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We study the dynamical properties of a collection of models for communication processes, characterized by
a single parametef representing the relation between information load of the nodes and its ability to deliver
this information. The critical transition to congestion reported so far occurs onlg=fdr. This case is well
analyzed for different network topologies. We focus on the properties of the order parameter, the susceptibility,
and the time correlations when approaching the critical point£Rat, no transition to congestion is observed
but it remains a crossover from a low-density to a high-density state$¥ar, the transition to congestion is
discontinuous and congestion nuclei arise.

DOI: 10.1103/PhysReVvE.66.026704 PACS nunid)er02.70.Ns, 89.20.Ff, 05.70.Jk, 64.60.

[. INTRODUCTION posed[16]. In these models, agents—nodes—are organized
in a hierarchical network—a Cayley tree—and interchange
The interaction between thelementsof social, techno- informationpackets Each agent has a certain capability that
logical, biological, chemical, and physical systems usuallydecreases as the number of packets to deliver increases.
defines complex networks. The study of topological proper\When the capability is inversely proportional to the number
ties in such networks has recently generated a lot of interestf accumulated packets, a continuous phase transition was
among the scientific communifyLl—5]. Part of this interest found between the free and the congested phases. This tran-
comes from the attempt to understand the behavior of techsition was characterized by means of an order parameter.
nology based communication networks such as the Internet The aim of this paper is to study the collection of models
[6], the World Wide Wel}7,8], e-mail network$9], or phone  mentioned above, since only hierarchical lattices and a very
call networkg 10]. The study of communication processes isparticular congestion behavior—capability inversely propor-
also of interest in other fields, notably in the design of orgational to the number of accumulated packets—were consid-
nizations[11,12. It is estimated that more than one-half of ered. An extension to consider the existence of cost to main-
the US work force is dedicated to information processingtain communication channels has already been d@0g
rather than to make or sell things in the narrow sdridé First, the network model is extended beyond purely hierar-
Tools taken from statistical mechanics are used to underhical Cayley trees. In particular, one-dimensiotfad) and
stand not only the topological properties of these communitwo-dimensional(2d) lattices are considered. It should be
cation networks, but also their dynamical properties. Particunoted that simple models such as Cayley trees and regular
larly interesting is the phenomenon of congestion. In hagattices can capture the main characteristics of the dynamics
been observed, both in real netwof8] and in model com-  of information flow in complex networks. Hierarchical trees
munication network§14—17 that the system only behaves have been considered to model the TCP/IP protocol in the
efficiently when the amount of information handled is smallInternet[18,19. On the other hand, computer based commu-
enough. The network collapses above a certain threshold amcation networks have been described by placing routers
some information is accumulated and remains undeliverednd servers in square latticgs4,17].
over large time periods—or it is simply lost. This transition ~ Moreover it is shown that, independently of the topology,
from afreeto acongestedegime is indeed a phase transition the collection of models can be split into three groups ac-
and could be related to the appearance of thHenbise ob- cording to how the network collapses. In the first group,
served in Internet flow datl8,19. agents deliver more packets as they are more congested—
Understanding congestion is also important from an engialthough their capability, as defined [it6], decreases, and
neering point of view. For instance, in October of 1986, dur-the network never collapses. In the second group, agents de-
ing the first Internet collapse reported in the literature, thdiver always the same number of packets independently of
speed of the connection between the Lawrence Berkeletheir load—number of packets to deliver; this behavior leads
Laboratory and the University of California at Berkeley— to a continuous phase transition as reported for hierarchical
separated by 200 meters—dropped by a factor of [I). lattices in Ref[16]. Finally, when agents deliver fewer pack-
Although the problem of congestion, and in particular itsets as their loads increase, the transition to the congested
prevention and contrdll3], has been studied because of its phase is discontinuous and the network collapses in an inho-
implications in digital communications, a deep understandmogeneous way giving rise to congestion nuclei. To charac-
ing of the physics of congestion for general communicatiorterize these behaviors, the order parameter defined in Ref.
processes and beyond particular protocols is still lacking. [16] is used, but also the power spectrum of the fluctuations
A general collection of models that captures the essentiadnd a susceptibilitylike function. Most of the current effort is
features of communication processes has been recently préecused on the quantitative study of the continuous transition
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where k; represents theapability of agenti at each time
step. The quality of a channel is, thus, the geometric average

0000 of the capabilities of the two nodes involved, so that when

one of the agents has capability 0, the channel is disabled.

