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Fragility of the free-energy landscape of a directed polymer in random media
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We examine the sensitiveness of the free-energy landscape of a directed polymer in random media with
respect to various kinds of infinitesimally weak perturbation including the intriguing case of temperature chaos.
To this end, we combine the replica BetheAnsatzapproach outlined by Sales and Yoshino~e-print cond-mat/
0112384!, the mapping to a modified Sinai model, and numerically exact calculations by the transfer-matrix
method. Our results imply that for all the perturbations under study there is a slow crossover from a weakly
perturbed regime, where rare events take place, to a strongly perturbed regime at larger length scales beyond
the so-called overlap length, where typical events take place leading to chaos, i.e., a complete reshuffling of the
free-energy landscape. Within the replica space, the evidence for chaos is found in the factorization of the
replicated partition function induced by infinitesimal perturbations. This is the reflex of explicit replica-
symmetry breaking.
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I. INTRODUCTION

A very interesting problem of glassy systems with dis
der and frustration is the possible instability of the glas
frozen states against infinitesimally weak perturbations s
as an infinitesimal change of temperatures and realization
quenched randomness. Such a perturbation does not b
the system out of the frozen phase but possibly changes
lugged landscape of the free energy in a dramatic way. Le
call this intriguing property thefragility of the free-energy
landscape. A class of phenomenological scaling theori
started first in the context of spin glass by Bray and Mo
@1# and Fisher and Huse@2,3# generically implies that equi
librium states of systems with disorder and frustration re
against such infinitesimally weak perturbations of stren
d!1 up to a finite crossover length scaleLc(d) called the
overlap length, but change into completely different state
larger length scales, resulting in the vanishing of the co
lations between the two states. The overlap lengthLc(d)
diverges asd→0 but remains finite for any nonzerod. Such
an anomalous response is called thechaos, referring to the
feature that the distance between the perturbed and un
turbed systems becomes infinitely large in phase space
by infinitesimally weak perturbation as the system sizeL
becomes macroscopically largeL/Lc(d)→` @1#. Unfortu-
nately, the validity of the prediction has not been prov
explicitly by theoretical studies except for some Migda
Kadanoff-type real-space renormalization-group stud
@4,5#. Especially, the issue oftemperature chaos, i.e., the
sensitivity of glassy phases with respect to a small chang
temperature, has been of great interest because of its p
tial relevance for the rejuvenation~chaos! effects found in
temperature-shift and temperature-cycling experime
@6–8#.

The majority of the previous theoretical and numeric
studies concerning the problem of the fragility of glas
phases has been done on Edwards-Anderson~EA! spin-glass
models, which have been considered as prototypical mo
for glassy systems. While a rich amount of numerical e
1063-651X/2002/65~6!/066131~24!/$20.00 65 0661
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dences for the anomalous response to nonthermal pertu
tions has been accumulated@1,9–12#, the intriguing problem
of temperature chaos remains very controversial. For
Sherrington-Kirkpatrick mean-field spin-glass model, whi
is the EA model embedded in infinite dimensional space,
realized that saddle point solutions both with and witho
temperature chaos@13–17# exist and apparently new theore
ical ideas are needed. On the other hand, numerical stu
report conflicting results@9,10,12,18–21#.

Recently we developed an analytical scheme to study
fragility of the free-energy landscape of randomly frustrat
systems against various kinds of perturbations@22#. Espe-
cially we proposed to prove the onset of chaos in terms
statistical decoupling of a set of replicated partition fun
tions, and applied the method to the directed polymer
random media~DPRM!. The DPRM@23# is a simple model
compared to spin-glass models. In spite of this, it is believ
to possess many of the subtle properties of glassy syste
thus, it deserves to be called ‘‘baby spin glass’’@24#. Indeed,
the anomalous response of DPRM towards various kind
weak perturbations has already been reported by many
merical studies@24–28# including a signature of temperatur
chaos@3#. DPRM belongs to the wide class of elastic man
folds in random media@29–33#, which encompasses a var
ety of physical systems of much interest, such as the dom
walls of ferromagnets@34,35# with weak bond randomnes
and the flux lines in type-II superconductors with random
distributed pointlike pinning centers@36,37#, charge-density
wave, and vortex lattice systems with weak random-perio
pinnings@32,38,39#.

