
22/V corresponding to one-spin excitations. For instance
we insert Eq.~8! into the normalization condition forg(q)
we get in the largeV limit,

E
0

q* 5122/V
g~q!dq51→ A2B/l l

2Vl l
1

B

2l l11l l

51, ~9!

implying l l>0 as expected since otherwise the normali
tion would not be possible in the large-V limit. The divergent
term (q→1) in Eq. ~8! shows that forl l.0 one-spin exci-
tations are the most numerous among the whole spectru
sizes. In fact, from Eq.~4!, g(1).O(1)@g(V/2).1/Vl11,
so the majority of excitations have a finite size. However,
average excitation size

v̄5 (
v51

V

vgv→V→`V12l l ~10!
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diverges in theV→` limit and differs from the typical ex-
citation volumev typ;O(1). Relation~10! provides a way to
measure the exponentl l alternative to the use of the scalin
behavior~4!.

B. The lowest droplet exponentu l

The analysis of the gap distributionP̂v(E) goes along the
same lines as we did for the distributiongv , but with one
important difference. As the gapE describes the lowes
among all possible excitation energies, it has to scale in
same way for all droplet sizesindependentlyon their size
~and, in particular, whether these are finite-size or large s
droplets!. This statement refers to a scenario which herea
we will call the random energy-size droplet~RESD! scenario
to specifically indicate that the distribution of the lowest e
ergies of droplets is independent of their size. Mathem
cally it can be expressed as

P̂v~E!5 P̂~E!, ;v. ~11!

In addition, we follow the standard droplet model and a
sume that the spectrum is gapless and defined by an e
nentu l which describes the characteristic energy of the lo
est droplets whatever their size or overlapq with the ground
state. If the scaling functionP̂v(E) is independent ofv it
follows immediately that the non-conditioned or siz
averaged gap probability distribution

P~E!5 (
v>1

gvP̂v~E!5 (
v>1

gvP̂~E!5 P̂~E!, ~12!

where we used Eq.~11! and the normalization condition~3!
for gv . From now on, if not stated otherwise, we will alway
refer to the size-averaged probability distributionP(E) with
the clear understanding that it coincides with any of the c
ditioned distributionsP̂v(E). As the spectrum of lowest ex
citations is gapless, the normalized distributionP(E) has the
following scaling behavior:

P~E!5
1

Lu l
PS E

Lu l
D . ~13!

We stress that the exponentu l is completely different from
the standard thermal exponent~see next section! as they de-
scribe totally different excitations. The thermal exponenu
describes the energy-length relation for droplets typically
cited at finite temperatures while the lowest energy expon
u l describes the droplets that are separated by the sma
gap, respectively, to the ground state, so that, in gene
u l<u.

We will argue below in Sec. II C thatu l52d for a ge-
neric class of spin-glass systems with coupling distributio
with finite weight at zero gap. In addition, this relation w
provide an alternative interpretation of the lower critical d
mension in terms of the exponentl l introduced in Sec. II A
describing the properties of the spectrum of sizes of the lo
est droplets.
1-4
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C. The standard thermal exponentu

Now we want to show how the exponentsl l andu l com-
bine to give the usual scaling exponentu describing the en-
ergy cost of typical thermal excitations in droplet theory
There are several ways to show this result. For simplic
here we exemplify this relation by analyzing the low-T be-
havior of the second moment of the spin-glass order par
eter at the order linear inT by keeping only the first excita
tion. If q$s,t%5(1/V)( is it i denotes the overlap between tw
replicas ~i.e., configurations of different systems with th
same realization of quenched disorder!, then the expectation
value ^q2& can be written as19

^q2&512
2

V2 (
v
E

0

`

dEP~v,E!v~V2v !sech2S E

2TD ,

~14!

whereP(v,E) is given by Eq.~2!. A low-temperature expan
sion of Eq.~14! ~Refs. 19,18! up to linear order inT yields

^q2&512
4T

V2 (
v51

V

gvP̂v~0!v~V2v ! ~15!

which shows that the leading behavior is determined by b
gv and the density of states at zero gapP̂v(0). In thestan-
dard droplet model, it is generally assumed that typical l
energy droplets have an average sizev̄5(vvgv;V of the
order of the system size~such as those generated by D
perturbation! and finite weight at zero gapP̂V(0);1/Lu

whereu is the thermal exponent. In principle, a single exp
nent u describes the scaling behavior of typical large-sc
droplets with volume v}V and determines the zero
temperature critical behavior. As these large-scale drop
are typical they occur with finite~therefore independent o
V) probabilitygV;O(1) while small scale droplets are sim
ply irrelevantgv;O(1);0. This yields

^q2&512c
T

Lu
, ~16!

where c is a nonuniversal stiffness constant related to
particular model. One of the most relevant results from
ansatz~4! is that both small and large scale excitations co
tribute to low-temperature properties. In general, let us c
sider any expression@such as Eq.~15!# involving a sum over
all possible volume excitations. Restricting the sum to
large-scale droplets (v/V finite! the net contribution to such
sum is proportional toVgVP̂V(0)}L2u l2dl lP(0) @whereP
is the scaling function appearing in Eq.~13!#. Coming back
to Eq. ~15! and using Eqs.~4! and ~13!, we note that both
small and large-scale excitations yield a contribution to E
~15! of the same order and given by

^q2&512cl

T

Lu l1dl l
, ~17!
18442
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wherecl is another constant@different from the constantc
appearing in Eq.~16!#. Identifying both relations~16! and
~17! we obtain the general relation

u5u l1dl l . ~18!

This relation shows how the value ofu can be computed
from l l andu l . Through the study of a specific example, w
will see later that the exponentsu l andl l have strong finite-
volume corrections arising from the corrections present
the statistics of the extreme values. However, we will pres
alternative routes to overcome this dependence and pro
an accurate estimate ofu.

Now we come back to the aforementioned argument at
end of Sec. II B claiming that in the large-volume limitu l
must converge to the value2d in the case of coupling dis
tributions with finite gap at zero coupling. The details of t
argument are shown in Appendix A. The argument has t
parts. First, it is proved that one-spin excitations provide
upper bound for the LDEu l . Then it is argued that this uppe
bound holds also for any finite-size excitations~such as two-
spin clusters, three-spin clusters, and so on!. We will see
below how this result is supported by the numerical analy
of the data. Let us also note that this result, in a RE
scenario~see Sec. II B! can be linked to the linear depen
dence of the specific heat at low temperatures, a re
widely accepted, but that has been revisited recently in R
21 to show that it has strong FVC due to the systematic F
present in the value ofu l . Insertingu l52d, Eq. ~18! be-
comes

u5d~l l21!. ~19!