High qualities @;;~1) imply that packets move easily while
(a) (b) (©) low qualities @;;=~0) imply that it takes a long time for a

packet to jump from one node to the next. The general equa-

FIG. 1. Network topologies studieda) 1D lattice withL=5;  tion proposed fok; is
(b) 2D lattice withL=5 andS=25; and(c) (2,3) Cayley tree with
branchingz=2 andm=3 levels or generations.

ki=f(n;), 2
and the critical behavior associated with such a transition.

The paper is organized as follows. Section Il presents the ) )
collection of models and describes some details concerninfyneren; is the total number of packets currently at nade
the extension beyond hierarchical lattices, including 1D and h€ functionf(n) determines how the capability evolves
2D lattices. In Sec. Ill, these models are studied numericallyvhen the number of packets at a given node changes,
and analytically. The scaling of the critical point with the
size of the system, the behavior of the order parameter, and
the divergence of the characteristic time at the critical point f(n)=[
are studied in detalil. Finally, Sec. IV includes the discussion
of the results and the conclusions.

for n=0,

n~¢ for n=123..., 3

with ¢=0. Equation(3) defines a complete collection of
Il. THE MODEL models with agents that behave differently depending on the
exponenté.

The average number of packets delivered during one time
ep by a nodel to another node is proportional to
ni/(nfné?). Assuming thatn;=n; the former expression
the agents to handle such packets. rez_adsnil’f. The p_roportionality is exact both in t_he hierar-

The communication network is mapped onto a graphCh'_Cal lattice and in Iargfa (_anough 1I_D and 2D lattices, where
where nodes mimic the communicating ageffits instance, ~adjacent nodes are statistically equivalent. ,
employees in a company, routers and servers in a computer 1herefore, foré<1 the number of delivered packets in-

network, etd. and the links between them represent commu-<réases with the number of accumulated packets.¢Bot
nication lines. In particular, the three different topologies de-the number of delivered packets decreases as the number of

picted in Fig. 1 are considered: 1D lattices of length2D accumulated packets increases. Finally, for the particular
square lattices of side lengthand sizeS= L2, and hierar- caset=1, the number of delivered packets is independent of
chical Cayley trees with branchingand a number of gen- the number of accumulated packets. Note that this particular
erations or levelsn, hereafter denotedz(m). case is consistent with simple models of _que[lhré.

The dynamics of the model is as follows. At each time = TN€ last point that needs to be explained to completely
stept, an information packet is created at every node withdefine the current model is the routing algorithm or, in other
probability p. Thereforep is the control parameter: small words, the set of rules that the nodes follow to select where
values ofp correspond to low density of packets and high© Send a certain packet. In all the topologies consideted
values ofp correspond to high density of packets. When a2D; and Cayleythe packets follow paths of minimum length
new packet is created, a destination node, different from th&om their origin to their destination—open boundary condi-
origin node, is chosen randomly in the network. Thus, duringiOns are set in both 1D and 2D networks. In 1D lattices and
the following time stepst+1,t+2,...t+T, the packet Cayley trees it is trivial to follow a minimum path because
travels towards its destination. Once the packet reaches t{g€re is only one minimum path between two arbitrary

destination node, it is delivered and disappears from the neflodes. In 2D lattices, however, there are many minimum
work. paths. If a node can choose between two neighbors when

The time that a packet remains in the network is related®nding a given packet, and both neighbors belong to a mini-
not only to the distance between the source and the targffum Path between the origin and the destination of the
nodes, but also to the amount of packets in its path. In paacket, one of them is chosen randomly with equal probabil-
ticular, at each time step, all the packets move from theifty- This algorithm is indeed the simplest one and the inter-
current positionj, to the next node in their patly, with a pretation of the results is clearer than for more complex rout-

probability q;; . This probabilityq; is called thequality of ~ N9 algorithms. However, congested nodes will still have
the channebetweeni andj, and was defined in Ref16] as lower probability of receiving packets because of the defini-
tion of the quality of a channel. Therefore packets will avoid

those nodes to some extent, as would happen in more sophis-
aij = vkikj, (1) ticated routing algorithms.