The scope of this paper is to present a unified study on
fragility of the free-energy landscape of DPRM with respe
to various weak perturbations using the replica BetheAnsatz
approach outlined in@22#, mapping to a modified Sina
model and numerically exact transfer-matrix calculatio
Our main results are the following. We find that infinites
mally weak perturbations amount to replica-symmetry bre
ing terms in the effective action, which lead to the statisti
decoupling of two sets of replicas. The outcome can be n
rally understood as a manifestation of spontaneous rep
©2002 The American Physical Society31-1
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symmetry breaking following the definition of Parisi and V
rasoro@40#. Interestingly enough, the replica approach tu
out to give results quite consistent with the phenomenolo
cal scaling approach@3,24–28# and predicts the same ove
lap length Lc(d). Within the replica approach, apparent
different perturbations can be naturally classified into a f
universality classes. Concerning the well known corresp
dence between the effective free-energy landscape of DP
and the Sinai model, the statistical decoupling of replic
~chaos! naturally suggests the emergence of statistically
dependent Sinai valleys for different subsets of replicas.
examine the anticipated universal aspects of the anoma
response, we present and discuss the outcome of a det
numerical analysis using transfer-matrix methods.

The plan of the paper is the following. In the followin
sections we propose a general framework to define and s
the fragility of the free-energy landscape of randomly fru
trated systems. In Sec. III, we define the DPRM model.
Sec. IV, we review and summarize the previous scaling
guments. In Sec. V, we present details of the replica Be
Ansatzapproach outlined in@22#. Then, in Sec. VII, we
present the outcome of an exhaustive numerical analysis
ing the transfer-matrix method. Finally, we summarize o
results in Sec. VIII.

II. STATISTICAL DECOUPLING OF REAL REPLICAS

In this section we discuss a general strategy to study
sensitivity of the free-energy landscape of a generic clas
systems. The free energyF of a random system is a rando
quantity with a certain mean and variance. Let us denote
deviation of the free energy of a given sample from the m
as

DF5F2F. ~1!

Here and hereafter,(•••) denotes the average over differe
realizations of randomness.

Now let us consider two systems, sayA and B. Initially
they are prepared as two identical copies with the same
domness, temperature, and other parameters. Such sys
are calledreal replicas. We are interested in how the stati
tical correlation betweenA and B changes by introducing a
perturbation of strengthd. Then it is useful to define a
disorder-averaged correlation function

CF~L,d!5
DFA~L !DFB~L !

ADFA
2~L !ADFB

2~L !

. ~2!

If the correlation function vanishes at large length scales

lim
d→0

lim
L→`

CF~L,d!→0, ~3!

it implies that the free-energy landscape ofA andB decorre-
lates completely. If the statistical decoupling betweenA and
B occurs even with an arbitrarily weak perturbationd!1, we
say that there ischaos.
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Now let us consider an equivalent definition of chao
which is more suited for analytical approaches based on
replica method. Let us suppose that each of the systemA
andB are replicated further inton replicas and consider th
disorder-averaged partition function of the total syste
ZA1B

n (L). As noticed by Kardar@41#, if an analytical con-
tinuation forn→0 is possible, the disorder average of such
partition function can be identified as the generator of cum
lant correlation functions of sample-to-sample fluctuations
free energies@42#. Thus, the complete knowledge of the di
order average of the replicated partition function allows o
to obtain the distribution function of sample-to-sample flu
tuation of the free energy@43#. In our present context, the
disorder-averaged partition functionZA1B

n (L) generates cu-
mulant correlation functions of the total free-energy as
following:

lim
n→0

lnZA1B
n ~L !5nln ZA1B~L !1

n2

2
@ ln ZA1B~L !#c

21•••

1
np

p!
@ ln ZA1B~L !#c

p1•••

5n@2bAFA~L !2bBFB~L !#

1
n2

2
@2bAFA~L !2bBFB~L !#c

21•••

1
np

p!
@2bAFA2bBFB#c

p1•••, ~4!

where@•••#c
p stands forpth cumulant correlation functions

of the total free energies2bAFA2bBFB , with FA(L) and
FB(L) being free energies of subsystemsA and B, respec-
tively, andbA andbB being inverse temperatures ofA andB,
respectively.

Obviously, the decorrelation of the free-energy fluctu
tions betweenA and B is equivalent to the factorization o
the replicated partition function,

lim
d→0

lim
L→`

lim
n→0

ZA1B
n ~L,d!5ZA

n~L ! ZB
n~L !. ~5!

