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Tensorial and bipartite block models for link prediction in layered networks and temporal networks
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Many real-world complex systems are well represented as multilayer networks; predicting interactions in
those systems is one of the most pressing problems in predictive network science. To address this challenge,
we introduce two stochastic block models for multilayer and temporal networks; one of them uses nodes as
its fundamental unit, whereas the other focuses on links. We also develop scalable algorithms for inferring the
parameters of these models. Because our models describe all layers simultaneously, our approach takes full
advantage of the information contained in the whole network when making predictions about any particular
layer. We illustrate the potential of our approach by analyzing two empirical data sets: a temporal network of
e-mail communications, and a network of drug interactions for treating different cancer types. We find that
multilayer models consistently outperform their single-layer counterparts, but that the most predictive model
depends on the data set under consideration; whereas the node-based model is more appropriate for predicting
drug interactions, the link-based model is more appropriate for predicting e-mail communication.
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I. INTRODUCTION

Imagine a team of researchers looking for promising drug
combinations to treat a specific cancer type for which current
treatments are ineffective. The team has data on the effect
of certain pairs of drugs on other cancer types, but the data
are very sparse—only a few drug pairs have been tested on
each cancer type, and each drug pair is tested in a few cancer
types, at best, or has never been tested at all. The challenge
is to select the most promising drug pairs for testing with the
target cancer type, so as to minimize the cost associated to
unsuccessful tests.

We can formalize this challenge as the following inference
problem: We have a partial observation of the pairwise inter-
actions between a set of nodes (drugs) in different network
layers (cancer types), and we need to infer which are the
unobserved interactions within each layer (drug interactions
in each cancer type). This challenge is relevant for the many
systems that can be represented as multilayer networks [1–4],
and is also formally analogous to the challenge of predicting
the existence of interactions between nodes in time-resolved
networks [5–11]. For instance, we would face the same sit-
uation if we had data about the daily e-mail or phone com-
munications between users, and wanted to infer the existence
of interactions between pairs of users on a certain unobserved
day; in this case each layer would be a different day.
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Here, we introduce new generative models that are suit-
able to address the challenge above. We model all layers
concurrently, so that our approach takes full advantage of
the information contained in all layers to make predictions
for any one of them. Our approach relies on the fact that
having information on the interactions in different layers aids
the inference process; in other words, that the interactions in
layers different from the one we are interested in are infor-
mative about the interactions in the query layer. For instance,
biologically similar cancer types are likely to show similar
responses to the same drug pairs, and similar days of the week
(for instance weekdays versus weekends) are also likely to
display similar communication patterns for pairs of users.

Our approach is based on recent results on probabilis-
tic inference on stochastic block models, which has been
successful at modeling the structure of complex networks
[12–14] and at predicting the behavior in biological [15] and
social [16,17] systems. In particular, we focus on mixed-
membership stochastic block models [18], in which nodes are
allowed to belong to multiple groups simultaneously. With
these models it is possible to model large complex neworks
with millions of links and, because they are more expres-
sive than their fixed-membership counterparts, their predictive
power is often superior [17]. We propose two different mixed-
membership multilayer network models: a tensorial model
that takes nodes as the basic unit to describe interactions in
different layers, and a bipartite model that takes links (or pairs
of nodes) as the basic unit. In our models layers, as well as
nodes or links, are grouped based on the interaction patterns
observed in them. This is in contrast to existing approaches,
which do not take full advantage of the information that each
layer carries about the structure of other layers.

We illustrate our models and inference approaches by ana-
lyzing two data sets: a network of drug interactions in different
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cancer types, and a temporal network of e-mail communica-
tions [19]. We find that modeling all layers simultaneously,
and assuming that they can be grouped, results in link pre-
dictions that are more accurate (in terms of standard metrics
such as precision and recall) than those of single-layer models
and of simpler multilayer models. However, which of the
two models (node-based or link-based) is the most predictive
depends on the data set under consideration. Indeed, whereas
for drug interactions drug groups are very informative and,
therefore, node-based models are most predictive, temporal
e-mail networks are best described in terms of links, that is, in
terms of the relationships between pairs of individuals rather
than the individuals themselves.

II. TENSORIAL AND BIPARTITE MIXED-MEMBERSHIP
BLOCK MODELS FOR LAYERED NETWORKS

We aim to model N nodes interacting by pairs in M differ-
ent layers; these layers correspond to the different contexts in
which the nodes interact (for example, different cancer types
or time windows). We represent these interactions as a layered
graph G whose links (i, j, �) represent interactions between
nodes i and j in layer (or at time) �. Moreover, we allow for
multivalued interactions so that (i, j, �) can be of different
types ri j� ∈ R, where R is a finite set. Note that we can use
this formalism to model labels, attributes or ratings associated
to the interactions [15,17]; graphs with binary interactions are
therefore a particular case within this general framework in
which ri j� = 1 if the interaction occurs and ri j� = 0 if it does
not.

We consider two types of generative models: one that takes
individual nodes as its basic unit, and one that models links (or
node pairs). The first generative model, based on individual
nodes, is as follows. There are K groups of nodes and L groups
of layers. We assume that the probability that a node in group
α has an interaction of type r with a node in group β in a
layer in group γ is pαβγ (r). Furthermore, we assume that both
nodes and layers can belong to more than one group. To model
such mixed-group memberships [18], to each node i we assign
a vector θi ∈ RK , where θiα ∈ [0, 1] denotes the probability
that node i belongs to group α. Similarly, to each layer � we
assign a vector η�γ ∈ RL. These vectors are normalized so that∑

α θiα = ∑
γ η�γ = 1. The probability that link (i, j, �) is of

type r is then

Pr[ri j� = r] =
∑

αβγ

θiαθ jβη�γ pαβγ (r). (1)

Note that if link types are exclusive (i.e., each edge can be
of only one type), the probability tensor must satisfy the
constraint

∑
r∈R pαβγ (r) = 1. Since this model is an extension

of the mixed-membership stochastic block model [17,18]
where the probability matrices become tensors because of the
multiple layers [1], we call it the tensorial mixed-membership
stochastic block model (T-MBM).

Our second generative model for layered networks is as
follows. Instead of assuming that nodes belong to groups, we
assume that it is links (or pairs of nodes, rather than individual
nodes) that belong to groups [8]. In this model we have J
groups of links, and the probability that a link ei j ≡ e in group
α is of type r in a layer � in group γ is pαγ (r). We also assume

that links can belong to more than one group so that ζeα is the
probability that link e belongs to group α and

∑
α ζeα = 1.