This relation provides a way to distinguish the lower critic
dimensiondLCD in terms of the average size distribution
the lowest droplets. According to Eq.~10! the relation
l l(dLCD)51 distinguishes a regime where the average s
of the lowest droplet grows with the volume of the system
a regime where the average size of the lowest drople
finite,

d,dLCD : lim
V→`

v̄~V!5`, l l,1,u,0, ~20!

d.dLCD : lim
V→`

v̄~V!5O~1!, l l.1,u.0. ~21!

The marginal casel l51,u50 is specially interesting as th
average sizev̄ could be finite or diverge with the size bu
slower than a power law. This scenario corresponds to
mean-field behavior as replica symmetry is broken in b
the standard RSB~Ref. 3! or in the trivial-nontrivial22 ~TNT!
scenarios. Therefore, the study of the size spectrum of
lowest excitations in spin glasses can be very useful to
out the correct value of the thermal exponent in models w
out a finite-T transition ~such as the 2D GISG! as well as
establishing the correct low-T scenario in models with a
finite-T transition. In the next section we apply all the
ideas to evaluate the thermal exponent for the 2D GISG
1-5
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FIG. 1. g(q) versus 12q for the PP~left
panel! and FF case~right panel! for different lat-
tice sizesL55211 ~PP! andL56 –16~FF! from
top to bottom. In both insets we plot the scalin
function g(q)Vl versus 12q with l50.7.
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III. STATISTICS OF THE LOWEST ENERGY DROPLETS
IN THE 2D GISG

Several numerical works have recently searched for lo
lying excitations in spin glasses using heuristic algorithm23

But, to our knowledge, no study has ever presented e
results about the statistics of lowest excitations. We h
exactly computed ground states and lowest excitations
two-dimensional Gaussian spin glasses defined by

H52(
i , j

Ji j s is j , ~22!

where thes i are the spins (61) and theJi j are quenched
random variables extracted from a Gaussian distribution
zero mean and unit variance. These have been compute
using a transfer matrix method working in the spin bas
Representing each spins state by a weight and a gradu
in the energy we can build explicitly the ground state
keeping the largest energy and, by subsequent iteration
first excitation and so on~see Appendix B for the details o
how we compute these quantities!. The continuous values fo
the couplings assures that there is no accidental degene
in the system~apart from the trivial time-reversal symmetr
s→2s). Calculations have been done in systems with f
boundary conditions in both directions~FF!, periodic bound-
ary conditions in both directions~PP!, and free boundary
conditions in one direction but periodic in the other~FP!. In
all cases we find the same qualitative and quantitative res
indicating that we are seeing the correct critical behavior

We have found ground states and lowest droplets for s
tems ranging fromL54 up to L511 for PP and up toL
516 for FP and FF. The number of samples is very lar
typically 106 for all sizes. The large number of samples a
sures us that many samples have large-scale droplets as
excitations. This provides us with good statistics to prope
analyze the sector of large-scale excitations. The large n
ber of samples requires a big amount of computational t
so that calculations were done in a PC cluster during sev
months. For each sample we have evaluated the volum
the excitationv ~and hence the overlapq5122v/V be-
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tween the ground state and the first excitation! and the gapE.
From these quantities we can construct thegv and the
P̂v(E).

In Fig. 1 we showg(q)5(V/2)gv as function ofq for
different sizes in the PP and FF cases. We can clearly see
there are excitations of all possible sizes but, as discusse
the paragraph following Eq.~9!, the typical ones which
dominate by far are single spin excitations. To have a rou
idea of the number of rare samples giving large scale e
tations let us say that nearly half of the total number
samples have one-spin lowest excitations, whereas less
10% of the samples have lowest excitations with overlapq in
the range 020.5. This disparity increases systematica
with size. For the lattice sizes explored the typical number
large-scale droplets is in the range 1042105 which is, in-
deed, quite good to have a good sampling of the sector
responding to large scale excitations. A detailed analysis
the shape ofgv reveals that it has a flat tail for large-sca
excitations and a power-law divergence for finite-size ex
tations. Thegv can be excellently fitted by the interpolatin
formula @Eqs.~7!,~8!#,

g~q!5
2

Vl l
S A1

B

~12q!l l11D . ~23!

As shown in the insets of Fig. 1 a good collapse of the
scaling function is obtained with the effective exponentl l

eff

.0.7 for both PP and FF cases. We also plot the line res
ing from the fit of Eq.~23! with numerical data with the
following values for A and B: PPBC: A51.55(3) andB
50.777(3); FFBC: A52.02(3) andB50.85(1). Note that
the fit is excellent and is hardly distinguishable from t
points. The value ofl l is compatible with the one obtaine
by fitting the average size with the expression~10! with the
addition of a constant term to account for the small-V behav-
ior v̄5C11C2V12l. The same exponentl l can be esti-
mated by measuring the ratio g(V/2)/g(1);D1
1D2V212l. In both cases we get an effective expone
l l

eff50.70(5) as best fitting value.
However, these different estimates ofl l are strongly af-

fected by finite-volume corrections~FVC’s!. To evidence
1-6
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STATISTICS OF LOWEST DROPLETS IN TWO- . . . PHYSICAL REVIEW B 67, 184421 ~2003!
them we have estimated an effectiveL dependentl l
eff(L)

exponent by relating the average excitation size at cons
tive sizes and using relation~10!

l l
eff~L !512

1

d

lnS v̄~L11!

v̄~L !
D

lnS L11

L D . ~24!

In Fig. 2 we showl l
eff(L) in the rangeL54211 for the PP

case. As we can appreciate there is a systematic increa
the effective exponent as we go to large volume sizes w
out any tendency to saturate. This proves that FVC in
measurements are still big and the estimatel l

eff used to col-
lapse the data in Fig. 1 is still far from the asymptotic ex
value.

After having discussed thegv we jump now to discuss the
scaling behavior of the energy gap distributionP̂v(E) and its
averageP(E). In Fig. 3 we showP(E) @main figure and
inset ~a!# and P̂v(E) @inset ~b!# for the PP case. Similar re
sults are obtained for the FF and FP cases. Quite remark
as was already anticipated in Eq.~11!, the RESD scenario
holds as the distributionP̂v(E) does not depend on the sizev
of the excitation@see inset~b! in Fig. 3#, hence both large
and finite-size excitations are described by the same gap
tribution.