Note that if the latter result holds, automatically Eq.~3!
holds too. An important remark is that the order in whi
limits are taken is crucial to obtain sensible results: the lim
n→0 mustbe taken before the thermodynamic limitL→`
and finally the limitd→0 must be taken. In what follows, w
will use Eq. ~5! as our definition of chaos in the replic
approach. We have to stress, though, that this definitio
general and holds for generic random systems.

The above definition of chaos implies that it can be
garded as a spontaneous symmetry breaking phenomeno
the perturbation is absent, A and B are equivalent and
expects the exchange symmetryA↔B to be present. One
also expects to have permutation symmetry among the
licas associated with each groupA or B. Such an invariance
under permutations is usually called replica symmetry
short. However, in general, it turns out that the disord
averaged replicated partition function of the 2n replicas
ZA1B

n without any perturbation has an even higher symm
1-2
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try: it is invariant under any permutation among the 2n rep-
licas. Now, if Eq.~5! holds, this higher symmetry is reduce
after having introduced a perturbation, the permutation sy
metry remains at most within each subset associated wiA
andB. Thus, in order that this phenomena happens, the pe
turbation should show up in the replicated partition functi
as a symmetry breaking term, which tries to break the
permutation symmetry. Now, definition~5! tells us that this
symmetry breaking happens even with an arbitrary weak
turbation. Therefore, chaos defined as Eq.~5! is a spontane-
ous replica-symmetry breaking phenomenon. We note
such a definition of replica-symmetry breaking was int
duced under the nameexplicit replica symmetryfirst by Pa-
risi and Virasoro@40#, who tried to give a sound thermody
namic definition for the replica-symmetry breakin
phenomena known in the saddle point solutions of me
field models@44–45# of a class of glassy systems.

III. MODEL

We study DPRM in 111 dimensions, which is describe
by the following Hamiltonian in the continuous limit,

H0@V,h,f#5E
0

L

dzFk2 S df~z!

dz D 2

1V0„f~z!,z…G . ~6!

The scalar fieldf represents the displacement of the elas
object at pointz in a one-dimensional internal space of si
L. We assume that the fieldf is a single-valued function o
z, which means thatorientedobjects with no overhangs ar
considered. In the following, we assume that one end of
string is fixed asf(0)50, while the other endf(L) is al-
lowed to move freely. The first term in the Hamiltonian is t
elastic energy,k being the elastic constant. The random p
ning media is modeled by the quenched random poten
V0(f,z) with zero mean and short-ranged spatial correlat

V0~f,z!50,

V0~f,z!V0~f8,z8!52Dd~f2f8!d~z2z8!. ~7!

Many exact properties of this~111!-dimensional model are
known@23#. It is in the frozen phase at all finite temperatur
in the sense that its scaling properties are always gove
by theT50 glassy fixed point.

We implement the basic strategy explained in the prec
ing section as the following. First, we start with a system
two real replicas, say A and B, whose configurationsfA(z)
andfB(z) are subjected to exactly the same random pot
tial and temperature. Second, we apply small perturbation
them. In the present paper we consider five different kinds
perturbations.

~i! Tilt field @24#. A andB replicas are subjected to a tiltin
field of opposite sign2hfA(L)1hfB(L) with h!1.

~ii ! Explicit short-ranged repulsive coupling@24,46#. A
and B replicas are subjected to explicit repulsive sho
ranged interactione*0

Ldzd(fA(z)2fB(z)) with 0,e!1.
~iii ! Decorrelation of random potential@25,26#. The ran-

dom potential ofB obtained from that ofA as VB5(VA
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1dV8)/A11d2, where udu!1 and V8 follows the same
Gaussian distribution asV. Then VG(f,z)50 and
VG(f,z)VG8(f8,z8)52DGG8d(f2f8)d(z2z8) with DAA

5DBB5D andDAB5D/A11d2,D.
~iv! Random tilt field. A andB are subjected to statisticall

independent weak random tilt field.
~v! Temperature difference@3#. Slightly different tempera-

turesTA5T1dT andTB5T2dT for A andB, respectively,
with dT/T!1

IV. DROPLET SCALING APPROACH

We first review and discuss the scaling approach pict
@3,24–28# for the problem of the anomalous response. Let
consider a simple-minded picture consisting in the deep
valley corresponding to the ground-state configuration a
many branched valleys of low-~free-! energy excitations,
which, for given longitudinal sizeL, differ from the ground
state over a transverse sizeu0(L/L0)z, z being the so-called
roughness exponent. Note that we have introduced a cha
teristic longitudinal lengthL0, which should be understoo
as the Larkin length@47# beyond which pinning become
important as well as its associated transverse length scalu0.
The free-energy gap of these excited states with respec
the ‘‘ground state’’ is expected to scale typically as

DFL
typ5U0~L/L0!u. ~8!