As before, to each layer � we also assign a vector η� ∈ RL of
group memberships. Then, the probability that a given link in
a particular layer is of type r is

Pr[ri j� = r] = Pr[re� = r] =
∑

αγ

ζeαη�γ pαγ (r), (2)

where, as before, if link types are exclusive the probability
matrices satisfy the condition

∑
r∈R pαγ (r) = 1. This model

can be seen as a bipartite model with two types of elements,
links and layers. In this representation, a link ei j has a connec-
tion of type r to a layer � if ri j� = re� = r. Therefore, we call
this model the bipartite mixed-membership stochastic block
model (B-MBM).

These models are novel in a number of ways. First, unlike
other models of multilayer networks [8,9], they do not assume
any particular order in the layers, and therefore do not impose
any restrictions to how layers should be grouped. This is in
contrast to approaches for temporal networks that can only
group layers corresponding to consecutive times. While such
restriction simplifies the task of grouping layers, it also elimi-
nates the possibility of identifying, for example, periodicities
in temporal networks. More importantly, this restriction pre-
vents models from being applicable to nontemporal multilayer
networks. Our models eliminate this restriction.

Second, unlike other models of multilayer and temporal
networks, our models do not assume that: (i) the group-to-
group connectivity matrices are independent from one layer
to another, as do models based on the original multigraph
stochastic block model [20–22]; (ii) layers belong to a single
group of layers [8,9,23]. In the former case, all layers are
completely different from each other, whereas in the latter
layers are statistically identical to the others in the same
group because they are assumed to come from the exact same
generative model. Rather, in our models, layers come from
mixtures of these generative models, so that they can be all
distinct but still share some features with other layers. This
means that our models are able to describe and predict missing
links in layers that are unlike all other observed layers in the
multiplex network, or predict interactions in layers that are
only partially similar to other layers. The mixed membership
also allows us to develop efficient expectation-maximization
algorithms that can be massively parallelized [24] and, at
the same time, provide better predictions than single-group
models [17].

Our models are also different from matrix and tensor
factorization approaches for temporal networks [25,26] in that
they allow for richer and flexible representations of the data.
Indeed, our tensorial model is a generalization of tensor fac-
torization, in the same way that single-layer stochastic block
models are the appropriate network generalization of matrix
factorization [17]. Our models also differ from Bayesian
Poisson Tucker decomposition [27] in that they can be used
on networks with labeled links (for example, synergistic,
additive, and antagonistic links in the cancer drug-interaction
data set), which is not possible in Poisson-based models.

Finally, it is worth noting that all these related models
assume the existence of node groups. The link-based B-MBM
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is different from all of them in that it assumes that it is links
that belong to groups, and in that sense is closer in spirit to the
approach taken in Ref. [28].

III. INFERENCE EQUATIONS AND
EXPECTATION-MAXIMIZATION ALGORITHMS

Given a set GO of observed links types, our goal is to
predict the types ri j� of links (i, j, �) �∈ GO whose type is
unknown. Because marginalizing over the parameters in our
models [Eqs. (1) and (2)] is too time consuming, here we
present a maximum-likelihood approach (and the correspond-
ing expectation-maximization algorithms) for the two models
above. Note that for complex data sets our models are bound
to be highly dimensional. As a result, we expect the likelihood
landscape to be very rugged with many local maxima with
comparable likelihood values that correspond to different
model parameters. To take such quasidegeneracy into account,
instead on making predictions based on a single maximal-
likelihood solution, we make predictions by averaging over
the (local) maximum-likelihood model solutions obtained for
different random initializations of the model parameters (see
Appendix C and Ref. [29]).

A. Tensorial model

Given the generative T-MBM model in Eq. (1), and abbre-
viating its parameters as θ, η, p, the likelihood of the model is

P(GO|θ, η, p) =
∏

(i j�)∈GO

∑

αβγ

θiαθ jβη�γ pαβγ (ri j�). (3)

As we show below (Appendix A), the values of the pa-
rameters that maximize this likelihood satisfy the following
equations:

θiα =
∑

( j�)∈∂i

∑
βγ ωi j�(α, β, γ )

di
, (4)

η�γ =
∑

(i j)∈∂�

∑
αβ ωi j�(α, β, γ )

d�

, (5)

pαβγ (r) =
∑

(i, j,�)∈GO|ri j�=r ωi j�(α, β, γ )
∑

(i, j,�)∈GO ωi j�(α, β, γ )
. (6)

Here, ∂i = {( j, �)|(i, j, �) ∈ GO} are the set of observed layer-
specific neighbors of node i and di = |∂i| is the total degree
of the node in all the layers. Similarly, ∂� = {(i, j)|(i, j, �) ∈
GO} is the set of observed links in layer � and d� = |∂�|.
Finally, ωi j�(α, β, γ ) is the estimated probability that the type
of a given link ri j� is due to i, j, and � belonging to groups
α, β, and γ respectively, and is given by

ωi j�(α, β, γ ) = θiαθ jβη�γ pαβγ (ri j�)∑
α′β ′γ ′ θiα′θ jβ ′η�γ ′ pα′β ′γ ′ (ri j�)

. (7)

These equations can be solved iteratively with an
expectation-maximization algorithm, starting with an initial
estimate of θ, η, and p and, then, repeating the following
steps: (i) use Eq. (7) to compute ωi j�(α, β, γ ) for (i, j, �) ∈
GO (expectation step); (ii) use Eqs. (4)–(6) to compute θ, η,
and p (maximization step).

B. Bipartite model

Similarly, the likelihood of the B-MBM is

P(GO|ζ, η, p) =
∏

(e,�)∈GO

∑

αγ

ζeαη�γ pαγ (re�), (8)

and the maximum-likelihood estimators of the parameters
satisfy

ζeα =
∑

�∈∂e

∑
βγ φe�(α, γ )

de
, (9)

η�γ =
∑

e∈∂�

∑
α φe�(α, γ )

d�

, (10)

pαγ (r) =
∑

(e�)∈GO|re�=r φe�(α, γ )
∑

(e�)∈GO φe�(α, γ )
. (11)

Here ∂e = {�|(e, �) ∈ GO} are the observations of link ei j in
all layers and de = |∂e|. As before, ∂� = {e|(e, �) ∈ GO} are
the observed links in layer � and d� = |∂�|. Finally, φe�(α, γ )
is the estimated probability that the type of a specific link re�

is due to e and � belonging to groups α and γ , respectively;
we can compute φe�(α, γ ) as

φe�(α, γ ) = ζeαη�γ pαγ (re�)∑
α′γ ′ ζeα′η�γ ′ pα′γ ′ (re�)

. (12)

Like in the tensorial model, these equations can be solved
iteratively using an expectation-maximization algorithm.

