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Abstract

Background: The rise of electronic publishing [1], preprint archives, blogs, and wikis is raising concerns among publishers,
editors, and scientists about the present day relevance of academic journals and traditional peer review [2]. These concerns
are especially fuelled by the ability of search engines to automatically identify and sort information [1]. It appears that
academic journals can only remain relevant if acceptance of research for publication within a journal allows readers to infer
immediate, reliable information on the value of that research.

Methodology/Principal Findings: Here, we systematically evaluate the effectiveness of journals, through the work of editors
and reviewers, at evaluating unpublished research. We find that the distribution of the number of citations to a paper published
in a given journal in a specific year converges to a steady state after a journal-specific transient time, and demonstrate that in the
steady state the logarithm of the number of citations has a journal-specific typical value. We then develop a model for the
asymptotic number of citations accrued by papers published in a journal that closely matches the data.

Conclusions/Significance: Our model enables us to quantify both the typical impact and the range of impacts of papers
published in a journal. Finally, we propose a journal-ranking scheme that maximizes the efficiency of locating high impact
research.

Citation: Stringer MJ, Sales-Pardo M, Amaral LAN (2008) Effectiveness of Journal Ranking Schemes as a Tool for Locating Information. PLoS ONE 3(2): e1683.
doi:10.1371/journal.pone.0001683

Editor: Enrico Scalas, University of East Piedmont, Italy

Received January 7, 2008; Accepted January 23, 2008; Published February 27, 2008

Copyright: � 2008 Stringer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

*E-mail: amaral@northwestern.edu

Introduction

As de Solla Price observed [3], the number of scientific journals

and the number of papers published in those journals is increasing

at an approximately exponential rate. The size and growth of the

research literature places a tremendous burden on researchers—

how are they to select what to browse, what to read, and what to

cite from a large and quickly growing body of literature?

This burden does not only affect researchers. Funding agencies,

university administrators, and reviewers are called on to evaluate

the productivity of researchers and institutions, as well as the

impact of their work. Typically, these agents have neither the time

nor the financial resources to obtain an in-depth evaluation of the

actual research and must instead use indirect indicators of quality

such as number of publications, h-index, number of citations, or

journal rank [4–8].

Despite the oversimplification of using just a few numbers to

quantify the scientific merit of a body of research, the entire

science and technology community is relying more and more on

citation-based statistics as a tool for evaluating the research quality

of individuals and institutions [9]. An example of this trend is the

widespread use of the Institute of Scientific Information (ISI)

Journal Impact Factor (JIF) to rate scientific journals. This practice

is pervasive enough that, despite evidence that the JIF can be

misleading [10,11], some countries pay researchers per paper

published with the amount being determined by the JIF of the

journal in which the paper is published [12].

This act of ‘‘judging a book by its cover’’ has caused researchers

to note that we should judge a paper not by the number of

citations that the journal in which it is published receives, but by

the number of citations the paper itself receives [13]. This

seemingly obvious fact is countered by one major challenge—

administrators often want an estimate of the impact of a paper

long before it has finished accumulating citations, which, as we

show later, might take as long as 26 years.

The need for an estimate of the ultimate impact of recently

published articles is the reason that the JIF is often used as a proxy

for quality of the research. Indeed, the premise of the peer-

reviewing process is that reviewers are in fact able to assess the

quality of a paper. Thus, the heuristic that the journal in which a

paper is published is a good proxy for the ultimate impact of a

paper is likely to be an adaptive one [14].

Like any heuristic, the evaluation of research using citation

analysis has weaknesses. These weaknesses have been extensively

explored in the literature [15,16], however, as reviewed by

Nicolaisen [17], there are plausible assumptions underlying the use

of citation analysis as a heuristic. Here, we assume that the quality

of a paper bears significant correlation with the ultimate impact of the

PLoS ONE | www.plosone.org 1 February 2008 | Volume 3 | Issue 2 | e1683



paper, that is, the asymptotic total number of citations to that

paper. We further assume that the actual relation between total

number of citations and quality is uncertain, and may be field- and

even journal-dependent. This latter assumption is prompted by the

observation that many extrinsic factors for which we have no data

can influence the number of citations that the paper receives. For

example, because social influence may affect the citations to a

paper, small differences in quality may lead to large differences in

the number of citations [18].