HereU0 is the energy scale associated with the Larkin len
andu is the stiffness exponent which is related to the roug
ness exponentz by the exact scaling relation

u52z21. ~9!

In a ~111!-dimensional system these exponents are belie
to be exactlyu51/3 andz52/3 @23,34,41#. The probability
distribution function of the free-energy gapDFL is expected
to have a natural scaling form

rL~DFL!d~DFL!5 r̃S DFL

U0~L/L0!uD d~DFL!

U0~L/L0!u
~10!

with a nonvanishing amplitude at the origin,

r̃~0!.0, ~11!

which allows rare, gapless excited states@3,24#.
Let us now consider a generic perturbation which trigg

an excitation from the ground state with afree-energy gainof
order

dUS L

L0
D a

~12!

in the infinitesimally weak perturbation limit

dU/U0→0. ~13!

In the following we consider perturbations such thata.u.
Under the influence of such a perturbation, the system in
1-3
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deepest valley may jump into other valleys with a fre
energy gapDF if the possible gain of free energy due
perturbation ~12! becomes larger than the original fre
energy gap itself. The probability of such an event is e
mated as

pjump~L,dU !5E
0

dU(L/L0)a

rL~DFL!dDF;S L

Lc~dU ! D
a2u

~14!

with a characteristic length scale calledoverlap length,

Lc~dU !;L0S dU

U0
D 21/(a2u)

as dU/U0→0. ~15!

Let us also define a characteristic transverse length s
which is conjugate toLc(dU),

uc~dU !5u0S Lc~dU !

L0
D z

. ~16!

It is important to note that the above expressions m
sense only for short enough length scalesL!Lc(dU). In this
regime the effect of the jumps on physical quantities can
analyzed in a perturbative way because the probability o
jump is small enough. Let us call this regime theweakly
perturbed regime. However, in thestrongly perturbed regime
L@Lc(dU), perturbative treatments will fail because jum
events will happen with probability one. The latter impli
that after having applied the perturbation the free-ene
landscape is drastically different from the original on leng
scales larger than the overlap length. The overlap length~15!
diverges asdU/U0→0 with exponent21/(a2u), which is
sometimes called a chaos exponent@48#, but remains finite
for arbitrary small strength of perturbationd.

A. Uniform tilt field

We first consider the application of a uniform tilt fieldh to
the end point of the real replica B atz5L by which the
statistical rotational symmetry is violated. In the presence
the tilt field the Hamiltonian becomes

HA1B5H0@V0 ,fA#1H0@V0 ,fB#2huniE
0

L

dz
dfB~z!

dz
.

~17!

The unperturbed HamiltonianH0 is given in Eq.~6!. If the
string makes a jump responding to the uniform tilt field ov
a distance of orderu0(L/L0)z into the next valley, it obtains
an energy gain of orderhuniu0(L/L0)z. Thus, the unit for the
gain in energy~12! reads asdU5huniu0 with a characteristic
exponenta5z52/3. Therefore, we find the overlap leng
~15! to be

Lc~huni!;L0S huniu0

U0
D 23

. ~18!
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This result was previously obtained by Me´zard in @24# by
using essentially the same argument and supporting his re
by a numerical transfer-matrix calculation.

B. Explicit repulsive coupling

The other perturbations that we consider do not break
statistical rotational symmetry. First we consider the case
having a short-ranged repulsive coupling between the
real replicas by which the total Hamiltonian becomes

HA1B5H0@V0 ,fA#1H0@V0 ,fB#

1eE
0

L

dzd„fA~z!2fB~z!… ~19!

with e.0.
This type of perturbation was first considered by Pa

and Virasoro@40# in the context of spin-glass models in ord
to give a precise definition of spontaneous replica-symme
~RS! breaking. It explicitly breaks the RS noted in Sec. I.
was also used in the DPRM problem by Parisi in@46# and
was further examined by Me´zard using the numerica
transfer-matrix method@24#.

If the two replicas jump into different valleys to avoi
touching each other, the energy is reduced by an amoun
order e(L/L0). Thus, we read offa51 anddU5e so that
the overlap length~15! becomes

Lc~e!;L0S e

U0
D 23/2

. ~20!

