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Rejuvenation in the random energy model

M. Sales
1,2 and J.-P. Bouchaud

2

1 Dept. de F́ısica Fonamental - Diagonal 647. Pta. 3a. 08028 Barcelona, Spain
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Abstract. – We show that the Random Energy Model has interesting rejuvenation properties
in its frozen phase. Different “susceptibilities” to temperature changes, for the free energy and
for other (“magnetic”) observables, can be computed exactly. These susceptibilities diverge at
the transition temperature, as (1 − T/Tc)

−3 for the free energy.

A small temperature change in the low-temperature phase of spin-glasses is able to “reju-
venate” an already aged system [1–3]. More precisely, the a.c. susceptibility of a system aged
for a very long time at T1 < Tc (where Tc is the spin-glass phase transition temperature) and
then suddenly cooled at T1 −∆T is, provided ∆T is not too small, very close to the suscepti-
bility of a young system directly cooled from high temperatures to T1 − ∆T . This “fragility”
to temperature changes has been interpreted early on as a signature of “temperature chaos”,
that is the fact that the equilibrium states of a disordered system are very different for dif-
ferent temperatures: beyond a certain length scale �∆T (which diverges for small ∆T ), the
thermodynamical states become uncorrelated and the overlap between them tends to zero
for large system sizes. Such an effect was conjectured in the context of the droplet model of
spin-glasses, based on scaling arguments [4, 5], and supported by Migdal-Kadanoff renormal-
isation group calculations [6]. A similar effect is also predicted for pinned interfaces [7], and
has recently been checked in careful large-scale simulations and analytical arguments in the
case of the 1+1 directed polymer in random media [8]. However, temperature chaos has been
recently disproven in the mean-field SK model [9], and not been found either in numerical
simulations of the 3D Edwards-Anderson spin-glass model [10, 11]. This might be due to the
fact that the length �∆T (if it exists) involves a large numerical prefactor and is therefore larger
than numerically accessible sizes. It could also be that although the length scale �∆T plays
a relevant role in the overlap between the states at T1 and T1 − ∆T , this overlap does tend
very slowly to zero for large sizes, as in [8]. Finally, the “temperature chaos” interpretation of
the rejuvenation effect has to be compatible with the simultaneous memory that one observes
experimentally. A scenario for this was recently proposed in [12].

Another line of thought to explain rejuvenation and memory in spin-glasses is based on
“hierarchical” energy landscape pictures [13, 14]. Lower temperatures reveal finer details (re-
juvenation) while large-scale jumps are frozen out (memory) [2,3,15]. Numerical simulations
of the dynamics on Parisi’s tree [16] or in the Sinai potential [17] indeed confirm that these
effects exist in the absence of “true” chaos. Even a simple two-level system does actually lead
to some rejuvenation when the temperature is of the order of the energy difference between
the levels —simply because the relative Boltzmann weight changes when the temperature is
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changed. In this paper, we want to study in details the temperature rejuvenation effect in the
glassy phase of the Random Energy Model (REM), for which a number of exact results are
known [18]. This low-temperature phase is described, in the replica language, by a “one-step”
replica-symmetry–breaking scheme [19]. This model is expected to be in the same univer-
sality class (with possibly minor corrections) as a large number of other models [20], such
as the p-spin models (advocated to be good models for glasses), the Bernasconi model, the
directed polymer (or random manifold) in high dimensions [21, 22], the unbinding transition
of heteropolymers [23] and the problem of a single particle in a logarithmically correlated
random potential [24]. Interestingly, a dynamical version of the REM naturally leads to aging
dynamics [15,25,26].

Here, we want to compute exactly the “rejuvenation susceptibility” of different observ-
ables to small temperature changes. Even if the model is not “chaotic”, it reveals a number of
interesting features that may be relevant to the present discussion. For example, the “suscepti-
bility” to temperature changes diverges when the temperature tends to the glass temperature
of the model. Experimental consequences are discussed in the conclusion.

It is well known that the low-temperature phase of the REM is equivalent to that of the
“trap” model [27, 28], where M energy states εi, i = 1, · · ·M are chosen with an exponential
probability distribution:

P (ε) =
1
Tc

exp
[
− |ε|

Tc

]
. (1)

Note that ε is chosen to be negative. The partition function for this model is simply Z(T ) =∑M
i=1 zi with zi = exp[|ε|i/T ]. This model undergoes a phase transition at T = Tc, where

the partition function “localizes” on a few states. More precisely, in the limit M → ∞, the
Boltzmann weights of a finite number of states add up to a finite fraction of the partition
function for T < Tc [27, 28]. Aging is the dynamical counterpart of this localization effect:
most of the elapsed time is spent by the system in the deepest available well [15].