In the main figure we can see how the width of distrib
tion P(E) progressively shrinks to 0 asL increases. More-
over, theP(E) has an exponential shape. This is shown
the inset~a! of Fig. 3 where we plotP(E) in log-normal
scale. Nonetheless, a detailed examination of the tails
P(E) reveals some deviations from linearity. In Sec. VI w
discuss the origin of these deviations. We anticipate, thou
that they are consequence of the strong FVC in the rang
sizes investigated. In that inset we also verify the scal
ansatz~13! by showing the best data collapse forP(E) ob-
tained with an effective exponentu l

eff.21.7(1). This is
very far from the expected valueu l522 discussed in the

FIG. 2. Effective lowest droplet exponentl l
eff versusL for the

PP case, computed using logarithmic derivatives.
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preceding Sec. II C and in the Appendix A. A calculation
the moments ofP(E) ~13! for different values ofL shows
that there are also strong sub-dominant corrections to
leading scaling~13! that result in corrections as large as t
ones affecting the exponentl l .

Again, to manifest the magnitude of FVC inu l we have
evaluatedĒ(L), the first moment ofP̂(E), obtained by av-
eraging the lowest gap over all possible droplet sizes
different lattice sizes in the rangeL54211. We have esti-
mated an effectiveL-dependent exponent by means of t
following expression:

u l
eff~L !5

lnS Ē~L11!

Ē~L !
D

lnS L11

L D . ~25!

The results are shown in Fig. 4 for the PP case. Again, as
l l

eff ~see Fig. 2!, we observe that the estimated value foru l
eff

systematically changes with size showing that, for the si
we have explored, we are still far from the asympto
regime.

We can summarize the results of this section saying
both lowest droplet exponents~LDE’s! l l and u l display
strong systematic finite-volume corrections~FVC!. In prin-
ciple, without further elaboration, it is difficult to give a
accurate estimate for the thermal exponentu using Eq.~18!.
An alternative estimate for the exponentu could be defined
from the analysis of the fraction of large-scale excitatio
with q<1/2, f (q<1/2),24 which is given by

f ~q<1/2!;Vg~0!;1/Vl l21;Ld(l l21);1/Lu, ~26!

FIG. 3. Gap distributionP(E) versusE for different lattice sizes
in the PP case. In inset~a! scaling obtained from the ansatz~13!

with u l
eff521.7(1). In inset ~b! we show theP̂v(E) for different

excitation sizes (q50.5,q50) for a lattice sizeL510. Note that
the distribution is independent of the size of the excitation.
1-7
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M. PICCO, F. RITORT, AND M. SALES PHYSICAL REVIEW B67, 184421 ~2003!
where we have usedu l52d ~19!. Although Eq.~26! yields
estimates foru, again these are affected by strong finit
volume corrections. In the range of sizes studied in this
per, and using Eq.~26! we getu.20.6 quite far from the
asymptotic value reported later in Secs. IV and V. How c
we go further and estimateu in a safer way? In the next two
sections we shall answer this question.

IV. A GOOD ESTIMATE OF THE LOWEST DROPLET
EXPONENTS

An interesting aspect of the effectiveL-dependent expo
nents shown in Figs. 2 and 4 is that, while their FVC a
large, their corrections are of opposite sign. Whilel l

eff(L)
increases withL, u l

eff(L) decreases. As they have to be add
to get u according to the relation~18! their finite-volume
corrections cancel out to a certain degree. If we combine
two estimates for the best data collapse given in the prev
section @l l

eff50.70(5), u l
eff.21.7(1)] we obtain u.

20.3(2), which is very close to the DW value in averag
But since the error onu is so large, this estimate is not ver
useful. A better route would be to use the two LDE’s es
mated from Eqs.~24!,~25! and adding them according to Eq
~18!

FIG. 4. Effective droplet exponentu l
eff versusL for the PPBC

case, computed using logarithmic derivatives~see text!.
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ueff~L !5u l
eff~L !1dl l

eff~L !. ~27!

In Fig. 5 ~left panel! we show the value ofu obtained in this
way. Note that the value of the thermal exponentu hasneg-
ligible FVC but relatively large statistical fluctuations withL.

A better, albeit related, way to estimateu is the following.
Instead of independently finding outl l andu l we look for an
estimator which depends on the appropriate combination
the two exponentsu5u l1dl l . The simplest quantity which
satisfies this requirement is given by the combination

A~L !5Ld
Ē~L !

v̄~L !
. ~28!

SinceĒ(L).Lu l andv̄(L).Ld(12l l ), using Eq.~18! we ob-
tain A(L);Lu. To estimate the value ofu we follow two
different routes:~1! We use Eq.~25! by replacingu l

eff(L)

→ueff(L) and Ē(L)→A(L). By definition, this procedure
gives exactly the estimate~27! shown in the left panel in Fig.
5. ~2! A more stable estimate can be obtained from a fit
A(L) versusL, with data in the range@L, . . . ,Lmax511# ~for
the PPBC case!. This is shown in the left panel of Fig. 5
together with the previous estimate~27! and also in the right
panel of Fig. 5 but there compared with the effective exp
nentuDW obtained from domain-wall calculations. Our be
value foru is

u520.46~1!. ~29!

This value is very close to the finite-temperature~Monte
Carlo or transfer matrix! estimatesuTF520.48(1) ~Ref. 15!
but certainly smaller than the domain-wall valueuDW5
20.285.7,8 Our estimate foru is compatible with the other
possible valueuTF obtained by other methods as discussed
Sec. I but is certainly inconsistent with the value obtain
with other methods with results closer to the DW estimat

All these estimates strongly support the inequalityu
5uTF,uDW . However, one cannot exclude a situatio
where the present tendency of the data gets modified anu
→uDW in the large-L limit.25 We have already explained i
Sec. II C thatu l must converge to22 in the large volume
limit implying the relation ~19!. Introducing our estimate
~29! in Eq. ~19! we get

l l50.770~5!. ~30!
e

s

FIG. 5. Exponentu for the
PPBC case. Left plot:u exponent
versusL obtained from two meth-
ods. Method 1: using Eq.~27!.
Method 2: using the more stabl
estimate fitting~28! over a given
range ofL values~see text!. Right
plot: Domain-wall exponent~top!
and u exponent ~bottom! esti-
mated by the second method a
explained in the text and plotted
as a function ofL.
1-8
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STATISTICS OF LOWEST DROPLETS IN TWO- . . . PHYSICAL REVIEW B 67, 184421 ~2003!
A convincing proof of the correctness of the values~29!,~30!
requires proving that the estimate~24! converges to the value
~30! whenL→`. In the next section we present an aspe
ratio analysis to evidence that the estimates~29!,~30! are
correct in the largeL limit.