Again this length scale agrees with the result obtained
Mézard for the same quantity in@24#.

C. Potential change, random tilt field, and temperature change

Now we introduce three other kinds of perturbations th
do not break rotational symmetry. As we explain in Sec.
this class of perturbations also breaks the RS noted in Se
However, the strength of perturbation is subextens
;L1/2 (a51/2), and much weaker than in the case of e
plicit repulsive coupling, which is extensive;L(a51).

1. Potential change

We consider three different perturbations ofa51/2. The
first one is to introduce a small difference between the re
izations of the pinning potential forA andB @25–28#. Sup-
pose thatA has a certain realization of the pinning potent
V0. Then we can construct the potential forB as the sum of
V0 and a new statistically independent random numberV1.
Then the total Hamiltonian becomes

HA1B5H0@V0 ,fA#1H0@~V01dV1!/A11d2,fB#.
~21!

Here d is the strength of the perturbation andV1 has the
same statistical properties asV0 given in Eq.~7!. Namely, it
has zero mean and short-ranged correlations,
1-4
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V1~f,z!V1~f8,z!52Dd~f2f8!d~z2z8!,

V0~f,z!V1~f8,z8!50. ~22!

Note that the pinning potential for replica B is normalized
the factor 1/A11d2, so that it has the same amplitude
replicaA.

The characteristic fluctuation of the extra energy g
along a configuration due to the random variation of
potential scales typically asdU0AL/L0 since it gives contri-
butions with random signs. Thus, we read offa
51/2, dU5dU0 and the the overlap length~15! becomes

Lc~d!;L0d26. ~23!

This length scale was found by Feigel’man and Vinokur
essentially the same argument@26#. Previous numerical cal
culations@25,28# appear consistent with it but the anticipat
crossover phenomena had remained to be clarified.

2. Random tilt field

Similarly, we consider the application of a random t
field to the end point ofB,

HA1B5H0@V0,0,fA#1H0@V0,0,fB#2dE
0

L

dzh~z!
dfB~z!

dz
.

~24!

Here d is the strength of the perturbation andh(z) is a
Gaussian random number with zero mean and short-ran
correlations,

h~z!50, h~z!h~z8!52d~f2f8!d~z2z8!. ~25!

Within the lattice model we study numerically, the energe
gain of energy typically scales again asdU0AL/L0. Thus, we
find a51/2 anddU5dU0, which gives the overlap length

Lc~d!;L0d26, ~26!

3. Temperature change

All perturbations discussed so far are nonthermal per
bations. Finally we consider the introduction of a slight te
perature difference between the two real replicasA andB,

TA5T1dTA ,

TB5T1dTB , ~27!

wheredTA5” dTB . Although this perturbation appears to b
rather different from the two other cases above, it is a
expected to givea51/2 based on the following observatio

Fisher and Huse@3# conjectured that valley-to-valley fluc
tuations of the energy and the entropy are just that of a s
of random variables put on a string of lengthL. Thus the
amplitude of valley-to-valley fluctuation scales as

DS~L !;kB~L/L0!1/2,

DE~L !;U0~L/L0!1/2. ~28!
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However, it is argued that the free energy is optimized so t
these wild fluctuations cancel with each other as much
possible in such a way that valley-to-valley fluctuations
the free energy are much smaller,

DF~L !5U0~L/L0!u with u,1/2. ~29!

In other words, there is a strongnegativecorrelation between
the fluctuations of entropy and energy such that

~DS/kB!~dE/U0!;2~L/L0!,0 ~30!

due to the thermodynamic relationDF5DE2kBTDS. Note
that a similar argument lies at the heart of the droplet the
for spin glasses, which suggests temperature chaos@1,2#. Ac-
tually, the exponent for the free-energy fluctuations is b
lieved to be exactlyu51/3, which is definitely smaller than
1/2. Furthermore, the stronger fluctuation of entropy and
ergy ~28! was confirmed numerically by a transfer-matr
calculation while the smaller fluctuation of free energy w
u51/3 was also observed simultaneously@3,49#. Then under
a slight temperature difference between the two replicaA
and B, it is possible that one of the replicas jumps into
different valley taking advantage of the large gain in entro
Such a gain should typically scale askBudTA
2dTBu(L/L0)1/2 and, therefore,a51/2 and dU5kBudTA
2dTBu. From Eq.~15!, one then finds the overlap length a

Lc~dT!;S kBudTu
U0

D 26

~31!

with dT5dTA2dTB . This length scale was found by Fishe
and Huse in@3#. Indeed their transfer-matrix calculation pre
sented in@3# suggests the existence of crossover phenome
However, details of the scaling properties and compari
with the case of the perturbation on the potential have
mained to be explored. So we try to complete the investi
tion in Sec. VII.