In this article, we investigate two fundamental aspects

concerning the prediction of the ultimate impact of a published

research paper: (i) the time scale t for the full impact of papers

published in a given journal to become apparent, and (ii) the

typical impact of papers published in a given journal. We find that

t varies from less than 1 year to 26 years, depending on the

journal. Additionally, we find that there is a typical value and a

well-defined range for the eventual impact of papers published in a

given journal, which enables us to develop a model for the

distribution of paper impacts that matches the data. These findings

lead us to propose a method of ranking journals based on a natural

criterion: the higher a journal is ranked, the higher the probability

of finding a high impact paper published in that journal.

Results

We obtained the number of citations accrued by December 31,

2006 for 22,951,535 papers tracked in Thomson Scientific’s Web

of ScienceH (WoS) database. This database comprises information

on papers published in ,5,800 science and engineering journals,

,1,700 social science journals, and ,1,100 arts and humanities

journals. Journals are typically covered from their inception or

from the beginning of the WoS coverage for the research area

(whichever is later) until the present date or until their demise

(whichever is earlier). The beginning of WoS coverage for science

and engineering, social science, and arts and humanities is 1955,

1956, and 1975 respectively. In this study, we restrict our analysis

to journals publishing at least 50 articles per year for at least

15 years. This condition restricts our analysis to 19,372,228

articles published in 2,267 journals, and enables us to ensure good

statistics on the journals that we include in the analysis. More

information about the data is included in Appendix S1.

Because the citation history of a paper may be field- and even

journal-dependent, we first investigate p(‘jJ,Y ), the probability

distribution of ,, the logarithm of the number of citations accrued

by each paper by December 31st of 2006, for articles published in

journal J during year Y. We define , as

‘:log10(n) , ð1Þ

where n is the number of accrued citations.

Figures 1A,B display estimates of the probability density function

p(‘jJ,Y ) for the Journal of Biological Chemistry for different years. Two

patterns are apparent from the data. First, the distribution for each of

the years considered shows a tendency to peak around a central

value, that is, there is a characteristic value for ,. Second, after about

10 years, the distribution has converged to a steady-state functional

form, pss(‘jJ). The explanation for this apparently counter-intuitive

observation is that papers with a small number of citations have

stopped accruing citations, while the trickle of citations to the most

highly-cited papers is small when compared to the already accrued

citations, and thus does not significantly change the value of the

logarithm of the number of citations.

These results are not restricted to the Journal of Biological

Chemistry; p(‘jJ,Y ) displays these two characteristics for nearly all

journals we analyzed (see Appendix S2). However, as illustrated in

Figure 1C, the mean value of , in the steady state,

‘ss(J)~
X
‘0§0

‘0p(‘0jJ) , ð2Þ

and the time t(J) needed to reach the steady state depend on the

journal—for example, t(Astrophysical Journal) is more than twice

t(Circulation), yet ‘ss(Circulation)w‘ss(Astrophysical Journal).

The existence of a steady state for p(‘ J,Yj ) prompts us to

investigate: (i) the functional form of pss(‘jJ), and (ii) whether there

is a universal functional form for all journals. As others have noted

[19], many papers remain uncited even decades after their

publication. For those papers that do get cited, the total number of

citations varies over five orders of magnitude (the most highly-cited

paper in the data [20] had received 196,452 citations by the end of

2006). Nevertheless, , follows a distribution that is approximately

normal (Figures 1A,B).

In order to explain our empirical findings, we develop a model

for the asymptotic number of citations a paper published in

journal J will receive. Our first assumption is that the papers

published in journal J have a normal distribution of ‘‘quality’’,

qMN(m,s), where m and s depend on J. The simplest model is to

equate the ultimate impact with quality, ,<q, so that n<10q.