The model considers three basic componeftis:the
physical support for the communication process—agents an&
communication channelsii) the discrete information pack-
ets that are interchanged, afid) the limited capability of
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. RESULTS It is also possible to derive a mean field expressiop of
for the 1D lattice. Since the most congested node is, from

For certain parameters of the mod@i particular,é=1
[16]) and for similar models of traffi€14], a transition from symmetry arguments, the central one—the nodé-at/2—
the network will collapse when the amount of packets re-

afreeregime, where all the packets reach their destination, tg__: . oo .
. .ceived by this central node is higher than the maximum num-

a congestedregime where some packets are accumulated ir o . . .
X R ber of packets that it is able to deliver. Since in a large

the network, has been found. This transition is properly de-

scribed by means of the following order parametgip) enough network it is safe to assume that the central node will

. . ) be congested similarly to its neighboms, =n,=n_,, 4,
introduced previously16] the maximum number of delivered packets should be 1. On

the other hand, the number of packets arriving at the central
1 (AN) node at each time step is the number of packets that are
7(P)= I'”l pS At (4 generated at each time step at the left half of the network and
= have their destination at the right half and conversely, this is
pL/2. Then the critical condition is given by
In this equationAN=N(t+At)—N(t) and(---) indicates
average over time windows of widtht. These averages can péDL o 2
be over one or many realizations, yielding the same result. 1= 2 P T ©
Essentially, the order parameter represents the ratio between
undelivered and generated packets calculated at long enough These mean field expressiof# and(6) can be compared
times such tha N« At. Thus, » is only a function of the with simulations. Nevertheless, the fluctuationsNgt) be-
probability of packet generation per node and time step, come very large neap. and it is difficult to calculate the
The power spectrur®(f) of the total number of packets value of the order parameter. Instead, a susceptibilitylike
in the networkN(t) =Zn; is also used here to further under- function y(p) can be defined by analogy with equilibrium
stand the phase transition. By means of the power spectruthermal critical phenomena, and used to estimate more accu-
the behavior of the time correlations of the system can beately the value of the critical probability of packet genera-
studied. tion, p.. The susceptibilityy is related to the fluctuations of
Let us study separately the critical case1 and the non- the order parameter by
critical cases<1 andé>1.

x(p)=limTo (T), (0
T—ow
A. The critical case é=1
é(vhereT is the width of a time window, and-,(T) is the
standard deviation of the order parameter estimated from the
as reported in Ref16]. For small values op, all the packets anaIyS|§ of many different time _wm.dows of W!dﬂh Thu.s a
calculation implies a long realization ®(t), its division

reach their destination and the total number of packi¢ty into windows of widthT, calculation of the average value of
fluctuates around a finite value. In this case the order para he order parameter in’each window and finall gthe determi-
eter is»=0. However, ap increases, a critical poirg, is P y

reached, where the fluctuations M(t) become very large nation of the standard deviation of these values. The suscep-

and the characteristic time of the system diver¢a#ical tibility SSOWS (Fig- 2) a singularity atp; as T grows, as
slowing down. Beyond this point, some packets remain un-exﬁ)fCte '3 h hat th . d b

delivered and N(t)) grows linearly witht. The same quali- igure 3 shows that there Is good agreement between ex-
tative behavior is observed here for 1D and 2D lattices, al_pressmns(S) and(6) and th? yglues b obtamed. numerl-
though there are quantitative differences. cally by means of susceptibility measures for different net-