As we summarized above, what is crucial is the role
entropy. In the so-called Larkin model@47#, in which the
effect of pinning is modeled by quenched random forc
with short-ranged correlations, entropy plays very little ro
and free energy is dominated by energy so that there is
temperature chaos~see@50#!.

D. Moments of transverse jump distances

In order to characterize the jump events triggered by
perturbations, it is useful to introduce appropriate correlat
functions. First, let us introduce the disorder average of
qth moment of the transverse distance between the
points of the two real replicas,

Bq~L,dU !5@FA~L !2FB~L !#q. ~32!

It was introduced and studied numerically by Zhang in@25#
and continued further in@28# for the case of perturbation o
the random potential. The following is an extension of t
argument by Feigel’man and Vinokur described in@26#.
1-5
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1. Weakly perturbed regime

In the weakly perturbed regimeL!Lc(dU), a jump event
happens with a probability smaller than 1 as given in E
~14!. With a single event, a transverse displacement of or
u0(L/L0)z will take place. Thus, we expect

Bq~L,dU !;Fu0S L

L0
D zGq

pjump~L,dU !

;uc~dU !qS L

Lc~dU ! D
(q22)z1a11

, L!Lc~dU !,

~33!

where in the last step we have used the scaling relation~9!.

2. Strongly perturbed regime

In the strongly perturbed regimeL@Lc(dU), the jump
events with longitudinal sizeLc(dU) and transverse siz
uc(dU) will take place with probability 1. Let us first con
sider the behavior of the first momentB1(L,dU) in this re-
gime.

In the strongly perturbed regime, the two replicasA andB
are subjected to very different free-energy landscapes
such a situation, we expect that the two replicasA andB will
make excursions independently. Thus, we expect a sim
scaling form,

B1~L,dU !5uc~dU !S L

Lc~dU ! D
z

, L@Lc~dU !. ~34!

However, the situation is slightly different in the case
the uniform tilt field considered in Sec. IV A, because t
uniform tilt field continues to increase the separation
tweenA andB systematically asL→`. After making a trans-
verse jump of orderu0(L/L0)z, another jump into a furthe
valley in the direction of the field can take place if th
strength of the fieldh is increased further. The latter happe
when the new increment of the Zeeman ene
dhu0(L/L0)z, due to another increment of the fielddh, be-
comes again comparable to the typical free-energy gap@51#
DF typ(L) given in Eq.~8!.

dhu0~L/L0!z;DF typ~L !. ~35!

The number of times that such a sequence of jumps oc
by increasing the field from 0 toh will typically be h/dh.
Each jump will have a typical transverse size of ord
u0(L/L0)z. Thus, the first moment grows as

B1~L,hu0!5u0S L

L0
D z h

dh
5uc~hu0!S L

Lc~hu0! D ,

L@Lc~hu0!. ~36!

In the last equation, we used the scaling relation~9!. Note
that the first moment (q51) grows linearly withL not only
in the strongly perturbed regime but also in the weakly p
turbed regime as one can see usinga5z in Eq. ~33!. Actu-
ally the linear growth of the first moment can be prov
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rigorously using the statistical rotational~tilt ! symmetry of
the system@24,52#. This is a rather special property of th
first moment. All other moments are sensitive to the cro
over from weak to strong perturbation regimes.

Let us now consider higher momentsq.1. Since jump
events aretypical in the strongly perturbed regime, we ge
nerically expect a simple relation between different m
ments,

Bq~L,dU !5uc
q~dU !S B1~L,dU !

uc~dU ! D q

, L@Lc~dU !,

~37!

where note that the natural unit for theqth moment is now
uc

q(dU). Note that in the weakly perturbed regime such
simple relation between different moments does not hold
cause of the rareness of the jump events. The first mom
obeys a scaling law such thatB1(L,dU)/uc(dU) is a func-
tion of L/Lc(dU) also in the strongly perturbed regime as w
mentioned above. This implies that the higher momentsq
.1) obey a scaling law such thatBq(L,dU)/uc

q(dU) be-
comes a function ofL/Lc(dU)(@1) in the strongly per-
turbed regime.