V. ASPECT-RATIO ANALYSIS OF THE LOWEST
DROPLET EXPONENTS

In this section, we present some additional data obtai
via an aspect-ratio analysis~ARA!. This analysis has bee
proved to be very useful to extract the value of the doma
wall exponentuDW by generating domain walls in rectang
lar latticesM3L with different aspect ratiosM /L.10,11 It has
been found that, in the limit of large aspect ratio, the value
uDW for Gaussian spin glasses is largely independent of
boundary conditions. We have seen in Sec. III that our m
surements on squared lattices of sizeL3L mix small exci-
tations with large ones so one does not have a clear-cut s
ration in the statistical distribution between the two differe
regimes v;O(1) and v/V;O(1). Our main motivation
here is to show that, by investigating large aspect ratios,
can separate these two different scaling regimes. We m
our measurements on systems of sizeL3M , with M5LR
@L whereR ranges from 1 up to 10. We have investigat
different types of boundary conditions: periodic bounda
conditions in both directions~PPBC! and periodic boundary
conditions in theL direction with free boundary conditions i
the M direction ~FPBC!.

In Fig. 6, we display the data forg(q) versus 12q ~8! for
the FPBC case forL58 and R51, 5, and 10. One can
clearly see that the behavior of the distributiong(q) drasti-
cally changes as one increasesR. Indeed, as we have alread
seen in Sec. III and in Eqs.~5!, ~6!, and ~8!, for R51 it is
very difficult to separate the region of small excitations~a
scaling region withg(q).1/(12q)l l11) from the one of
large excitations~a constant q-independent contribution
g(q).1/Vl l). The main advantage of separating these t
regions is that one can directly fit each of them. This yie
two separate measurements of the LDEl l in addition to the
estimate~10! obtained from theL dependence of the averag
size of the excitations.

In Fig. 7, we showg(q) versus 12q for R510 for vari-

FIG. 6. g(q) versus 12q for the FPBC forR51, 5, and 10 and
for L58.
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ous linear sizesL and for the PPBC case. These distributio
have been obtained by running a large number of sam
ranging from 10 million of samples forL54 down to 5
million for the largest sizeL59. We have also inserted in
the figure two vertical lines which indicate the limits for th
range of values we have chosen for the fits of the sca
behavior of the finite-size excitation sector (12q<0.07) and
for the constant contribution corresponding to large scale
citations (12q>0.25). We have chosen these values for
following reasons. First, as one can clearly see in Figs. 6
7, the scaling region for small excitations survives up
excitation sizesv.L3L. This size provides a threshol
value for the overlapqth below which the simple scaling
g(q).1/(12q)l l11 does not hold anymore,

12qth512S 12
2v
V D.

2L2

RL2.
2

R
. ~31!

Second, there is a crossover region aroundq.qth . A careful
look at Fig. 7 shows that the scaling region for small exci
tions ends around 12q.0.07. At this value, one observes
change of the slope of the curves just before entering
regime of large excitations whereg(q) becomesq indepen-
dent. For 12q>0.25, the curves are rather constant and
result of a fit does not depend much on the choice 12q
50.25. This second threshold value is indicated as the rig
most vertical bar in Fig. 7.

In Fig. 8, we show the estimated values of effective lo
est droplet exponentl l

eff obtained in three different ways
The first estimate has been obtained by averaging the vol
of all excitations for different lattice sizes as explained
Sec. III and then taking a logarithmic derivative, see E
~24!. The second estimate has been obtained by conside
the large excitation sector (12q>0.25) and itsL,R depen-
dence

g~q!.~RL2!2l l. ~32!

Averaging the excitation volume within this sector (12q
>0.25) and using again the corresponding logarithmic
rivatives as in Eq.~24! yields the second estimate. The thi
estimate forl l is obtained from a direct fit ofg(q) for small
values of 12q:

g~q!.~12q!212l l. ~33!

FIG. 7. g(q) versus 12q for the PPBC case forR510.
1-9
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M. PICCO, F. RITORT, AND M. SALES PHYSICAL REVIEW B67, 184421 ~2003!
This third method is in fact the most direct one since it c
be done for each sizeL ~while the other two estimates re
quire a fit using data from two different lattice sizesL and
L8). The first conclusion that we learn from Fig. 8 is that t
ARA produces a great improvement on the estimated va
of the exponentl l . The most stable measurement is the th
estimate obtained by fitting the small-size spectrum of
excitations. In that case,l l

eff is nearly constant with a valu
that converges to

l l50.77~1! ~34!

in excellent agreement with the result~30! of the previous
section.

Moreover, one also observes in Fig. 8 that the two ot
estimated values forl l

eff , obtained with the first and secon
methods, are strongly correlated. This shows that fin
volume corrections, which are expected to affect the valu
the exponent obtained from the analysis of large-size exc
tions, do affect also the value of the exponent obtained
averaging over the whole spectrum. In addition, we also
serve that the ARA for largeR strongly decreases the ma
nitude of finite-volume corrections. While on a square geo
etry, the effective exponentl l

eff obtained from the averag
size of excitations took values in the range 0.5220.62 ~see
Fig. 2!, with the ARA, we obtain for the same expone
values in the range 0.6420.72, which are much closer to th
expected asymptotic value 0.77(1).

The same conclusion holds for the lowest droplet ex
nent u l . In Fig. 9, we show the effective exponentu l

eff ob-
tained by evaluating the logarithmic derivative as in Eq.~25!.
Note that finite-volume corrections are much smaller th
with the squared lattices and as a result, the value of
effective exponent converges much faster to the expe
value 22. Using a fit of the form u l

eff(L)5u l
eff(`)

1const/La, one getsu l
eff(`)521.96(6) for the PPBC, the

FIG. 8. Effective lowest droplet exponentl l
eff versusL for the

PPBC case forR510. We represent the values ofl l
eff obtained

from fitting the distribution ofg(q) for small excitations~solid
line!, for large excitations~short dashed line!, as well as the value
obtained by fitting the average size of excitations~dotted line!.
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best fit being also represented in Fig. 9. In this figure,
also show the same exponent obtained for the FPBC, wh
the best fit yields the asymptotic valueu l

eff(`)
522.12(11). In both cases the fitting value we obtain
the exponent isa.1. Note that the asymptotic values fo
u l

eff are well compatible with our prediction of Sec. II C,u l

522 ~see also the heuristic argument in Appendix A!.