IV. VALIDATION ON SYNTHETIC DATA

We start by testing the performance of our expectation-
maximization inference algorithms on synthetic networks
generated with the T-MBM and the B-MBM. In each case
we generate one network with 12 layers, one with 24, and
one with 36, all of them with 128 nodes and two types of
link, active and inactive (which can be interpreted as presence
or absence of link, respectively). The number of groups of
nodes, node pairs, and layers is always K = J = L = 4. The
values of θiα, ζeα , and η�γ are drawn from a beta distribution
Beta(a, b) with a = 0.2 and b = 0.3, and then normalized.
Similarly, the values of the elements of p are drawn from a
beta distribution with a = 0.2 and b = 1.0, and then normal-
ized.

To evaluate the ability of the expectation-maximization
inference algorithms to recover the original networks, we
calculate the area under the ROC curve (AUC), the precision,
and the recall in fivefold cross-validation experiments (see
Appendix C for details). The AUC measures how well a
model separates active from inactive links. In particular, it
measures the frequency with which an active unobserved link
is assigned a higher probability to be active than an inactive
unobserved link. Precision accounts for the fraction of links
predicted to be active that are indeed active. Recall gives the
fraction of active links that are predicted to be active. To
calculate both precision and recall, we need to set a threshold
T that allows us to map probabilities P[ri jl = 1] into a binary
variable, so that the model predicts that the link is active if
P[ri jl = 1] � T . In what follows, we choose T in such a way
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that the density of active links in the test set is predicted to be
the same as in the training set.1

We compare our inference algorithms to two different
baselines. The naive baseline takes into account all the obser-
vations of a link (i, j) in the training set. Then, it makes pre-
dictions for the unobserved link types ri jl (active or inactive)
based on the fraction of times link (i, j) has been observed to
be of type r in the training set

Pnaive[ri jl = r] =
∑

s|(i js)∈GO δr, ri js

Ni j
, (13)

where Ni j is the number of times the link (i, j) is observed in
the training set.

The second baseline, which we call the independent-layer
naive, estimates the probability of link (i, j, l ) being of type r
as the fraction of links of type r observed in layer l ,

Pnaive−IL[ri jl = r] =
∑

(kn)|(knl )∈GO δr, rknl

Nl
, (14)

where Nl is the number of links of any type observed in
layer l of the training set. The validation experiments confirm
that the inference algorithms are, in most situations, able to
recover the networks with as much accuracy as one could
possibly expect (Fig. 1). More precisely, when the inference
is carried out assuming that the number of groups is equal
or greater than the planted value K = J = L = 4, then AUC,
precision, and recall converge to the values one would obtain
by assigning to each link the exact probability that was used to
create the network using the model (although, in the B-MBM,
the number of groups used for the inference sometimes needs
to be larger than the planted number of groups). The only
exception to this is the B-MBM model when the number of
layers is 12; in this case some layers are extremely sparse
and some links are only active in one or very few layers,
so recovering the true model is virtually impossible. With
typical networks containing tens of layers (such as those we
investigate in the next section), we expect this limitation not
to be very significant.

V. MODEL COMPARISON ON REAL DATA

We perform experiments on two different data sets: the
time-resolved e-mail network of an organization spanning one
year [19], and a network of drug-drug interactions in different
cancer cell lines [30]. In the e-mail data set, we represent
each day as a different layer of the multilayer network, and
two users are considered to interact in a given day if they
send at least one e-mail in either direction during that day.
We consider several e-mail networks that correspond to e-mail
communications within organizational units (see Table I).

In the drug-drug interactions data set, each layer corre-
sponds to a different cancer cell line and we have information
on the effects of some drug pair combinations on some cancer
cell lines [30]. In contrast to the e-mail data set, in which all

1This particular choice of threshold leads, when models are prop-
erly calibrated in a frequentist sense, to both precision and recall
having very similar values (see Ref. [29]).

FIG. 1. Validation of the inference algorithms on synthetic net-
works. We generate networks using the tensorial model, T-MBM
(left column), and the bipartite model, B-MBM (right column). All
networks have K = J = L = 4 groups, 128 nodes, and 12, 24, or
36 layers (see text for details). We plot the AUC (top), precision
(middle), and recall (bottom) as a function of the number of groups
assumed by the inference algorithm. Each point shows the average of
a fivefold cross validation, and the error bars represent the standard
error of the mean (they are typically smaller than symbol sizes). The
dashed line represents the naive baseline, and the dotted line the naive
independent layers baseline (see text). The solid line indicates the
maximum possible performance, obtained by assigning to each link
a probability that is exactly the probability that was used to create the
network using the model.

the interactions (or lack of interaction) are observed, this data
set is sparsely observed—we have information about 1.5% of
the drug pairs. Specifically, the available experimental data is
a real-valued magnitude representing the combined efficiency
of two drugs on a particular cell line. These magnitudes range
from large absolute values, in which case the interaction is
categorized as synergistic (if it is positive) or antagonistic (if
it is negative), to small absolute values, in which case the inter-
action is categorized as additive. In an additive interaction, the
application of the two drugs together has an efficiency equal or
similar to the sum of the efficiencies of each drug administered
separately. By contrast, in a synergistic (antagonistic) interac-
tion the efficiency of the two drugs administered together is
significantly higher (lower) than the sum of the efficiencies of
each drug administered separately.

In Table I we show the characteristics of each data set
in terms of the types of links R, the total number of nodes,
the total number of layers, the total number of possible links,
and the number and fraction of actually observed links. In all
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TABLE I. Data set characteristics. The e-mail networks we consider are complete networks where no-links are treated as links of type 0,
so all potential links in the network are observed links. The drug-drug interaction network is a sparse data set, where we only have information
about 1.4% of the links. Each observed drug-drug interaction can be of three types: antagonistic (ANT), additive (ADD), or synergistic (SYN).