3. Summary

To summarize, we expect a generic scaling form for
behavior of theqth moment including both weakly an
strongly perturbed regimes as

Bq~L,dU !5uc
q~dU !B̃qS L

Lc~dU ! D . ~38!

Here the scaling function presents the asymptotic forms
the weakly perturbed regimeL!Lc(dU) and strongly per-
turbed regimeL@Lc(dU), which we discussed above.

E. Overlap function

Another useful quantity to probe the jump events is t
overlap function defined as@24,46#

q~L,dU !5
1

LE0

L

dzd„x0~z!2xdU~z!…. ~39!

We expect it to scale as

q~L,DU !5q̃S L

Lc~dU ! D . ~40!

Note that 12q is essentially the probability that the strin
jumps to a different valley. Thus, in the weakly perturb
regimeL!Lc(dU), we expect that it behaves as

12q~L,dU !;pjump~L,dU !;S L

Lc~dU ! D
a2u

. ~41!

In the strongly perturbed regimeL@Lc(dU), we expect that
q ~i.e., the probability of staying in the same valley! decays
1-6
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faster down to 0 asL/Lc(d)→` because the free energ
landscapes of the two replicas are increasingly differ
there.

F. Correlation of the free-energy fluctuation

In order to probe the difference of free-energy landsca
between the perturbed and unperturbed systems, we s
the correlation function~2! of the sample-to-sample fluctua
tions of the free energy between the two systems, wh
reads as

CF~L,dU !5
DF~L,0!DF~L,dU !

ADF2~L,0!ADF2~L,dU !

. ~42!

HereDF(L,0) andDF(L,dU) are deviations from the mea
free energy of the unperturbed and perturbed system
similar correlation function was studied numerically for t
case of perturbation of the temperature shift in@3#. We ex-
pect it to scale as

CF~L,DU !5C̃FS L

Lc~dU ! D , ~43!

and decay down to 0 asL→`.
A possible functional form of the correlation function

the weakly perturbed regimeL!Lc(d) can be guessed by
simple argument proposed by Bray and Moore@1# for the
equivalent problem in a spin-glass model. First, we are c
sidering perturbations such that perturbed and unpertu
systems have the same statistical properties. Thus, we
have

AD2F~L,dU !5AD2F~L,0!;U0S L

L0
D u

. ~44!

Suppose that we introduce a perturbation that scales
dU(L/L0)a as given in Eq.~12!. Then the fluctuations of the
free energy of the perturbed system have two contributio
the original fluctuationDF(L,0) plus the change due to th
perturbation,

DF~L,dU !5
1

N FDF~L,0!1dUS L

L0
D aG . ~45!

HereN is a normalization factor which assures that the s
tistics of the perturbed and unperturbed systems remain
same as in Eq.~44!. It is assumed that the two terms betwe
brackets in expression~45! are uncorrelated. When perform
ing the average over the disorder, the cross terms due to
two terms in Eq.~45! cancel out to give the following scalin
function for the correlation function:

CF~L,DU !;
1

N F11S dU

U0

L

L0
D 2(a2u)G21/2

. ~46!

For the strongly perturbed regimeL@Lc(d), the correlation
function may decay faster.
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V. REPLICA BETHE ANSATZ APPROACH

Now let us take the replica approach introduced in Sec
to study chaos. We start from the partition function of 2n
replicas:A andB and theirn copies. It can be expressed by
path integral over all possible configurations of 2n replicas
labeled by two indicesG5A,B anda51, . . . ,n,

ZA1B
n ~L !5E )

G5A,B
)
a51

n

DfG,aexp~2SA1B@fG,a#!,

~47!

where we have introduced the dimensionless effective act

SA1B@fG,a#5E
0

L

dzF(
G,a

k

2kBT S dfG,a~z!

dz D 2

2
D

~kBT!2 (
G,G8,a,b

d„fG,a~z!2fG8,b~z!…G .

~48!