However, since 10q is a continuous random variable, whereas n is

integer-valued, the model needs further refinement. In particular,

the model must also specify how the continuous values of q map

onto the discrete values of n. For generality, we introduce an

additional parameter c to the model, such that

n~floor 10q{cð Þ : ð3Þ

One can interpret c as the value of q at which one can expect a

paper to get cited once (Figure 2A). More generally, one could

write n = floor(10q+e2c), where eMN(0,se), to account for external

influences to the number of citations. For example, assuming c= 0

and q = 3, one would get n = 794 for e= 20.1 and n = 1258 for

e= 0.1. However, if e is independent of J, ‘ss(J) will not be

significantly affected by e. Thus, even though the number of

citations to individual papers may change, the mean for a journal

will not. To demonstrate the agreement between our model and

the data, in Figure 2 we plot the moments of the empirical

distributions for each journal together with the predictions of our

model for those quantities. It is visually apparent that the model

provides a close description of the data.

Discussion

Our finding that the distribution of number of citations is log-

normal is in agreement with recent generative models of the

citation network [21,22] that predict a log-normal distribution for

subsets of papers related by content similarity. Note that this result

is not in disagreement with prior claims about the power-law

behavior of the citation distribution [23], as the convolution of

many log-normal distributions with different means can yield a

distribution that can be hard to distinguish from a power law.

The findings reported in Figures 1 and 2 demonstrate that there

is a quantity, related to the ultimate impact of a paper, which for

papers published in a given journal is normally distributed. For all

papers published in journal J, that quantity has a well-defined

mean, q̄(J) = m, implying that the average q of the papers is

representative of the q of all the papers published in the journal and,

thus, of the q of the journal.

An Empirical Citation Analysis
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Our findings thus suggest the possibility of ranking journals

according to q̄(J). To this end, we turn to a heuristic used in

information retrieval called the Probability Ranking Principle

[24]. This principle dictates that the optimal ranking of a set of

journals will be the one that maximizes the probability that given a

pair of papers (a,b) from journals A and B, respectively, q(a).q(b) if

A is above B in that ranking. This probability is also known as the

multi-class ‘‘area under curve’’ (AUC) statistic [25–27] (see

Methods and Appendix S1 for details).

We rank journals in different fields according to both q̄(J) and the

JIF. Figure 3 illustrates the effectiveness of these two ranking schemes

for separating papers into different journals based on their impact. In

Appendix S3, we provide rankings and the value of the multi-class

AUC statistic for all fields. Our analysis demonstrates that the

ranking scheme defined by q̄(J) is very similar to the optimal ranking.

Our analysis also demonstrates that the mean number of citations

and the JIF provide particularly inaccurate ranking schemes. This

finding is particularly important because some journals and some

fields benefit greatly in reputation from the biases in the JIF, while

others are at a disadvantage (see Figure 4 and Tables 1 and 2).

The bias introduced by the JIF arises directly from the major

methodological problems raised against using citation analysis to

evaluate journals. First, the mean number of citations to papers

published in a journal is not representative of the number of
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Figure 1. Time evolution of the distribution of number of citations of the papers published in a given academic journal. (A) Probability
density function p(‘jJ,Y ), where Y is a year in the period 1998–2004, J is the Journal of Biological Chemistry, and ,;log10(n) where n is the number of
citations accrued by a paper between its publication date and December 31, 2006. Because the papers published in those years are still accruing citations
by December 2006, the distributions are not stationary, but instead ‘‘drift’’ to higher values of ,. (B) p(‘jJ,Y ) for the Journal of Biological Chemistry and for Y
in the period 1991–1993. For this period, the distributions are essentially identical, indicating that p(‘jJ,Y ) has converged to its steady-state form pss(‘jJ).
The steady-state distribution is well described by a normal with mean 1.65 and standard deviation 0.35 (black dashed curve). (C) Time dependence of
‘(J,Y ) for three journals: Astrophysical Journal, Ecology, and Circulation. As for the Journal of Biological Chemistry, we find that after some transient period,
‘(J,Y ) reaches a stationary value ‘ss(J) (see Methods). The orange region highlights the set of years for which we consider that p(‘jJ,Y ) is stationary. The
time scale t(J) for reaching the steady-state strongly depends on the journal: t(Astrophysical Journal) = 18 years, t(Ecology) = 12 years, and
t(Circulation) = 9 years. Significantly, we find no correlations between t(J) and ‘ss(J), whose values are 1.44 for Astrophysical Journal, 1.70 for Ecology,
and 1.66 for Circulation. (D) Pairwise comparison of citation distributions for different years for a given journal. We show the matrices of p-values obtained
using the Kolmogorov-Smirnov test [29] for the Astrophysical Journal, Ecology, and Circulation. We color the matrix elements following the color code on
the right. p-values close to one mean that it is likely that both distributions come from a common underlying distribution; p-values close to zero mean that
is it very unlikely that both distributions come from a common underlying distribution. We then use a box-diagonal model [28] to identify contiguous
blocks of years for which the p-value is large enough that the null hypothesis cannot be rejected. The white lines in the matrices indicate the best fit of a