Data set Types of links R #Nodes #Layers #Observables Fraction observed #Observed

E-mail Unit 1 {0, 1} 104 365 1954940 100% |GO|1 = 20, 807
E-mail Unit 2 {0, 1} 114 365 2350965 100% |GO|1 = 27, 180
E-mail Unit 3 {0, 1} 116 365 2434550 100% |GO|1 = 23, 979
E-mail Unit 4 {0, 1} 118 365 2519595 100% |GO|1 = 17, 508
E-mail Unit 5 {0, 1} 141 365 3602550 100% |GO|1 = 23, 923
E-mail Unit 6 {0, 1} 161 365 4701200 100% |GO|1 = 20, 790
E-mail Unit 7 {0, 1} 225 365 9198000 100% |GO|1 = 60, 238
Drug-drug interactions {ANT, ADD, SYN} 69 85 199410 1.37% |GO|ANT = 385
Drug-drug interactions {ANT, non-ANT} 69 85 199410 1.37% |GO|ADD = 1, 543
Drug-drug interactions {SYN, non-SYN} 69 85 199410 1.37% |GO|SYN = 863

cases, we validate our models using a fivefold cross-validation
scheme as described for synthetic networks (Appendix C).

In addition to the two baselines described in the previ-
ous section, here we consider an independent-layer mixed-
membership stochastic block model for each layer so that,

PIL[ri jl = r] =
∑

αβ

θ l
iαθ l

jβ pl
αβ (r), (15)

where the superindex l denotes that each layer has its own set
of parameters. As in the tensorial and bipartite layered models,
parameters are subject to the constraints

∑
α θ l

iα = 1, ∀l and∑
r pl

αβ (r) = 1 ∀l . The parameters for this model are obtained
using the same method as in the tensorial and bipartite mixed-
membership models, but considering each layer separately
(see also Ref. [17]).

A. E-mail networks

We first consider the ability of each model and baseline
to predict unobserved links in the e-mail networks listed in
Table I. As before, to assess the performance of each model
for each network we measure AUC, precision, and recall (see
Appendix C for details).

In Fig. 2, we show that the bipartite link-based model
outperforms the tensorial and baseline models in all metrics
(see Fig. S1 for all other e-mail units). In these e-mail
networks, the AUC is quite high even for the naive baseline
because most pairs of individuals never exchange an e-mail
and therefore it is easy to predict links for which ri jl = 0
in all observed layers. The situation changes when we look
at precision and recall, which clearly show that the bipartite
model is consistently and significantly superior at predicting
links that are active. Somewhat surprisingly, we also find that
the tensorial node-based model often gives lower values than
the naive baseline model. The explanation lies in the fact that,
contrary to both the naive baseline and the bipartite models,
the tensorial model focuses primarily on nodes rather than
on links and is thus less likely to account for the fact that
many pairs of nodes in the network never communicate. More
precisely, the probabilities assigned by the tensorial model
depend on the product of the membership of the involved
nodes, and these memberships are rarely equal to zero. Hence,
according to the tensorial model most links have a nonzero

probability of existing, including those that are inactive for all
observations in the training set.

To further investigate the workings of each approach, we
analyze whether they are properly calibrated in a frequentist
sense, that is whether the fitted models are able to reproduce
statistical features of the training data set [31]. In particular,
we consider the marginal and probabilistic calibration of all
models. A model is probabilistically calibrated if events to

FIG. 2. Predictive performance of the models for e-mail net-
works. The left column shows results for Unit 1 and the right column
shows results for Unit 5. Top: AUC; middle: precision; bottom:
recall. Each bar represents the average of the fivefold cross validation
for a given model (see Appendix C). The error bars (shown as a
vertical line, which is small and not visible in some cases) represent
the standard error of the mean.
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FIG. 3. Probabilistic calibration of the models for e-mail net-
works. We show results for Unit 1 (left) and Unit 5 (right). Each point
in each line represents the average of the fivefold cross validation for
a given model, with error bars representing the standard error of the
mean. The Naive I.L. model is not included as it only assigned tiny
probabilities that resulted in a single data point near the origin.

which the model assigns a probability p are observed with
frequency p [31]. In our case, a model is calibrated if a
fraction p of the links for which P[ri jl = 1] = p actually exist.
A model is marginally calibrated if, on average, each type
of event is assigned a probability that is equal to the actual
frequency of such events in the training set. In our case, a
model is calibrated if the mean P[ri jl = 1] assigned to links
coincides with the density of the observed network [31].

In Fig. 3, we show that all models are relatively well
calibrated probabilistically (higher probabilities correspond
to higher frequencies), although the calibration is noticeably
worse for the network obtained for Unit 1 (see Fig. S2 for
the remaining units). In general, the bipartite model is better
calibrated than the tensorial model, which is consistent with
the higher predictive accuracy of the bipartite, link-based
model. Perhaps surprisingly, the naive baseline model appears
to have an even better probabilistic calibration across all units.
Figure 4 also shows that all models are marginally calibrated.

In light of these observations, the difference in perfor-
mance between bipartite and naive models must come from
the fact that the bipartite model is able to detect temporal
patterns that are relevant for the prediction of active links.
Indeed, we find that for all the e-mail networks we consider,
temporal layers (days) are classified either as week days or as
weekend days (and holidays), so that it is more likely for any
link to be active on a week day. Interestingly, this is all the
temporal information required to be able to accurately predict
whether a specific link is going to be active or not on a certain
day.2

B. Drug-drug interactions in cancer

Links in the drug-drug interaction network are of three
different types: synergistic, antagonistic, and additive; we

2Note that our results do not depend on the number of latent
dimensions allowed for the temporal layers L, since for L > 2 we
also find that temporal layers have η�γ �= 0 only for two latent
groups γ .
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FIG. 4. Marginal calibration of the models for e-mail networks.
Each line corresponds to a different model, and each point in a line
corresponds to a different e-mail network (see Table I). Each point
represents the average over the fivefold cross validation for a given
model. Error bars are smaller than symbols.

trained the models considering the three types of interac-
tions. However, because the interesting question is whether
synergistic or antagonistic interactions can be predicted, we
evaluated the performance of each model for each one of
the these two tasks. For instance, to evaluate the accuracy of
a model at predicting synergistic interactions, we binarized
model predictions into synergistic and nonsynergistic. We
then computed the metrics over this binary outcome as we
did for e-mail networks [Figs. 5–7; Fig. S3 shows that all
of the results below are qualitatively similar when training
our models on networks with only two types of interactions:
synergistic vs nonsynergistic interactions or antagonistic vs
nonantagonistic interactions].3

Contrary to what we observed for the e-mail networks, we
find that the tensorial model performs better than the bipartite
model. Our results thus suggest that for this data set, grouping
nodes (drugs) into groups summarizes more parsimoniously
the information relevant for prediction. This is consistent with
previous findings that show that mechanisms of action and
target pathways of drugs are related to the effect they display
when combined with other drugs, an information that is best
captured by node memberships than by link memberships
[15].