From an engineering point of view it is interesting to Wolrzlf)rSitzr?es.ZD lattice it is more difficult to obtain even a
study first the behavior o, as the number of nodes in the mean field expression fi However, since for 1D lattices
networkS changes, because it will provide valuable informa-and Cavle trges the sc?;cliﬁ relati ' S holds—where
tion about the scalability of the network. Note thii, yiey g peee

n ) . S is the size of the network— one may expect the same
=p.S is the maximum number of packets that the network . . . -

. o behavior for the 2D lattice. Using the susceptibility to nu-
can handle per time step and, thus, it is a measure of thr%ericall determinep, from simulations, one finds that this
capacity of the network. y De '

For the hierarchical Cayley tree, a mean field calculationtums. out to be incorrect. AIthough itis difficult t(.) _obtam a
: X ) precise value of the exponent, Fig. 4 shows that it is close to
of p. was obtained if16]:

0.6 instead of 1.0,

A continuous transition between the free regime and th
congested regime occurs in hierarchical networksé&erl,

3/2
oCT— ; Vz _ .z l ©) p2Loc 508 (8)
z(z"1-1)? (z=1) S
T+l This result suggests that the existence of multiple paths to
get from the origin to the destination has important conse-
guences, not only in shifting the value pf, but actually
where the approximation holds fa™ '>1. changing its critical scaling behavior.
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FIG. 3. Comparison between analytiogdihes) and numerical

(symbolg values ofp. obtained for thegla) 1D lattice and(b) the

. . . . Cayley trees. The error bars of the numerical points are smaller than
The behavior of the order parameter is studied next. It i he size of the symbols.

possible to derive an analytical expression for the simplest
1D case where there are only two nodes that exchange pack-
ets. Since from symmetry considerations=n,, the average
number of packets eliminated in one time step is 2, while th
number of generated packets ig.Zrhusp.=1 and with the
present formulation of the model it is not possible to reac SO . T
the supercritical congested regime. Howewecan be ex- char_ac_terlstlc timer, as depicted in Fig. 6. Ap approaches
tended to be the average number of generated packets p[éfr It is ‘gbsef"ed thaf,—0 and the power spectrum be-
node at each stefinstead of a probabilityand in this case it CcoMes 17~ for the whole range of frequencies. Alternatively,
can actually be as large as needed. As a result, the orddpe characteristic time diverges as-c (critical slowing
parameter for the supercritical phasejis (p— 1)/p. As ob- d_own). This qualltat]ve behavior is common to a}ll the topolo-
served in Fig. 5, the general form gies _of_the underlymg network, as shown in I_:|g. 6.

It is interesting to study how the characteristic frequency
drops to O for each network topology. Near the critical point,
_ p/p.—1 (9)  ©ne expects the scaling behavior,

~plpe

The analysis of the power spectrum shows that in the
ubcritical regime, i.e., in the free phase, the spectrum is well
itted by a Lorentzian characterized by a frequerigy, cor-

H’esponding to exponentially decaying correlations with a

n(p/pe)

. . fcoc(pc— p) 7 (11)
fits very accurately the behavior of the order parameter not

only for this simple 1D lattice with.=2 or the Cayley tree . _
[16], but also for any 1D lattice. Two-dimensional lattices 1€ value of the critical exponent can be estimated by

again deviate from this behavior, although the deviation iditting Ed. (11) to values off¢(p) close enough to the critical
small. point, as shown in Fig. 6. Note that we it and y simulta-