box-diagonal model. We identify the first box with more than 2 years for which
d‘

dt
v0:005 to be the steady-state period (see Methods).

doi:10.1371/journal.pone.0001683.g001
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citations to each individual paper [11], a point that our analysis

systematically confirms. However, we show that q̄(J) is represen-

tative of the q of the papers published in journal J, that being the

reason why ranking according to q̄(J) is efficient. Second, citation

behavior varies by field [11]. Our analysis again confirms this.

Nevertheless, we show that by comparing the steady-state behavior

of a set of journals and keeping comparisons to within fields, one

can accurately rank a set of journals.

Our findings provide a quantitative measure of the efficacy of

academic journals, through the work of editors and reviewers, at

organizing research based on their prediction of the ultimate impact

of that research. Even though far from perfect, the journal system
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Figure 2. Modeling the steady-state distributions of the number of citations for papers published in a given journal. (A) Our model
assumes that the ‘‘quality’’ of the papers published by a journal obeys a normal distribution with mean m and standard deviation s. The number of
citations of a paper with quality qMN(m,s) is given by Eq. (3). Because the quality is a continuous variable whereas the number of citations is an integer
quantity, the same number of citations will occur for papers with qualities spanning a certain range of q. In particular, all papers for which
q,log10(1+c) will receive no citations. In the panel, the areas of differently shaded regions yield the probability of a paper accruing a given number of
citations. (B) Scatter plot of the estimated value of s versus ‘ss for all 2,267 journals considered in our analysis (see Methods and Appendices S1 and
S4 for details on the fits). Notice that s is almost independent of ‘ss. The solid line corresponds to s = 0.419, the mean of the estimated values of s for
all journals (see Methods). (C) Scatter plot of the estimated value of c+1 for versus ‘ss . Notice the strong correlation between the two variables. The

solid line corresponds to c(‘ss)z1~e‘ss (see Methods for details on the fit). (D) Fraction of uncited papers as a function of ‘ss. For this and all

subsequent panels, solid lines show the predictions of the model using c(‘)~e‘ss {1, s = 0.419, and a value of m for each ‘ss (see Methods). (E)
Variance of , as a function of ‘ss(J). (F) Skewness of , as a function of ‘ss(J). The skewness of the normal distribution is zero. (G) Kurtosis excess of ,
as a function of ‘ss(J). The kurtosis excess of the normal distribution is zero. Note how, for the case of ‘ssv0:5, the moments of the distribution of
citations for cited papers deviate significantly from those expected for a normal distribution. In contrast, for ‘ssw1, only a small fraction of papers
remains uncited, so deviations from the expectations for a normal distribution are small.
doi:10.1371/journal.pone.0001683.g002
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and the ranking of journals provides a powerful heuristic with which

to locate the research that will ultimately have the largest impact.

Methods
Identifying steady-state regions

We use the time evolution of ‘(J,Y ) to identify transient and

steady-state periods. (Figures 1C,D) In the steady state,

d‘(J,Y )

dY
&0 whereas in the transient period

d‘(J,Y )

dY
=0. Because

of the noisy fluctuations in the time series, we use a moving

average considering the five previous years of the derivative. We

define the duration of the transient regime as t= 20062Y0, where

Y0 is largest value of Y for which the moving average is ,0.005.

We also determine the periods during which the citation

distribution is stable. To this end, we compare the citation

distribution for all pairs of years using the Kolmogorov-Smirnov

test and fit a box-diagonal model to the matrix of p-values. We then

identify the periods for which we cannot reject the hypothesis that

the citation distribution is stationary [28]. The distribution that we

use for comparison is the most recent stationary period before Y0.