3Due to the sparsity of observations in these networks many inter-
actions were never observed in the training sets, and thus no group
memberships could be assigned to the links (ei j) corresponding to
those interactions. We solved this cold start problem by, at each
iteration, assigning them the average membership of the observed
interactions ζe = 〈ζ f 〉 f ∈GO . Analogously, if a node i had no observed
interactions in the training set, at each iteration we set its membership
vector as the average of membership vectors for nodes with observed
interactions θi = 〈θk〉k∈GO .
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FIG. 5. Predictive performance of the models for drug-drug in-
teraction networks. We show results for the prediction of antagonistic
interactions (left column) and synergistic interactions (right column).
Top: AUC statistic. Middle: precision. Bottom: recall. Each bar rep-
resents the average of the fivefold cross validation for a given model,
with error bars (shown as a vertical line for clarity) representing the
standard error of the mean.

Interestingly, we observe differences in performance at
detecting antagonistic and synergistic interactions. For the
synergistic interaction network, we find that the tensorial
model consistently outperforms the bipartite and baseline
models in all metrics (AUC, precision, and recall), although
its marginal calibration is slightly worse that that of the other
models. For antagonistic interactions, the tensorial model also
performs better than the bipartite and baseline models in
terms of AUC. However, the tensorial model has a precision
and recall that are similar to those of the independent-layers
baseline model. The generalized decrease in precision and
recall with respect to synergistic network does not come as
a surprise since none of the models is perfectly calibrated
for probabilities lower than the density of the training set
(Fig. 6). In fact, we observe that the fraction of antagonistic
interactions for which P[ri jk = 1] < T is larger than desired.
As a result, some antagonistic interactions are counted as
nonantagonistic interactions in terms of precision and recall.
This effect is exacerbated by the fact that, due to the sparsity
of the network, a large fraction of interactions are assigned
low probability values by all of the models.

The fact that the independent-layer model has predic-
tion and recall values similar to those of the tensorial
model can be explained by the fact that antagonistic inter-
actions are more localized to specific layers than synergistic

FIG. 6. Probabilistic calibration of the models for drug-drug in-
teraction networks. We show results for the prediction of antagonistic
interactions (left column) and synergistic interactions (right column).
Each point in each line represents the average of the fivefold cross
validation for a given model. Error bars represent the standard error
of the mean. The vertical dashed lines show the density of each
training set.

interactions are (see Fig. S6). This situation makes it easier for
the independent-layer baseline model to make more accurate
predictions for these layers. Note, however, that if more infor-
mation on antagonistic interactions was available, the perfor-
mance of the tensorial model would likely be comparable to
that of the synergistic case.

VI. DISCUSSION

We have presented two mixed-membership multilayer net-
work models that can be applied to any multilayer networks,
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FIG. 7. Marginal calibration of the models for drug-drug inter-
action networks. For each of the models we consider (see legend)
we plot the average probability for links being of a certain type
(antagonistic or synergistic) with respect to the density of links of
that type in the training set. Each point represents the average over
the five training sets for a given model. Error bars are smaller than
symbols.
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with layers representing temporal snapshots of the interac-
tions or different contexts for the interactions. By extending
the mixed-membership paradigm to the layers themselves,
and by not making any prior assumption about them, our mod-
els can detect and take advantage of interlayer correlations
in the network of interactions to make better predictions. As
a result, both our multilayer models outperform the baseline
models in almost all the studied cases, except for the cases in
which information is too sparse for the multilayer model to
recover unobserved interactions with precision.

Importantly, none of the models we present—the tenso-
rial node-based model nor the bipartite link-based model—is
intrinsically better than the other; however, they can hold
clues as to the mechanisms that are predictive of interaction
types. Our results precisely illustrate this fact. We find that
the bipartite model works better for e-mail networks in which
the communication between pairs of users (links), rather than
the users themselves, together with their temporal evolution
are the relevant description unit for prediction. This could
be due to the fact that we are analyzing communication at a
rather small scale (people working within the same unit of an
organization), and it is possible that a node-based model could
be better for communication between users at a larger scale.
Moreover, as the network grows the number of θ parameters
for the tensorial model scales linearly with the number of
nodes, whereas the number of η parameters for the bipartite
model scales quadratically. In really big networks it is then
plausible that the tensorial becomes more parsimonious.

Conversely, our results show that for the drug-drug in-
teraction network the relevant unit of description are drugs
(nodes). This is consistent with the fact that the action-target
mechanism that determines how a drug will interact with
another one; this information is encapsulated in the node
(and its observed interactions). The use of the interactions
of nodes in different cancer types (layers) boosts our abil-
ity to predict the type of type-dependent interactions more
precisely. In contrast, the description of these networks in
terms of drug pair interactions completely misses the drug-
specific information that is relevant for prediction in this
context.

Our results unambiguously show that using the information
of the interactions on other layers helps obtain better models.
Remarkably, the flexibility of the models we propose make
this approach suitable to analyze multilayer networks in any
context. A natural step to further improve the model and
prediction accuracy would be to include auxiliary data (i.e.,
metadata such as node or link attributes) into the modeling
process. This problem has just started being explored in
the literature [10,32,33], so there is no general framework
on how to introduce auxiliary data into the inference pro-
cess yet. Nonetheless, recent results show that single-layer
mixed-membership models are suitable models to incorporate
specific types of auxiliary data into the inference process
without adding methodological complexity [34], thus opening
the window to developing general inference frameworks that
consider different types of metadata also in multilayer con-
texts.