As a first definition of the susceptibility to temperature changes, we study, following Fisher
and Huse [7], the correlation of the free-energy fluctuations for two different temperatures.
More precisely, we write

CF(T1, T2) =
(�1 − �1)(�2 − �2)(

(�1 − �1)2(�2 − �2)2
)1/2

, (2)

where �1 stands for log Z(T1) and the overline means that we average over the distribution of
the energies ε. When T1 = T2(1 + ε) we expect that

CF(T1, T2) = 1 − κFε2 (ε −→ 0), (3)

where κF defines the susceptibility to temperature changes. The calculation of this quantity
starts with Derrida’s representation of log Z [18]:

log Z =
∫ ∞

0

dt
exp[−t] − exp[−tZ]

t
= lim

b→0+

∫ ∞

0

dt tb−1
(
exp[−t] − exp[−tZ]

)
, (4)

where b has been introduced to ensure convergence of intermediate calculation steps. The
average over ε then involves

exp[−tZ] = (exp[−tz])M =
(
1 − (1 − exp[−tz])

)M
. (5)
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For large M , only the vicinity of t = 0 will therefore be of importance. Using the fact that
the random variables z are distributed with a power law tail µz−1−µ with µ = T/Tc, one finds
that

1 − exp[−tz] ∼t→0 Γ(1 − µ)tµ. (6)

Using the last result in the previous two equations finally leads to the following result for the
free energy (in units of Tc):

−µlog Z = − log M − γ(1 − µ) − log Γ(1 − µ), (7)

where γ is Euler’s constant. The first term comes from the fact that, when M is large, the
smallest energy drawn from an exponential distribution behaves as −Tc log M , plus order one
(random) corrections. Therefore, all the fluctuations involved in the calculation of CF will be
of order 1. The calculation of the average of the product of log Z for two different temperatures
is a little more involved. At an intermediate level of the computation, one finds, to order b0,

�1�2 = Γ2(b) − Γ(b)
[

Γ(b/µ1)
M b/µ1µ1Γb/µ1(1 − µ1)

+ 1 −→ 2
]

+

+
Γ(bβ)

µ1bM bβ

[
1 − b2βF(µ1, α)

Γbβ(1 − µ1)
+ α

1 − b2βF(µ2, 1/α)
Γbβ(1 − µ2)

]
(8)

with α = 1 + ε, β = (1 + α)/µ1 and

F(µ, α) =
∫ 1

0

dv

v
log

[
1 +

µ

Γ(1 − µ)

∫ ∞

0

du
exp[−u] − exp[−uαv]

u1+µ

]
. (9)

Expanding the previous result to order ε2 and rearranging the terms finally leads to κF(µ1),
given in the appendix. Its dependence in µ1 is given in fig. 1. Of main interest is its behaviour
for small temperatures and close to the transition point. For µ1 → 0, one finds that κF goes
to zero as

κF(µ1) ∼ 0.905558 · · ·µ2
1. (10)

For small temperatures, only the ground state contributes to the free energy both for T1 and
T2. Hence, one indeed expects the sample-to-sample fluctuations to be strongly correlated.
For µ1 → 1, on the contrary, one finds that κF diverges:

κF(µ1) ∼ 3(4 log 2 − 1)

π2
(
1 − µ1

)3 ∼ 0.538802 · · ·(
1 − µ1

)3 , (11)

indicating that close to the “delocalisation” transition, the system tends to occupy rather
different states when the temperature is slightly changed. Finally, the correlation of free-
energy fluctuations between T1 > Tc and T2 < Tc vanishes as the size of the system tends to
infinity.

Therefore, except right at the transition, there is no “strong chaos” in the REM, which
would imply that the susceptibility κF diverges with the size of the system. However, small
temperature changes do lead to noticeable changes in the physical observables. A perhaps
more direct way to see this is to assign to each state i a certain observable Oi, independent
of the energy of this state. This can be, for example, the position of the state in space if the



184 EUROPHYSICS LETTERS

0.00 0.20 0.40 0.60 0.80 1.00
T/Tc

-4

-2

0

2

4

6

lo
g

10 
κ

κO
κF

Fig. 1 – Plot of the rejuvenation susceptibilities κO (straight line) and κF (dotted line) in semi-log
scale, as a function of µ = T/Tc. Note that both quantities vanish at T = 0 and diverge at T = Tc,
with different exponents.

model describes (for example) the metastable states of a pinned interface, or the magnetisation
of a state for spin system. We will assume for simplicity that