Estimating m, s, and c for a journal
For each steady-state citation distribution, our model (Eq. 3) has

three parameters that must be estimated: m, s, and c. To the best

of our knowledge, no maximum likelihood estimation procedures

exist for the parameters of this model, so we estimate the

parameters by minimizing the x2 statistic (see Appendix S4 for

plots of all the fits)

x2~
X

n

pn{p n m,s,cjð �½ Þ2

p n m,s,cjð Þ , ð4Þ

where pn is the fraction of papers with n citations, and p(n m,s,cj ) is

the probability of having a paper with n citations according to our

model (Eq. 3)

p(n m,s,cj )~

ðlog10(cz1)

{?

dqffiffiffiffiffiffiffiffiffiffi
2ps2
p exp {

(q{m)2

2s2

 !
n~0

ðlog10(nzcz1)

log10(nzc)

dqffiffiffiffiffiffiffiffiffiffi
2ps2
p exp {

(q{m)2

2s2

 !
n§1

8>>>>><
>>>>>:

: ð5Þ

In practice, we bin the empirical data so that we have at least

ten data points in each bin. This is especially important for the tails
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Figure 3. Comparison of citation-based journal ranking schemes.
We present results for 13 journals that the ISI classifies primarily in
experimental psychology, and 36 journals that the ISI classifies primarily in
ecology (see Appendix S3 for other fields). For every pair of journals, Ji and
Jj, belonging to the same field, we obtain the probability pij that a
randomly selected paper published in Ji has received more citations than
a randomly selected paper published in Jj. We rank the journals in each
field according to three schemes: (A) optimal ranking RAUC, that is, the
ranking that maximizes pij for R(i),R(j); (B) ranking according to
decreasing q̄(J); (C) ranking according to decreasing JIF. We plot {pij}
matrices for each of the fields and ranking schemes using the color
scheme on the right. Green indicates adequate ranking, whereas red
indicates inadequate ranking. It is visually apparent that the ranking
according to decreasing q̄(J) provides nearly optimal ranking, whereas
ranking according to decreasing JIF does not. As an example, consider the
journals Brain and Cognition and Journal of Experimental Psychology:
Learning, Memory, and Cognition. The JIF ranks Brain Cogn. third and J. Exp.
Psy. fourth. However, the median number of cumulative citations to the
papers published in the latter is 34, and only 3 for papers published in the
former. Not surprisingly, the probability of a randomly selected paper
published in J. Exp. Psy. to have received more cumulative citations than a
randomly selected paper published in Brain Cogn. is 0.88.
doi:10.1371/journal.pone.0001683.g003
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of the distribution. Then, the contribution to x2 is

~ppn1,n2
{~pp ½n1,n2� m,s,cjð Þ

� �2
~pp ½n1,n2� m,s,cjð Þ , ð6Þ

where ~ppn1,n2
~
Pnƒn2

n~n1

pn

n2{n1z1
, and ~pp ½n1,n2� m,s,cjð Þ~Pnƒn2

n~n1
p n m,s,cjð Þ.

The fitting parameters suggest that s has a slight dependency on

‘ (Figure 2B). In contrast, we find that there is a strong

dependency of c on ‘ (Figure 2C)

c(‘)z1~C0 eC1 ‘ ð7Þ

with C0 = 0.9160.02 and C1 = 1.0360.02. For simplicity, when

comparing properties of the empirical distributions to model

Table 1. Rankings for the field of ecology.