Finally, the models we have presented offer an alternative
approach toward the problem of finding the number of ef-
fective layers in a multilayer network [23,35]. While in this

paper we have focused solely on showing the suitability of our
approach for multilayered data, the simultaneous modeling of
nodes or links and layers we propose has the potential to result
in better methods to summarize and extract information from
multilayer data.
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APPENDIX A: DERIVATION OF THE EXPECTATION
MAXIMIZATION EQUATIONS FOR THE T-MBM

In the tensorial mixed-membership stochastic block model,
we assign membership vectors θiα, η�γ to each node i and
each layer �, respectively. These membership vectors are
properly normalized, therefore represent the probability that
each node or layer belongs to a specific node or layer group:

∀i :
K∑

α=1

θiα = 1, ∀� :
L∑

γ=1

η�γ = 1. (A1)

Because we consider that links can not take different values
r ∈ R, to ensure that each observed interaction has probability
1 of receiving any rating, we normalize probability matrices
pαβγ (r)

∀α, β, γ :
∑

r∈R

pαβγ (r) = 1. (A2)

Note that if R = {0, 1}, then pαβγ (0) = 1 − pαβγ (1).
We maximize the likelihood (3) as a function of θ, η, p

using an expectation maximization (EM) algorithm. We start
with a standard variational and use Jensen’s inequality log x̄ �
log x in order to transform the logarithm of a sum into a sum
of logarithms

log P(GO|θ, η, p)

=
∑

(i j�)∈GO

log
∑

αβγ

θiαθ jβη�γ pαβγ (ri j�)

=
∑

(i j�)∈GO

log
∑

αβγ

ωi j�(αβγ )
θiαθ jβη�γ pαβγ (ri j�)

ωi j�(αβγ )

�
∑

(i j�)∈GO

∑

αβγ

ωi j�(αβγ ) log
θiαθ jβη�γ pαβγ (ri j�)

ωi j�(αβγ )
. (A3)

Here we have introduced the auxiliary variable ωi j�(αβγ ),
which is the estimated probability that a given link’s type
ri j� is due to i, j, and � belonging to groups α, β, and γ

respectively. Note in the expression above, equality holds
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when

ωi j�(αβγ ) = θiαθ jβη�γ pαβγ (ri j�)∑
α′β ′γ ′ θiα′θ jβ ′η�γ ′ pα′β ′γ ′ (ri j�)

. (A4)

This is precisely the equation for the expectation step.
For the maximization step, we derive update equations

for the parameters θ, η, p by taking derivatives of the log
likelihood (A3). Including Lagrange multipliers for the nor-
malization constraints (A1), we obtain for θiα

θiα =
∑

j�∈∂i

∑
βγ ωi j�(αβγ )

∑
j�∈∂i

∑
αβγ ωi j�(αβγ )

=
∑

j�∈∂i

∑
βγ ωi j�(αβγ )

di
,

(A5)
where ∂i = { j, �|(i j�) ∈ GO} and di = |∂i| is the degree of
node i in all the layers for any type of link. Similarly, for η�γ

we obtain

η�γ =
∑

i j∈∂�

∑
αβ ωi j�(αβγ )

∑
i j∈∂�

∑
αβγ ωi j�(αβγ )

=
∑

i j∈∂�

∑
αβ ωi j�(αβγ )

d�

,

(A6)
where ∂� = {i, j|(i j�) ∈ GO} and d� = |∂�| is the number of
observed links of any type in layer �.

Finally, including a Lagrange multiplier for (A2), we have
for pαβγ (r)

pαβγ (r) =
∑

(i j�)∈GO|ti j�=t ωi j�(αβγ )
∑

(i j�)∈GO ωi j�(αβγ )
. (A7)

APPENDIX B: DERIVATION OF THE EXPECTATION
MAXIMIZATION EQUATIONS FOR THE B-MBM

As in the tensorial model, we assign normalized mem-
bership vectors ζeα, η�γ to links and layers, respectively. We
also consider probability matrices pαγ (r) that are as well
normalized

∑
r∈R pαγ (r) = 1).

In order to maximize the likelihood, we again use Jensen’s
inequality to transform the logarithm of a sum into a sum of
logarithms and introduce an auxiliary variable φe�(α, γ ):

log P(GO|ζ, η, p)

=
∑

(i j�)∈GO

log
∑

αγ

ζeαη�γ pαγ (re�)

=
∑

(i j�)∈GO

log
∑

αγ

φe�(α, γ )
ζeαη�γ pαγ (re�)

φe�(α, γ )

�
∑

(e�)∈GO

∑

αγ

φe�(α, γ ) log
ζeαη�γ pαγ (re�)

φe�(α, γ )
. (B1)

where again the equality holds when

φe�(α, γ ) = ζeαη�γ pαγ (re�)∑
α′γ ′ ζeα′η�γ ′ pα′γ ′ (re�)

, (B2)

giving us the update equation (B2) for the expectation step.
For the maximization step, we derive update equations

for the parameters ζ, η, p by taken derivatives of the log
likelihood (B1). Including Lagrange multipliers for the

normalization constraints, we obtain

ζeα =
∑

�∈∂e

∑
γ φe�(α, γ )

∑
�∈∂e

∑
αγ φe�(α, γ )

=
∑

�∈∂e

∑
βγ φe�(α, γ )

de
,

(B3)
where ∂e = {�|(e�) ∈ GO} are the set of layers in which we
observe link ei j and de = |∂e| is the total number of layers in
which we observe link ei j . Similarly,

η�γ =
∑

e∈∂�

∑
α φe�(α, γ )∑

e∈∂�

∑
αγ φe�(α, γ )

=
∑

e∈∂�

∑
α φe�(α, γ )

d�

, (B4)

where ∂� = {e|(e�) ∈ GO} and d� = |∂�|. Finally, including a
Lagrange multiplier for the normalization of pαγ (r), we have

pαγ (r) =
∑

(e�)∈GO|re�=r φe�(α, γ )
∑

(e�)∈GO φe�(α, γ )
. (B5)

Equations (B2)–(B5) are solved iteratively with an EM
algorithm following the same procedure as in the tensorial
model. The bipartite model also scales linearly with the size of
the data set, but in this case the number of parameters of the
model is IK + ML + |GO|K · L, where the number of links
I � N · (N − 1)/2, thus, even though it increases the number
of parameters (number of nodes N is typically smaller than
number of links I), there is one dimension less to run over all
observed links in all layers |GO|.

APPENDIX C: EXPERIMENTAL DETAILS

In the drug-drug interactions data set, we divided the
continuous values of efficiency into three categories (syner-
gistic, additive, and antagonistic) by setting two thresholds as
suggested in the original experimental data. These thresholds
are −20.0 and 20.0, so that interactions with an efficiency
lower than −20.0 are classified as antagonistic, those with an
efficiency higher than 20.0 are classified as synergistic, and
those in between are considered additive [30].