VI. FINITE-VOLUME CORRECTIONS „FVC… AND THEIR
RELATION TO THE STATISTICS OF EXTREME

VALUES

What is the origin of these strong finite-volume corre
tions? Intuitively it is not difficult to find an explanation fo
the strong systematic finite-volume corrections in the low
droplet exponentu l . As the wordlowestindicates, these ex
ponents describe the statistical distribution of droplet exc
tions which are at the tail of the energy gap distribution th
includes all possible high energy levels. As the volume of
system increases there is more available space to find e
tations with lower energy gap. This implies that there is mo
probability to find a lowest droplet with an energy small
than a given threshold valueE* and therefore the averag
energy of the lowest droplet is expected to decrease withL.
However, this simple fact does not give any intuitive indic
tion of how the effective exponentsu l

eff(L),l l
eff(L) system-

atically change withL.
To understand the origin of finite-volume corrections

the value ofu l we have focused our attention on the behav
of the upper bound exponentu l

1 describing the statistics o
the lowest one-spin excitations as described in the Appen
A. The gap distribution corresponding to these excitatio
can be obtained from the local-field distribution evaluated
the ground state. We have numerically computed this dis
bution for different sizes, the results are shown in Fig. 10.
discussed in Appendix A, the local-field distribution has
finite weight at zero field and is a self-averaging quantity.
the local-field distribution is self-averaging, the probabili
distribution for the lowest one-spin excitations correspon
to the extreme value statistics of the local-field distributi
p1(h) whereh stands for the local field which we assume
be positive as the gap is given by its absolute value~the
subindex 1 is used to stress that this distribution descr

FIG. 9. Effective exponentu l
eff obtained via a logarithmic de

rivative for the PPBC and the FPBC. We also plot best fit curv
which converge tou l

eff(L→`)521.96(6) for the PPBC and to
u l

eff(L→`)522.12(11) for the FPBC.
1-10
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STATISTICS OF LOWEST DROPLETS IN TWO- . . . PHYSICAL REVIEW B 67, 184421 ~2003!
energy gaps for one-spin excitations only!. If P1(h) stands
for the probability distribution of the smallest local field
thenP1(h) can be easily related top1(h) by standard prob-
ability arguments~see for instance, Ref. 26!. Although the
argument is very general, here we apply it to one-spin e
tations. For a given sample, the lowest valueh is selected as
the minimum value among all the possibleV local fieldshi at
each lattice site. The probabilityP1(h) is given by the ex-
pression

P1~h!5Vp1~h!S 12E
h

`

p1~h8!dh8D V21

52
]

]h S E
h

`

p~h8!dh8D V

~35!

which accounts for all possible ways the valueh coincides
with the minimum value obtained among all differentV local
fields distributed according to thep1(h). The last identity
shows thatP1(h) is normalized. This probability can be ex
plicitly worked out in the largeV limit

P1~h!52
]

]h
exp@2Vg1~h!#5Vg1~h!exp@2Vg1~h!#.

~36!

Up to second order inh the functiong1(h) is given by

g1~h!5p1~0!h1
p18~0!1@p1~0!#2

2
h2. ~37!

From Eq.~36! we immediately learn that the gap distributio
is an exponential with a sub-leading Gaussian correc
whose magnitude decreases as 1/V. Actually, plotting
P1(h)/V as function of the scaling variablex5hV one gets

P1~h!

V
5g18~x/V!expF2xp1~0!2

p18~0!1@p1~0!#2

2V
x2G .

~38!

FIG. 10. Local-field distribution for different lattice sizes wit
FFBC boundary conditions.
18442
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In the largeV limit g18(x/V)→p1(0) and the coefficient in
front of the Gaussian correction goes asymptotically to ze
therefore the distributionP1(h) converges to an exponentia
as expected,

P1~h!5Vp1~0!exp@2Vp1~0!h# ~39!

in agreement with the scaling relation~13!. We can now
understand the deviations from the pure exponential beha
discussed in Sec. III in the context of the inset~a! shown in
Fig. 3. They are simply consequences of the finite-volu
corrections of the extreme values of the gap distribution
all energy levels~and not only one-spin excitations as we a
discussing here!. However, moving our discussion from th
one-spin case to the absolute lowest excitation distribu
P(E), we do not have a clear physical insight about what
corresponding distributionp(E) should be. In other words
while p1(E) is a self-averaging distribution withP1(E) be-
ing its extremal value distribution, we do not know how
construct a self-averagingp(E) that yields theP(E) we are
numerically evaluating. Still, from theP(E)’s shown in Fig.
3, the parametersp(0),p8(0) that characterize such ap(E)
can be evaluated. To evaluate them, the best way is to
lyze the cumulative distributionP(E)5*E

`d E8P(E8) which
from Eq. ~36! we can assume to beP(E)5exp@2Vg(E)#.
Thus we can fitP(E) with an exponential with Gaussia
correctionsA exp@2Bx2Cx2/2# whose fitting parameters ar
related top(0) andp8(0). Thebest fits yield the following
values:p(0)'0.2 andp8(0)50.3.

Coming back to our original goal we discuss now t
finite-volume corrections for the estimateu l

eff , as shown in
Fig. 4. From the distribution~36! describing the whole spec
trum of excitations we can express the effective expon
~25! for L@1 as

u l
eff~L !5

] ln@Ē~L !#

] ln~L !
. ~40!

The computation ofĒ(L) is quite straightforward as it is
given by the simple relation

Ē~L !5E
0

`

EP~E!dE5E
0

`

dE exp@2Vg~E!#, ~41!

where we have used Eq.~36! plus an integration by parts
The integral, up to second order in 1/V yields

Ē5
1

Vp~0!
2

p8~0!1@p~0!#2

V2@p~0!#3
1OS 1

V3D . ~42!

Inserting this result in Eq.~40! we finally get

u l
eff~L !52d1

d

V S 11
p8~0!

@p~0!#2D 1OS 1

V3D . ~43!

This shows thatu l
eff(L) approaches2d from below @as

p8(0) is positive#. On the other hand the magnitude of th
finite-volume corrections can be pretty large
p8(0)/@p(0)#2@1. For instance, if one takes the results o
tained from the analysis of one-spin excitations one g
1-11
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p1(0).0.069, p18(0).0.125 yielding p18(0)/@p1(0)#2.27
which is indeed large. Inserting these values in Eq.~43! we
obtain an estimation foru l

eff(L512)521.65 in good agree-
ment with numerical results~see Fig. 11!.

If we insert the previous estimated values for the wh
spectrum of excitations extracted from theP(E)’s in Fig. 3,
we obtainp8(0)/@p(0)#2.7.5. From Eq.~43! it follows that
u l

eff(L).22(127.5/V), which for L511 yields u l
eff

521.87. All in all, the magnitude of the effective expone
u l is well compatible with the reported valueu l

eff used in the
inset~a! in Fig. 3 for the PP case. Note that the FVC corre
tions tou l

eff obtained from the local-field distributions in th
FF case are much larger than FVC corrections in the PP
in agreement with ARA results~see Fig. 9!. From this analy-
sis it becomes clear that to significantly reduce the mag
tude of the finite-volume corrections in the value ofu l ~let us
say u l.21.95), we would need larger volumes beyo
20320.