Rank pss(qjJ) n Steady state

AUC JIF Journal abbreviation q̄ s n̄ Q2 JIF period

1 1 ECOLOGY 1.75 0.33 71.1 52 4.782 1974–1994

2 2 AM NAT 1.72 0.40 80.4 48 4.660 1967–1992

3 4 EVOLUTION 1.67 0.35 69.8 43 4.292 1973–1993

4 14 BEHAV ECOL SOCIOBIOL 1.60 0.31 44.4 36 2.316 1978–1990

5 8 J ANIM ECOL 1.57 0.34 47.5 33 3.390 1954–1996

6 5 J ECOL 1.55 0.35 45.1 32 4.239 1973–1996

7 15 MAR ECOL-PROG SER 1.47 0.31 33.6 26 2.286 1991–1995

8 6 CONSERV BIOL 1.42 0.42 37.5 23 3.762 1988–1998

9 7 FUNCT ECOL 1.42 0.32 29.6 23 3.417 1989–1996

10 9 OIKOS 1.41 0.35 34.2 22 3.381 1974–1995

11 10 OECOLOGIA 1.40 0.29 27.5 22 3.333 1994–1997

12 17 J EXP MAR BIOL ECOL 1.31 0.30 23.5 18 1.919 1988–1995

13 3 J APPL ECOL 1.31 0.36 25.6 17 4.527 1965–2000

14 23 BIOTROPICA 1.30 0.38 25.5 17 1.391 1975–1994

15 13 J VEG SCI 1.28 0.36 22.4 16 2.382 1989–1999

16 22 POLAR BIOL 1.27 0.33 20.8 16 1.502 1981–1994

17 28 ENVIRON BIOL FISH 1.24 0.42 21.0 15 0.934 1981–1990

18 12 BIOL CONSERV 1.21 0.38 22.1 14 2.854 1988–1996

19 11 J BIOGEOGR 1.21 0.36 20.4 13 2.878 1976–1998

20 21 J WILDLIFE MANAGE 1.19 0.34 18.3 13 1.538 1984–1995

21 18 J CHEM ECOL 1.11 0.31 14.4 10 1.896 1995–1998

22 32 AM MIDL NAT 1.07 0.36 14.5 9 0.667 1964–1995

23 26 WILDLIFE RES 1.05 0.32 11.6 9 1.032 1990–1997

24 24 PEDOBIOLOGIA 0.99 0.41 12.8 8 1.347 1965–1997

25 20 AGR ECOSYST ENVIRON 0.97 0.44 11.4 7 1.832 1982–2001

26 19 ECOL MODEL 0.91 0.40 11.3 6 1.888 1977–1998

27 30 J RANGE MANAGE 0.90 0.37 9.9 6 0.859 1966–1995

28 29 BIOCHEM SYST ECOL 0.89 0.36 9.2 6 0.906 1980–1994

29 31 WILDLIFE SOC B 0.87 0.40 8.7 6 0.843 1983–1998

30 25 J ARID ENVIRON 0.83 0.38 7.8 5 1.238 1989–2000

31 34 SOUTHWEST NAT 0.72 0.38 5.9 4 0.309 1980–1994

32 33 J NAT HIST 0.72 0.38 6.4 4 0.631 1966–2000

33 35 CAN FIELD NAT 0.69 0.40 5.8 3 0.073 1983–1993

34 16 LANDSCAPE URBAN PLAN 0.67 0.41 5.3 3 2.029 1985–2004

35 27 J SOIL WATER CONSERV 0.65 0.49 7.0 3 0.949 1966–2002

36 36 NAT HIST -0.32 0.44 0.3 0 0.059 1989–2005

We consider the 36 journals that are primarily classified in the field of ecology according to the ISI. We rank journals according to: (i) the maximization of the multi-class
AUC statistic for the steady-state distributions pss(‘jJ) and (ii) the JIF; q̄ and s are the model parameters obtained using c(‘)~e‘{1; n̄ and Q2 are the mean and median

number of citations in the steady state. We also show the steady-state period.
doi:10.1371/journal.pone.0001683.t001
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predictions (Figures 2D–G), we assume that s = 0.419 and that

c(‘)~{1zexp(‘). Assuming these two dependencies, one can

then obtain a relationship between m and ‘ as

‘~

P?
n~1 p n m,s,c(‘)

��� �
log10(n)

1{p 0 m,s,c(‘)
��� � : ð8Þ

As shown in Figure 2C, the estimated value of c displays large

fluctuations to which the remaining parameters in the fit (m,s) are

very sensitive. In order to obtain a less noisy estimate for those

parameters, we fix c using the relationship in Eq. 7, and estimate m
and s by minimizing x2. The estimate we obtain for m= q̄ is the

one we use for ranking journals (Figure 3 and Tables 1, 2).