For both data sets, we validated our models using a fivefold
cross-validation scheme. We first divided the data into five
equal splits. Then for each fold we considered four splits as
the training set to which we fitted the model, and the remain-
ing split was kept as the test set on which we made predictions.
For each fold, we repeated the fitting processes between 100
and 500 times with different random initializations, and aver-
aged over all of them. This procedure yields better results than
using a single initialization, even if the single initialization is
the one with maximum likelihood (see Ref. [29]). The results
we present throughout the paper correspond to the average
over the results for the five folds.

In order to select the number of latent groups K, J , and
L, we analyzed the evolution of AUC, precision, and recall
as a function of these numbers, always maintaining K = L
and J = L (Figs. 8 and 9). We selected the smallest values
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FIG. 8. Performance as a function of the number of groups for
e-mail networks. Each point represents the average of the fivefold
cross validation for a given model. The error bars (shown as a
vertical line, which is small and not visible in some cases) represent
the standard error of the mean. The dashed vertical lines indicate
the selected values for K and L in the T-MBM, and J and L in the
B-MBM. The results we show correspond to Unit 1.

FIG. 9. Performance as a function of the number of groups for
drug interaction networks. We show results for the prediction of
antagonistic interactions (left column) and synergistic interactions
(right column). Each point represents the average of the fivefold cross
validation for a given model. The error bars (shown as a vertical line,
which is small and not visible in some cases) represent the standard
error of the mean. The dashed vertical lines indicate the selected
values for K and L in the T-MBM, and J and L in the B-MBM.

for which the prediction accuracy was compatible with the
maximal observed values. For e-mail networks, precision
and recall still seem to increase slightly between J = L = 5
and J = L = 10, but the computational cost becomes pro-
hibitive for the number of repetitions that our validation re-
quires (seven units, five folds, and 100–500 initializations per
fold).

Ultimately, the selected values for the e-mail networks are
K = L = 5 for the T-MBM and J = L = 2 for the B-MBM.
The selected values for the drug interaction networks are K =
L = 10 for the T-MBM and J = L = 5 for the B-MBM [36].

[1] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y.
Moreno, M. A. Porter, S. Gómez, and A. Arenas, Mathematical
Formulation of Multilayer Networks, Phys. Rev. X 3, 041022
(2013).

[2] D. S. Bassett and O. Sporns, Network neuroscience, Nature
Neurosci. 20, 353 (2017).

[3] S. Kéfi, V. Miele, E. A. Wieters, S. A. Navarrete, and E. L.
Berlow, How structured is the entangled bank? The surpris-
ingly simple organization of multiplex ecological networks
leads to increased persistence and resilience, PLoS Biology 14,
e1002527 (2016).

[4] S. Pilosof, M. A. Porter, M. Pascual, and S. Kéfi, The multilayer
nature of ecological networks, Nature Ecology & Evolution 1,
0101 (2017).

[5] J. L. Iribarren and E. Moro, Impact of Human Activity Patterns
on the Dynamics of Information Diffusion, Phys. Rev. Lett. 103,
038702 (2009).

[6] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and
J.-P. Onnela, Community structure in time-dependent, multi-
scale, and multiplex networks, Science 328, 876 (2010).

[7] L. Gauvin, A. Panisson, and C. Cattuto, Detecting the com-
munity structure and activity patterns of temporal ne tworks:

032307-10

https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1371/journal.pbio.1002527
https://doi.org/10.1371/journal.pbio.1002527
https://doi.org/10.1371/journal.pbio.1002527
https://doi.org/10.1371/journal.pbio.1002527
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819


TENSORIAL AND BIPARTITE BLOCK MODELS FOR LINK … PHYSICAL REVIEW E 99, 032307 (2019)

A non-negative tensor factorization approach, PLoS ONE 9,
e86028 (2014).

[8] T. P. Peixoto, Inferring the mesoscale structure of layered, edge-
valued, and time-varying networks, Phys. Rev. E 92, 042807
(2015).

[9] A. Ghasemian, P. Zhang, A. Clauset, C. Moore, and L. Peel,
Detectability Thresholds and Optimal Algorithms for Commu-
nity Structur e in Dynamic Networks, Phys. Rev. X 6, 031005
(2016).

[10] A. Sapienza, A. Barrat, C. Cattuto, and L. Gauvin, Estimating
the outcome of spreading processes on networks with incom-
plete information: A mesoscale approach, Phys. Rev. E 98,
012317 (2018).

[11] A. Li, S. P. Cornelius, Y. Y. Liu, L. Wang, and A. L. Barabási,
The fundamental advantages of temporal networks, Science
358, 1042 (2017).

[12] R. Guimerà and M. Sales-Pardo, Missing and spurious interac-
tions and the reconstruction of complex networks, Proc. Natl.
Acad. Sci. USA 106, 22073 (2009).

[13] T. P. Peixoto, Hierarchical Block Structures and High-
Resolution Model Selection in Large Networks, Phys. Rev. X
4, 011047 (2014).

[14] T. Vallès-Català, T. P. Peixoto, M. Sales-Pardo, and R. Guimerà,
Phys. Rev. E 97, 062316 (2018).

[15] R. Guimerà and M. Sales-Pardo, A network inference method
for large-scale unsupervised identification of novel drug-drug
interactions, PLoS Comput. Biol. 9, e1003374 (2013).

[16] N. Rovira-Asenjo, T. Gumí, M. Sales-Pardo, and R. Guimerà,
Predicting future conflict between team-members with
parameter-free models of social networks, Sci. Rep. 3, 1999
(2013).

[17] A. Godoy-Lorite, R. Guimerà, C. Moore, and M. Sales-Pardo,
Accurate and scalable social recommendation using mixed-
membership stochastic block models, Proc. Natl. Acad. Sci.
USA 113, 14207 (2016).

[18] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, Mixed
membership stochastic blockmodels, J. Mach. Learn. Res. 9,
1981 (2008).

[19] A. Godoy-Lorite, R. Guimerà, and M. Sales-Pardo, Long-
term evolution of e-mail networks: Statistical regularities, pre-
dictability and stability of social behaviors, PLoS ONE 11,
e0146113 (2016).

[20] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic
blockmodels: First steps, Soc. Networks 5, 109 (1983).