VII. COMPACTNESS OF THE LOWEST ENERGY
DROPLETS

One intriguing question about the droplet excitations c
cerns their topological properties. Kawashima and Aok13

have argued that droplet excitations are not compact. Inst
their volume has a fractal structure as the number of lat
points included in the droplet scales with its spanning len
~which is a measure of the length scale of the droplet! with
an exponent smaller@around 1.80~2!# than the dimension o
the system~2!.

To answer this question we have computed the surfa
i.e., the perimeterP, of all lowest droplets. The relation be
tween the average perimeter as function of the sizev of the
excitation depends on both the fractal dimension of the s
face or perimeterds and the volumedv of the lowest drop-
lets.ds anddv can be defined in terms of the spanning leng
l of the droplet which can be defined in different ways. F

FIG. 11. Effective droplet exponentu l
eff versusL for the FFBC

case, computed using logarithmic derivatives~see text!. We show
the exponent obtained for one-spin excitations (v51) in compari-
son to the one obtained from the whole distribution of gaps.
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example, one could use the gyration radius, the average
tance between the sites contained in the cluster, or the m
mum distance among the sites of the cluster. As the typ
length scale of our lowest droplets is small,l .10, we have
not attempted to estimate it as this can strongly depend
the precise definition of the spanning length. Here, we
strict ourselves to investigate the perimeter-volume dep
dence. In terms of the spanning lengthl the surface fractal
and volume fractal dimensionsds ,dv of the droplets are
defined as

l;P1/ds, ~44!

l;v1/dv ~45!

which combined give

P;vds /dv. ~46!

In Fig. 12 we showP(v) as a function ofv for different
lattice sizes. As can be seen, FVC are important for la
volumes. However, there is an enveloping curve that is in
pendent ofL for small volumes and spans a progressive
increase range of volumes asL increases. This envelopin
curve is excellently fitted~continuous curve! by the scaling
relation ~46! and yields an estimate

ds

dv
.0.632~2! ~47!

consistent with the results reported by Kawashima and Ao
ds /dv50.61(1), obtained with a completely differen
method.

VIII. CONCLUSIONS

We have shown that a proper description of lo
temperature properties in two-dimensional Gaussian s
glasses can be done in terms of the lowest droplet expon
~LDE’s! l l andu l describing the spectrum of lowest excit
tions.l l describes the spectrum of sizes of the lowest ene
droplets, whileu l describes the typical energy cost of the
lowest droplets whatever their size. Assuming thatu l52d
one concludes that the LDEl l fully characterizes the spin
glass phase. Although independent numerical estimates ou l
and l l show strong finite-volume corrections, the therm
exponentu5u l1dl l can be well estimated giving the re
sults ~29!,~30!

u520.46~1!, l l50.770~5!, ~48!

showing that u,uDW520.287(4).11 Our estimates~48!
have been confirmed via an aspect-ratio analysis which
vides estimates much less influenced by finite-volume c
rections. Moreover, the resultu l522 ~that is believed to be
correct for spin glasses with coupling distributions with fin
weight at zero coupling, see the Appendix A! has been nu-
merically confirmed by the aspect-ratio analysis. To sum
McMillan’s excitations are not the typical low-lying excita
tions and our approach offers a new and independent wa
estimate the thermal exponentu without the need to generat
1-12
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typical low-lying excitations by looking at the new groun
state of the system after perturbing it.

We think that discrepancies on the value of the therm
exponentu reported by comparingnonperturbativemethods
~such as finite-temperature transfer-matrix calculations
the present lowest droplet analysis! with perturbative meth-
ods such as domain-wall calculations~or perturbations in-
duced by introducing a coupling term in the energy funct
that induces a large-scale excitation! are serious enough to b
taken as a clear indication that our knowledge of the lo
temperature properties of the 2D GISG is still inadequate
this direction we want also to recall the issue of multifrac
lity and the possibility that different exponents could d
scribe the zero-temperature critical point. Is this really p
sible? Well, to our knowledge no exact result precludes
possibility and, although purely speculative at the pres
stage, one should seriously think about it. Altogether,
present analysis suggests that the excitations in 2D GIS
are very different from the compact droplets proposed in
context of the droplet model. If this were true, the implic
tions of the 2D studies in larger dimensions could be imp
tant. There are many routes that can be followed to un
stand better what is going on and the origin of th
discrepancy. Certainly, with the outstanding accuracy
present algorithms to compute ground states in 2D, it wo
be very interesting to revisit the analysis of the statistics
the large scale excitations generated by imposing a unif
magnetic field. ‘‘Old’’ results by Riegeret al.8 give an esti-
mate foru that is compatible with our estimate rather than
the domain-wall estimate. This would be an independ
check of our values, but using a perturbation method with
appropriateneutral observablesuch as the global magnetiza
tion as has been explained in Sec. I before Eq.~1!.

The proposed method may appear venturesome as, to
present knowledge, there is no numerical study in the fi
along this line of research. However, as explained in Se
recent studies on the disordered Anderson model20 have re-
vealed that the analysis of the lowest excitation provide
good description of the localized phase. More studies

FIG. 12. Perimeter~P! of the droplet versus its volume (v). The
solid line corresponds to the fit~46! with ds /dv50.632(2).
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certainly required to understand better the reliability of t
present method to investigate the critical properties of s
glasses. One disadvantage of our approach is that a h
number of samples is needed to reasonably sample la
scale excitations. However, as we saw in Sec. V, the beha
of the g(q) for small 12q can be extracted with a mode
number of samples. The advantage, as has been alr
stressed in Sec. I, is that we do not introduce any exte
perturbation to generate the excitations.

Finally, we want to comment on the extension of th
approach to other models. Of course, the immediate ex
sion one could think of is the 2D6J model. However, the
analysis of this model appears quite troublesome. This mo
does not have a continuous gap distribution but a disc
one that introduces further complications. As the grou
state is not unique, one has to redefine the full analysis
properly define the spectrum of lowest excitations. The d
creteness of variables could have some unexpected effec
the present approach as seems to happen also with dom
wall calculations.9,11 It is more natural to extend the resear
to other models such as 2d ISG with other continuous c
pling distributions without gap@e.g., characterized byP(J)
;uJua for uJu→0], Migdal-Kadanoff spin glasses~where
both the ground state and the first excitation could be fe
bly found with an appropriate algorithm!, Gaussian spin
glasses beyondd52 ~where unfortunately, algorithms ar
much less effective than in 2D as the finding of the grou
state becomes a NP complete problem! and finally mean-
field spin-glass models where the zero temperature ex
nents are known and maybe the spectrum of lowest exc
tions could be analytically tackled. Preliminary results in th
case27 confirm that the present analysis describes pretty w
the data for rather small sizes. We are pretty confident tha
the near future, new results and evidence will finally reso
this interesting problem.