In particular, neap., Eq. (9) implies neously. This procedure yields very accurate valugs,dfut
the values ofy are subject to large errors. Figure 6 yields
v~0.9 for a 1D network withL=100, y=~2.5 for a 2D
7(P)*(P—Pe), (10 hetwork withL=7, andy~2 for a (7,5 Cayley tree.
The determination ofy is interesting not only from an
and thus the critical exponent for the order parameter is equalcademic point of view, but also from an engineering per-
to 1 at least for the 1D lattice and the Cayley tree. spective. Indeed, this exponent is related to divergences of
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FIG. 4. (a) Susceptibility for a 2D &6 lattice. (b) Scaling of  different topologies and different values of the control parameter

the critical probability of packet generation as a function of the sizee=(p.— p)/p. for the 1D case I(=100), 2D case l(=6), and
of the system for 2D square lattices. Cayley (7,5). Power spectra have been obtained averaging over 100
realizations ofN(t). Dotted lines represent a power law with expo-

other relevant quantities near the critical point. Any charachent—2. Right, characteristic frequency as a function of the control

teristic time 7—the average time to deliver a packet, for Parametere for the different topologies. As observed, the charac-
instance—will diverge as teristic frequency tends to 0 gs— p, following a power law. The

straight lines correspond to fittings of E@.1).

_ -
7 (Pe=p) w2
and similarly the total number of packets N
—=PS (14)
No(pc—p) 7 (13

from Little’s law [21]. This law states that, in steady state,

10 — Analytcal the number of delivered packets and the number of generated
> 1D L=100 packets are equal.
5 3 s The estimation ofy is particularly interesting in elec-
2 ey 36) tronic communication protocols. Indeed, E@2) is used to
€ sk A Cvley(e4 determine the waiting time before a packet is considered lost
g o[ o Caer(en in the network and therefore sent aggis3]. In practice, the
5 exponenty=1 predicted by classical queue thedB4] is
8 assumed, while our current results suggest that more com-
plex settings can lead to exponents even larger than 2.
0.0 el ]

! 10° 10’ 10 B. Noncritical casesé<1 and £>1
Scaled control parameter, p/p,

10

We have shown that the number of packets delivered by
- 17 . . .

FIG. 5. Behavior of the order parameter in the casel. The  nodei is n{~¢ and thus, wherg<1, it increases with the
solid line corresponds to the analytical calculation for two nodeshumber of packets that this node accumulates. It is difficult
exchanging information packets. Symbols correspond to simulato imagine a real scenario with this characteristic. However,
tions performed in 1D, 2D, and Cayley lattices. this case has been included to understand the critical behav-
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£=1 case. Inset, characteristic frequencpatO, fg (squarey and
characteristic frequency at large f% (circles. The lines represent
the fittings provided by Eq.16) flxL~! and Eq. (15) f*
oL~ Y19 respectively.

ior when¢=1, i.e., to show the relationship between criti-
cality and the amount of packets that can be delivered when
load increases. As a consequence of the increase of the de-
livering capability with the load, the transition to collapse
will never occur because, at some point in time, the number
of accumulated packets will be large enough and the number
of delivered and created packets will balance each other.
Thus, the order parameter will be zero for any value of the
control parametep, and the correlations will decay exponen-
tially. As shown in Fig. 7, the characteristic frequency tends
asymptotically tof¥ asp increases. This asymptotic value
depends on the size of the system.

For a 1D lattice with a high density of packets-¢1),
the number of packets that are delivered by a node' is ®)
while the number of packets that are being delivered to this FIG. 8. Congestion nuclei formation for large 2D latticesLof

node is proportional td. (for instance, for the S?Qtral node, — 200, in the noncritical casé>1. Dark regions represent regions
this number is simplypL/2). Therefore,n;<LY*~9. The it small congestion levels while bright regions correspond to
total number of packets i =3;n;~L****~% and accord- highly congested regionga) é=5 andp=0.001.(b) £&=2 andp

ing to Little’s law, =0.01.

f*ocp—LocL’l’(l’g). (15) . o
¢ N However, the number of packets delivered by a nodethis

caset>1 decreases with the number of packets accumulated
On the other hand, fap—0 the scaling of the character- at that node. Therefore, when some packets are accumulated,

istic frequency is given by n; grows and finally no packets are delivered at all. Thus
suddenly above the transition, which is discontinuous, the
foouL ™t (16)  order parameter becomes 1.