[21] Q. Han, K. S. Xu, and E. M. Airoldi, Consistent estimation of
dynamic and multi-layer block models, in Proceedings of the
32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, 2015, pp. 1511–1520.

[22] C. De Bacco, E. A. Power, D. B. Larremore, and C. Moore,
Community detection, link prediction, and layer interdepen-
dence in multilayer networks, Phys. Rev. E 95, 042317 (2017).

[23] N. Stanley, S. Shai, D. Taylor, and P. J. Mucha, Clus-
tering Network Layers with the Strata Multilayer Stochas-
tic Block Model, IEEE Trans. Network Sci. Eng. 3, 95
(2016).

[24] W. Jefries, MMSBM for sparks, https://github.com/billjeffries/
mixMemRec, 2017.

[25] D. M. Dunlavy, T. G. Kolda, and E. Acar, Temporal link
prediction using matrix and tensor factorizations, ACM Trans.
Knowl. Discov. Data 5, 10 (2011).

[26] A. Schein, J. Paisley, D. M. Blei, and H. Wallach, Bayesian
poisson tensor factorization for inferring multilateral relations
from sparse dyadic event counts, in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’15 (ACM, New York, 2015),
pp. 1045–1054.

[27] A. Schein, M. Zhou, D. M. Blei, and H. Wallach, Bayesian
poisson tucker decomposition for learning the structure of in-
ternational relations, in Proceedings of the 33rd International
Conference on International Conference on Machine Learning
- Volume 48, ICML’16 (JMLR.org, 2016), pp. 2810–2819.

[28] T. P. Peixoto and M. Rosvall, Modelling sequences and
temporal networks with dynamic community structures, Nat.
Commun. 8, 582 (2017).

[29] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.99.032307 for additional figures and com-
putational details not shown in the main text.

[30] M. P. Menden, D. Wang, Y. Guan, M. Mason, B. Szalai, K. C.
Bulusu, T. Yu, J. Kang, M. Jeon, R. Wolfinger, T. Nguyen, M.
Zaslavskiy, AstraZeneca-Sanger Drug Combination DREAM
Consortium, I. S. Jang, Z. Ghazoui, M. E. Ahsen, R. Vogel,
E. C. Neto, T. Norman, E. K. Y. Tang, M. J. Garnett, G. Di
Veroli, S. Fawell, G. Stolovitzky, J. Guinney, J. R. Dry, and J.
Saez-Rodriguez (unpublished).

[31] T. Gneiting, F. Balabdaoui, and A. E. Raftery, Probabilistic
forecasts, calibration and sharpness, J. R. Statist. Soc. B 69, 243
(2007).

[32] M. E. J. Newman and A. Clauset, Structure and in-
ference in annotated networks, Nat. Commun. 7, 11863
(2016).

[33] D. Hric, T. P. Peixoto, and S. Fortunato, Network Structure,
Metadata, and the Prediction of Missing Nodes and Annota-
tions, Phys. Rev. X 6, 031038 (2016).

[34] S. Cobo, A. Godoy-Lorite, M. Sales-Pardo, and R. Guimerà,
Optimal prediction of decisions and model selection in social
dilemmas using block models with metadata, EPJ Data Sci. 7,
48 (2018).

[35] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora, Struc-
tural reducibility of multilayer networks, Nat. Commun. 6, 6864
(2015).

[36] The code is available at https://github.com/seeslab/
MMmultilayer.git

032307-11

https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1371/journal.pone.0086028
https://doi.org/10.1103/PhysRevE.92.042807
https://doi.org/10.1103/PhysRevE.92.042807
https://doi.org/10.1103/PhysRevE.92.042807
https://doi.org/10.1103/PhysRevE.92.042807
https://doi.org/10.1103/PhysRevX.6.031005
https://doi.org/10.1103/PhysRevX.6.031005
https://doi.org/10.1103/PhysRevX.6.031005
https://doi.org/10.1103/PhysRevX.6.031005
https://doi.org/10.1103/PhysRevE.98.012317
https://doi.org/10.1103/PhysRevE.98.012317
https://doi.org/10.1103/PhysRevE.98.012317
https://doi.org/10.1103/PhysRevE.98.012317
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevE.97.062316
https://doi.org/10.1103/PhysRevE.97.062316
https://doi.org/10.1103/PhysRevE.97.062316
https://doi.org/10.1103/PhysRevE.97.062316
https://doi.org/10.1371/journal.pcbi.1003374
https://doi.org/10.1371/journal.pcbi.1003374
https://doi.org/10.1371/journal.pcbi.1003374
https://doi.org/10.1371/journal.pcbi.1003374
https://doi.org/10.1038/srep01999
https://doi.org/10.1038/srep01999
https://doi.org/10.1038/srep01999
https://doi.org/10.1038/srep01999
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1073/pnas.1606316113
https://doi.org/10.1073/pnas.1606316113
https://dl.acm.org/citation.cfm?id=1442798
https://doi.org/10.1371/journal.pone.0146113
https://doi.org/10.1371/journal.pone.0146113
https://doi.org/10.1371/journal.pone.0146113
https://doi.org/10.1371/journal.pone.0146113
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1103/PhysRevE.95.042317
https://doi.org/10.1103/PhysRevE.95.042317
https://doi.org/10.1103/PhysRevE.95.042317
https://doi.org/10.1103/PhysRevE.95.042317
https://doi.org/10.1109/TNSE.2016.2537545
https://doi.org/10.1109/TNSE.2016.2537545
https://doi.org/10.1109/TNSE.2016.2537545
https://doi.org/10.1109/TNSE.2016.2537545
https://github.com/billjeffries/mixMemRec
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1038/s41467-017-00148-9
https://doi.org/10.1038/s41467-017-00148-9
https://doi.org/10.1038/s41467-017-00148-9
https://doi.org/10.1038/s41467-017-00148-9
http://link.aps.org/supplemental/10.1103/PhysRevE.99.032307
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1038/ncomms11863
https://doi.org/10.1038/ncomms11863
https://doi.org/10.1038/ncomms11863
https://doi.org/10.1038/ncomms11863
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1103/PhysRevX.6.031038
https://doi.org/10.1140/epjds/s13688-018-0175-3
https://doi.org/10.1140/epjds/s13688-018-0175-3
https://doi.org/10.1140/epjds/s13688-018-0175-3
https://doi.org/10.1140/epjds/s13688-018-0175-3
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1038/ncomms7864
https://github.com/seeslab/MMmultilayer.git