Note added after completion of this work: While this p
per was submitted, Hartmann and Moore28 have reported
some results in 2D Gaussian spin glasses where they ge
ate large scale excitations by a perturbation technique wh
they fix some spins in the lattice and generate the sma
energy droplet. They show that the thermal exponent ta
the value20.47 for sizesL<20 and crosses over to th
value 20.29 for larger sizes. They interpret these data
evidence that20.46 only holds in the smallL regime. How-
ever this interpretation needs to be taken with caution
cause of two following reasons.~1! Their data and our data
cover different regimes: the typical energy of the droplets
much different in their approach than in our approach, th
energies being at least one order of magnitude larger t
ours, hence extrapolation of the finite-size effects they m
sure to our energy scale is not obvious at all.~2! Their data
can be interpreted in the opposite way: for small sizes th
excitations are indeed typical and scale properly with
exponent20.46, however, for larger sizes their droplets a
not typical anymore since their perturbation does not pr
erly select them~as we have reasoned along this pape!,
therefore they overestimate the energy of the typical o
giving a value of the thermal exponentu compatible with the
domain wall estimate. Which one is the correct explanat
1-13
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cannot be decided at present, however, we are confident
measurements for larger sizes using our method should
solve this issue.
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APPENDIX A: HEURISTIC PROOF OF THE IDENTITY
u lÄÀd

In this appendix we show thatu l52d. In what follows
we do not attempt to present a rigorous proof but we con
ourselves to present an heuristic argument. The argumen
two parts: first we show that2d is an upper bound, next w
show that the upper bound is the exact value. For the up
bound the argument is well known and goes as follows. C
sider the ground state and all possible one-spin excitati
Because one-spin excitations are not necessarily the abs
lowest ones, the statistics of the lowest one-spin excitati
must yield an upper boundu l

1 for the value ofu l , u l<u l
1 .

The statistics of the lowest one-spin excitations is de
mined by the behavior of the ground-state local field dis
bution p(h) in the limit h→0. If p(h) is self-averaging and
p(0) is finite ~in the large-volume limit! then the statistics o
the lowest excitations must be governed by the expon
u l

152d. Although we do not know a precise mathematic
proof of the statement thatp(0) is finite, it looks quite
intuitive.29 In any short-range system with a frustrat
ground state and a coupling distribution with finite density
zero coupling, we may expect a finite probability to find
cage containing a spin coupled to its neighbors by a se
weak bonds which produce a vanishing net local-field act
on that spin. This argument should generally hold ford
>2. Moreover, as its name indicates, the local-field distrib
tion is a local observable. An argument in the manner
Brout proves that it should be self-averaging as all poss
local field values are realized across the whole lattice~our
numerical results in the 2D GISG confirm this conclusio
see Sec. VI!. The next part of the argument consists in pro
ing that an identical upper bound is valid by consideri
excitations with size strictly larger than 1 but finite. The u
per bound derived for the one-spin excitations must nec
sarily hold for finite-size excitations beyond one-spin exci
tions ~for instance, two spins, three spins, and so on! as the
gap corresponding to the finite-size excitations can alway
written as a linear combination of a finite number of loc
fields with coefficients which depend on the ground st
configuration. It is easy to verify that the aforemention
properties of the local-field distributionp(h) imply that the
new gap distribution has a finite weight at zero gap and
18442
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self-averaging. This argument, however, cannot be exten
to large-scale~with v;V) excitations in a straightforward
way because the distribution for the corresponding gap
tribution corresponds to an infinite sum of terms in theV
→` limit. However, once we argue thatu l is an upper bound
valid for all finite-size excitations it can be concluded th
this upper bound must coincide with the exponentu l describ-
ing the probability of the absolute lowest excitations. Fro
Eq. ~4! the fraction of large scale excitationsv→V is given
by VgV51/Vl. In generall.0 so this fraction vanishes
~this fraction is finite only ind51 wherel50, but this case
is trivial as the surface of large scale droplets ind51 con-
tains only a finite number of broken bonds! in the infinite-
volume limit and finite-size excitations determine the res
u l52d as they dominate the spectrum of lowest excitatio
Moreover, if large-scale excitations yield a different val
for u l this would imply that boundary conditions could affe
the value of the thermal exponent. That would be quite
usual as this would mean that the exponents of theT50
fixed point would depend on the boundary conditions.

APPENDIX B: TRANSFER MATRIX ALGORITHMS

In this appendix, we will briefly explain how we dete
mine the ground state and the first excited state. We
work on a square lattice of sizeL3L. The energy associat
to a configuration of spinsS( i , j ) with a fixed configuration
of disorderJx( i , j ) andJy( i , j ) is

E5 (
i 51,L21

(
j 51,L

Jx~ i , j !S~ i , j !S~ i 11,j !

1 (
i 51,L

(
j 51,L21

Jy~ i , j !S~ i , j !S~ i , j 11!

1B1 (
j 51,L

Jx~L, j !S~L, j !S~1,j !

1B2 (
i 51,L

Jy~ i ,L !S~ i ,L !S~ i ,1!, ~B1!

whereB1 andB2 correspond to the choice of boundary co
ditions. Here we will consider three cases : Periodic-Perio
boundary conditions ~PPBC’s! with B15B251, free-
periodic boundary conditions~FPBC’s! with B151, B250
~or equivalentlyB150, B251), and free-free boundary con
ditions ~FFBC’s! B15B250. We will only consider the case
with a Gaussian distribution of the bond disorderJx,Jy. To
determine the ground state and the first excited states,
proceed as follows: we start by associating a weight for e
configurations of spins in the first row of the lattic
S(1,1),S(1,2), . . . ,S(1,L):

W@S~1,1!,S~1,2!, . . . ,S~1,L !#5B2Jy~1,L !S~1,L !S~1,1!

1 (
i 51,L21

Jy~1,i !S~1,i !S~1,i 11!. ~B2!

Next, we start iterating the transfer matrix using a spar
matrix factorization.30 The first iteration gives
1-14
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W1@S~1,2!, . . . ,S~1,L !,S~2,1!#

5maxS(1,1)$J
x~1,1!S~1,1!S~2,1!

1W@S~1,1!, . . . ,S~1,L !#%. ~B3!

Since we are also interested in the first excited state,
define the second largest weight

W2@S~1,2!, . . . ,S~1,L !,S~2,1!#

5minS(1,1)$J
x~1,1!S~1,1!S~2,1!