The change in the order of the phase transition affects the
since the packets succeed in jumping from one node to thepreading of the collapse over the network. In the critical
next at each time step, and therefore the characteristic time &ase¢=1, the collapse starts at the masintral node and
directly the average path length between nodes. then spreads from this point to the rest of the network. In this

Therefore, although there is no phase transition in thizase&é>1, the reinforcement effect—the fact that the more
caseé<1, there is a crossover from a low-density behaviorcollapsed a node is, the more collapsed it will get in the
to a high-density behavior, as shown in Fig. 7. This crossovefuture—leads to the formation of many congestion nuclei
is also observed in 2D lattices and Cayley trees. generated by fluctuations, that spread over the whole net-

The phase transition observed %+ 1 is recovered when work. Figure 8 illustrates the formation of these congestion
&>1. Above a certain threshold, some packets are accumuruclei for 2D lattices witht=5 andp=0.001, and=2 and
lated in the network and the order parameter differs from Op=0.01
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IV. DISCUSSION AND CONCLUSIONS the systemp.xS™!. However, for 2D lattices a different

. . . scalingp.xS %% is obtained. It is suggested that the exis-
A collection of models recently proposed for h'eramh'caltence of multiple paths from the origin to the destination of

networks[16] has been examined in detail for several net'the packets is responsible for this change in the scaling be-

work topologies including 1D and 2D lattices, to characterizehavior. On the other hand, the study of the power spectrum

the phase transition to collapse. Various congestion scenario ) .
have been analyzed. 3t the number of the packets in the network as a function of

First, it has been shown that the congestion behavior i‘g‘lme has provided valuable information about the variation

o . . ~__of temporal correlations in the system. In particular, below
governed by the ability of agents to deliver information . d X -
packets when their load increases. When agents deliver pack< correlatlo_ns decay exponentially, with a ch_aractenstlc
ets at a constant ratio independently of their load—numbe. me 7 t_?_at dllverlges apch' The ﬁqunent of th|§ ?lvergence
of packets to deliver— a continuous transition as the on S significantly larger than what Is expected from queue
reported in Ref[16] for Cayley trees is also observed for 1D heory. Th|s.ca.n be relevant to acc_uraltely forgcast the tem-
and 2D lattices, the order parameter being the fraction Oporal behavior in complex cor_n_mun!cann settings.
accumulated packets. When the number of delivered packets For £<1, no phase transition is observed. Instead, a

increases with the load, no phase transition is observed. Cofft 0>>CVer from a low-density to a high-density regime oc-

versely, when the number of delivered packets decreas gIrs- In the low-density regime,_the characteristic frequency
' S determined by the average distance between nodes, while

with the load, the order parameter jumps from zero to ong the high-density regime the characteristic frequency is de-

and the transition becomes discontinuous. These different b%grmined by the capabilitv of agents to deliver information
haviors are tuned by a single paramegemhich is the ex- ackets Inle Iattli{z:es %/he crgssover changes the scaling
ponent that determines how the capability of nodes evolve rom f.cL 1 at low densities tdf <L~ U9 at high den-

with the number of accumulated packets. Whenl there is sities

no transition to the congested regime, &+ 1 the transition Finally, wheng>1 the transition to the congested regime

is continuous and fog>1 the transition is discontinuous. is discontinuous, since the number of delivered packets de-
Note that the continuous transitigreported in Ref[16] and . ’ . P
creases with the load and for long times no packets are de-

in some models of queu¢ss,17) is only a particular case livered at all. Thus the order parameter jumps from O to 1.

between a no-congestion behavior and a discontinuous tran )
sition behavior. Thus, the critical behavior is intimately re- Moreover, due to the reinforcement effect—the fact that the

lated to the independence between load and deliver capab nore collapsed a node is, th? more collapsed it W'I.I getin th?
ity of nodes. uture—leads to the formation of many congestion nuclei

These different behaviors have been analyzed separate (_anerated by fluctuations, that spread over the whole net-

e - . . . ork. The existence and distribution of such congestion nu-
The critical cas&=1 presents the most interesting behavior. _ . ; . . ; .
To properly understand the physics of the collapse process Ictlel can also be of interest from an engineering point of view.
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