Calculating multi-class AUC
We define the best ordering as the one that maximizes the value

of the multi-class AUC statistic. For a set of journals F~fJxg and

a journal ranking R, we define the multi-class AUC statistic

M(F,R) as [27]

M(F ,R)~
X

(JA ,JB)[F
R(A)vR(B)

wAB pAB(R) : ð9Þ

We denote as pAB(R) the probability that given a pair of papers

(a,b) from journals JA and JB such that R(A),R(B), then q(a).q(b).

We denote as wAB the weight we assign to each probability, which

depends on the number of papers NA and NB published in journals

JA and JB during the steady-state period, as follows

wAB~
NA NBP
ivj Ni Nj

ð10Þ

In principle, one could calculate the multi-class AUC statistic

for every permutation of the ordering of journal citation

distributions, and choose the ordering that gives the highest

value. However, the number of permutations of a sequence of

even modest size is unwieldy. Fortunately, in almost all cases,

the distributions obey the property of transitivity, that is, if a.b

and b.c, then a.c, which simplifies the optimization task. In the

few cases where the transitivity condition does not hold, we

resort to brute-force optimization, and resolve the ambiguity in

the ordering by permuting the order of each distribution and

finding the permutation that maximizes the multi-class AUC

statistic.

Supporting Information

Appendix S1 Supporting information text, and description of

other supporting information files.

Found at: doi:10.1371/journal.pone.0001683.s001 (0.06 MB

PDF)

Appendix S2 Citation history for the 2,266 journals included in

our analysis in alphabetical order. For a detailed description of the

plots see the caption of panel C in Figure 1.

Found at: doi:10.1371/journal.pone.0001683.s002 (19.10 MB

PDF)

Appendix S3 Comparison of ranking schemes for all the fields

listed in the WoS.

Found at: doi:10.1371/journal.pone.0001683.s003 (12.95 MB

PDF)

Appendix S4 Fit to the steady-state citation distribution for the

2,266 journals included in our analysis in alphabetical order.

Found at: doi:10.1371/journal.pone.0001683.s004 (21.06 MB

PDF)

Table S1 Median change of rank from JIF to optimal ranking

for all fields with at least two journals with more than 50 articles

published during the steady-state period.

Found at: doi:10.1371/journal.pone.0001683.s005 (0.00 MB

TXT)

Table 2. Rankings for the field of experimental psychology.

Rank pss(qjJ) n Steady state

AUC JIF Journal abbreviation q̄ s n̄ Q2 JIF period

1 4 J EXP PSYCHOL LEARN 1.55 0.35 47.5 34 2.601 1992–1995

2 6 J EXP PSYCHOL HUMAN 1.56 0.38 52.1 32 2.261 1974–1995

3 2 PSYCHOPHYSIOLOGY 1.47 0.36 41.8 27 3.159 1985–1995

4 1 NEUROPSYCHOLOGIA 1.48 0.41 48.6 27 3.924 1964–1995

5 10 MEM COGNITION 1.38 0.40 34.0 21 1.512 1977–1997

6 5 BRAIN LANG 1.25 0.33 22.9 16 2.317 1992–1997

7 12 J EXP ANAL BEHAV 1.22 0.38 23.8 14 1.221 1970–1991

8 11 PERCEPT PSYCHOPHYS 1.20 0.41 23.5 13 1.482 1965–1996

9 8 J EXP CHILD PSYCHOL 1.15 0.39 20.0 12 2.062 1963–1999

10 9 PERCEPTION 1.07 0.45 17.7 9 1.585 1973–1995

11 7 ACTA PSYCHOL 0.84 0.55 13.2 5 2.094 1955–2001

12 3 BRAIN COGNITION 0.73 0.61 9.1 3 2.858 1995–1999

13 13 PERCEPT MOTOR SKILL 0.54 0.42 4.5 2 0.333 1970–1995

We consider the 13 journals that are primarily classified in the field of experimental psychology according to the ISI. We rank journals according to: (i) the maximization
of the multi-class AUC statistic for the steady-state distributions pss(‘jJ) and (ii) the JIF; q̄ and s are the model parameters obtained using c(‘)~e‘{1; n̄ and Q2 are the
mean and median number of citations in the steady state. We also show the steady-state period.
doi:10.1371/journal.pone.0001683.t002
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