∑
i Oi = 0. For a given set of

random energies εi, the thermodynamical value of the observable is

〈O〉 =
1
Z

M∑
i=1

ziOi. (12)

The average over disorder of this quantity is always zero. However, a fundamental difference
arises between the case T > Tc and T < Tc. In the former case and for large systems, 〈O〉
tends to zero. This is related to the fact that the partition function is more or less evenly
spread out on all states. On the contrary, for T < Tc, 〈O〉 for a given system is a finite random
quantity. Its variance is (for large M) given by

〈O〉2 = (1 − µ)
∑

i

O2
i , µ =

T

Tc
. (13)

Take, for example, the case where the observable Oi = xi is the position of a particle in a
box of size 2L, xi = L(1 − 2i/M). In this case, the typical average position of the particle
is 〈x〉 ∼ √

1 − µL which scales with the total size of the system, compared to 〈x〉 ∼ Lζ with
ζ < 1 for T > Tc. Quenching the temperature from above Tc therefore induces a complete
rearrangement of the equilibrium properties of the system which occurs in a slow, aging way.

Now, let us discuss how this observable changes when the temperature is slightly changed
within the glass phase. The calculation proceeds much as above, or as in [27]. For small
temperature shifts ε → 0, we find

(〈O〉1 − 〈O〉2
)2 = κO(µ1)ε2

( ∑
i

O2
i

)
, (14)

where the rejuvenation susceptibility is given by a very lengthy expression. This quantity is
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plotted in fig. 1. Its small temperature behaviour is given by

κO(µ1) ∼ 12 + π2

18
µ1 = 1.21497802 · · ·µ1, (15)

where its divergence for µ1 → 1 is given by

κO(µ1) ∼ 1
3(1 − µ1)

. (16)

Therefore, we again find a divergence of the rejuvenation susceptibility near Tc. For T > Tc,
we find that κO vanishes as a (T -dependent) power of M .

We then find a very interesting situation: eq. (14) tells us that when the temperature is
slighlty changed, the mean position of the particle (say) has to evolve by an amount of order√

κεL that is proportional to the size of the system (and with a diverging amplitude when
T → Tc). In this sense, rejuvenation is strong since a small temperature change will induce
a rather large response of the system. However, since the number of states occupied by the
particle remains finite in the whole glassy phase T < Tc, the probability to find the system in
the same state at T1 and T2 remains finite in the limit of large systems [29]. This probability
is directly related to κO, and reads

P12 = 1 − µ1 + µ2

2
− κOε2. (17)

(Note that P11 = 1 − µ1 as it should [27,28].)
In summary, we have shown that the Random Energy Model has interesting rejuvenation

properties in its frozen phase. Different “susceptibilities” to temperature changes, for the free
energy and for other (magnetic) observables, can be computed exactly. These susceptibilities
diverge at the transition temperature with different exponents. Since the REM seems to be
relevant to many physical situations, the mechanism found here is probably of broad interest.
However, the coexistence of rejuvenation and memory seen in the spin-glass experiments
cannot be accounted for by the simplest version of the REM, because the evolution at T2

will have a significant influence on the properties measured at T1 after reheating. One can
generalize the REM along the lines of [30] by allowing a hierarchy of phase transitions Tc,n. As
argued in [15] and numerically demonstrated in [16], each crossing of a phase transition Tc,n

induces a strong rejuvenation signal (much as calculated here) with a slow aging dynamics for
T < Tc,n and a fast return to equilibrium for T > Tc,n, accounting for the memory effect.
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Appendix

Here we give the explicit form of the free-energy susceptibility κF(µ). We find
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(
2π2(µ − 1)2(µ + 1)2

)
κF(µ) = 6(1 − 2�2 + 2�2ψ

′[1 − µ]µ5) −
− 12µ3(−1 + �2ψ

′[1 − µ]) + µ2
(
π2 − 2(−9 + 3ψ′[1 − µ] + 6ψ[−µ])

) −
− 3ψ[−µ]2 + 12�2 − 18�2ψ[−µ] + 6�2ψ2[−µ] + 9�22 + 2�32 − 6�22ψ[−µ])

)
+

+ 12µ
(
1 − �2(3 + �2) + (−1 + 2�2)ψ[−µ]

)
+ 2µ4 ·

· (3ψ′[1 − µ] − 6�2(1 + �2)ψ[−µ] + �22(3 + 2�2) + 3(−1 + 2�2)ψ2[−µ]
)
,

where �2 ≡ log 2 and ψ is the logarithmic derivative of the Γ-function. The susceptibility κO

is given by a similar, although even more involved, expression.
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