1W@S~1,1!, . . . ,S~1,L !#%. ~B4!

In the following, we will use the simplified notation

W~ i , j ![W@S~ i , j !, . . . ,S~ i ,L !,S~ i 11,1!, . . . ,S~ i 11,j

21!#. ~B5!

Thus Eqs.~B3!,~B4! become

W1~1,2!5maxS(1,1)@Jx~1,1!S~1,1!S~2,1!1W~1,1!#
~B6!

and

W2~1,2!5minS(1,1)@Jx~1,1!S~1,1!S~2,1!1W~1,1!#.
~B7!

At the next iteration, the numbers of possible weight w
again be multiplied by two but we will keep only the tw
largest ones defined as

W1~1,3!5maxS(1,2)@Jx~1,2!S~1,2!S~2,2!

1Jy~2,1!S~2,1!S~2,2!1W1~1,2!# ~B8!

W2~1,3!5max$minS(1,2)@Jx~1,2!S~1,2!S~2,2!

1Jy~2,1!S~2,1!S~2,2!1W1~1,2!#, ~B9!

maxS(1,2)@Jx~1,2!S~1,2!S~2,2!

1Jy~2,1!S~2,1!S~2,2!1W2~1,2!#%.

The general iteration relations are

W1~ i , j !5maxS( i , j 21)@Jx~ i , j 21!S~ i , j 21!S~ i 11,j 21!

1Jy~ i 11,j 22!S~ i 11,j 22!S~ i 11,j 21!

1W1~ i , j 21!#, ~B10!

W2~ i , j !5max$minS( i , j 21)@Jx~ i , j 21!S~ i , j 21!S~ i 11,j 21!

1Jy~ i 11,j 22!S~ i 11,j 22!S~ i 11,j 21!

1W1~ i , j 21!#, ~B11!

maxS( i , j 21)@Jx~ i , j 21!S~ i , j 21!S~ i 11,j 21!

1Jy~ i 11,j 22!S~ i 11,j 22!S~ i 11,j 21!

1W2~ i , j 21!#%.

In addition, each time that we end the construction of a n
row, we must add the boundary term
18442
e

l

w

W1~ i ,1!→W1~ i ,1!1B2Jy~ i ,L !S~ i ,L !S~ i ,1!;W2~ i ,1!

→W2~ i ,1!1B2Jy~ i ,L !S~ i ,L !S~ i ,1!. ~B12!

We still have to take in account the boundary condition c
responding toB1. The two types of boundary condition
~free and periodic! have to be considered separately.

Free boundary conditionB150. In that case, we iterate
up to the construction of the weights associated with
configurations of the spinsS(L,1), . . . ,S(L,L). The energy
of the ground state (E0) is then simply the maximum amon
all the weightsW1(L,1):

E05max$S(L,1), . . . ,S(L,L)%@W1~L,1!#. ~B13!

We call $S0(L,1), . . . ,S0(L,L)% the configuration of spins
on the last row for the ground state. The energy of the fi
excited state is the second largest weight amongW1(L,1)
andW2(L,1):

E15max$max$S(L,1), . . . ,S(L,L)%Þ$S0(L,1), . . . ,S0(L,L)%

3@W1~L,1!#,max$S(L,1), . . . ,S(L,L)%@W2~L,1!#%.

~B14!

Periodic boundary caseB151. We first choose one configu
ration of spins on the first rowSi(1,1),Si(1,2), . . . ,Si(1,L).
The weight of this configuration is defined as in Eq.~B2!.
The weight of all the other configurations of spins on th
first row are fixed to an arbitrary large negative numb
Next we iterate the transfer matrix as described above,
to the construction of the weightsW1(L,1) and W2(L,1).
Finally, we iterate one additional row, with bondsJx(L,i )
and Jy(L11,i )50. Next, we store the two weightsW1

and W2 associated to the initial spins configuratio
Si(1,1),Si(1,2), . . . ,Si(1,L). We denote these two weight
by

W 1@Si~1,1!,Si~1,2!, . . . ,Si~1,L !#

[W1@S~L11,1!5Si~1,1!,S~L11,2!

5Si~1,2!, . . . ,S~L11,L !5Si~1,L !# ~B15!

W 2@Si~1,1!,Si~1,2!, . . . ,Si~1,L !#

[W2@S~L11,1!5Si~1,1!,S~L11,2!

5Si~1,2!, . . . ,S~L11,L !5Si~1,L !#. ~B16!

The energy of the ground state is the maximum on all
W 1:

E05max$Si (1,1), . . . ,Si (1,L)

3%$W 1@Si~1,1!,Si~1,2!, . . . ,Si~1,L !#%, ~B17!

and we denote byS0(1,1), . . . ,S0(1,L) the configuration of
spins on the first row for the ground state. The energy of
first excited state is the second largest weight amo
W 1(L,1) andW 2(L,1):
1-15
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E15max†max$Si (1,1), . . . ,Si (1,L)%Þ$S0(1,1), . . . ,S0(1,L)%

3$W 1@Si~1,1!,Si~1,2!, . . . ,Si~1,L !#%, ~B18!

max$Si (1,1), . . . ,Si (1,L)%

3$W 2@Si~1,1!,Si~1,2!, . . . ,Si~1,L !#%‡. ~B19!

The construction of the ground state and of the first exc
state is much more costly in computing time for the perio
case, since we have to repeat 2L times the iterations, one
time for each configurationSi(1,1),Si(1,2), . . . ,Si(1,L).

So far, we have only described how to compute the va
of the energies associated with the ground state and the
excited state. Since we also want to determine the spins
figurations for these two states, we have to store, at e
iteration of the transfer matrix, the value of the spin
which one sums, as well as the value of the previous sp
Thus, for each 2L weightsW1( i , j 21), we have to store the
configuration
n

y
.

P.
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CS( i , j 21), . . . ,S( i 11,j 22)

[@S~1,1!, . . . ,S~1,L !,S~2,1!, . . . ,S~ i , j 22!#.

~B20!

At the next iteration, we will build the weightW1( i , j ) with
the corresponding configuration

CS( i , j ), . . . ,S( i 11,j 21)5@CS( i , j 21), . . . ,S( i 11,j 22) ,S~ i , j 21!#
~B21!

with S( i , j 21) the value of the spin which corresponds
the maximum in Eq.~B10!. From this construction, we hav
access to the spins configurations of the ground state and
first excited state.

Finally, we should also add that this construction can
easily extended to the second excited state, etc. After
~B9!, we can easily define a third weight which would b
associated to the second excited state, and so on.
s.
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