To obtain the last equation we have used Eq.~7!. Here one
end of each replica is fixed asfG,a(0)50, while the other
endfG,a(L) is allowed to move freely as we noted above

The effective action~48! has several important symme
tries. First, it has a symmetry under global rotation in t
(z,f) plane. Second, it is symmetric under all possible p
mutations among the 2n replicas. Let us call the latter RS fo
simplicity. As we explained in Sec. II our primary interest
how the RS is broken by infinitesimally weak perturbation

Now we focus on the study of the disorder-averaged p
tition functionZA1B

n (L). To this respect we will use the we
known mapping to ann-body imaginary time quantum me
chanical problem in one-dimensional space, which was a
first noted by Kardar@41,42#. The advantage of this approac
is that one can make use of the BetheAnsatz, which provides
us with the exact ground state of the quantum proble
Moreover, from the latter one gets many hints about how
construct the relevant excited states. In what follows,
main steps in this procedure are outlined to emphasize
eral points which will become relevant in the analysis of t
perturbation. The path integral of the partition function d
fined in Eq.~47! through the action in Eq.~48! can be rein-
terpreted as that of a quantum system in imaginary time
the absence of temperature difference betweenA andB, the
Schrödinger equation reads as

2
d

dt
ZA1B

n ~$xG,a%,t !5H0ZA1B
n ~$xG,a%,t !, ~49!

with the following Schro¨dinger operator for 2n bosons:

H052(
G,a

kBT

2k

]2

]xG,a
2

2
D

~kBT!2

3 (
„(G,a),(G8,b)…

d~xG,a2xG8,b!. ~50!
1-7
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The first term represents the kinetic energy. The second t
stands for attractive short-ranged interactions between
bosons where the sum is taken over all possible pairs
bosons~excluding unphysical self-interactions which are a
sent in lattice models!.

Let us note that here we have two kinds of bosons. T
bosons ofA can be distinguished from those ofB and vice
versa while the bosons cannot be distinguished from e
other within the subgroups. However, the Schro¨dinger opera-
tor has an even higher bosonic symmetry: it is symme
under permutations of all the 2n replicas. This is nothing bu
the RS we mentioned above.

By integrating out the coordinates of the free ends of
string ($xa ,G%,L) while keeping the other ends fixed
(0,0), we formally obtain the disorder-averaged partiti
function of the replicated system as

ZA1B
n ~L !5E )

G5A,B
)
a51

n

dxG,aZA1B
n ~$xG,a%,L !

5(
m

e2LEmE )
G5A,B

)
a51

n

dxG,a

3^$xG,a%ucm&^cmu$0%&, ~51!

whereucm& andEm are the eigenstates and eigenvalues of
Schrödinger operatorH0 defined in Eq.~50!. In the largeL
~large time! limit, the partition function will be dominated by
the eigenstates of the Schro¨dinger operator with lowest ei
genvalues~energies! including the ground state.

The ground-state wave function is well known to satis
the BetheAnsatzreading

^CRSu$xG,a%&

;expS 2l (
((G,a),(G8,b))

Uxa,G2xb,G8U D
with l5kD/~kBT!3, ~52!

where the sum is taken over all possible pairs among then
replicas labeled as (G@5A,B#,a@51, . . . ,n#). The index
RS stands for the fact that this wave function has RS,
permutation symmetry among all 2n-replicas. In the follow-
ing we label this state as RS.

In general, the ground state of one-dimensionaln-body
problems with contact interaction is constructed in the f
lowing way: the 2n particles are ordered and occupy a c
tain segment within which they are free. The global wa
function consists of the product of 2n plane waves whose
momentslm have to fulfill certain matching and bounda
conditions which in our case result inlm5(2n1122m)l
with m51, . . . ,2n. The ground-state energy is then the su
of the kinetic energy of the 2n free-particles,

Eg52
kBT

2k (
m51

2n

lm
2 52

kBT

2k

1

3
l22n~4n221!. ~53!
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Although the ground state makes the most important c
tribution to the partition function, it may not be the only on
If one only takes into account the contribution of the grou
state neglecting all other excited states, one would wron
conclude from Eq.~53! and the relation~4! that only the first
and third cumulants of the correlation functions of fre
energy fluctuations exist. This conclusion is definitely u
physical because the second cumulant cannot be zero. S
pathology implies existence of continuum of gapless exci
states which give important contributions to the partiti
function.

Bouchaud and Orland@53# pointed out that the transla
tional symmetry of the Schro¨dinger operator allows to con
struct a continuous spectrum of excited states by conside
center of mass~c.m.! motion. Such an excited state wit
wave vectork has the form

^CRS, ku$xG,a%&5expS ik(
G,a

xG,aD ^CRSu$xG,a%& ~54!

with eigenvalue

ECM~k!5Eg12n
kBT

2k
k2. ~55!

The resultant partition function obtained by integrating o
the continuous spectrum can be put into the following sc
ing form @42#:

lnZA1B
n 522nb f L1g~2nL1/3!, ~56!

where f in the first term represents the average free-ene
density. The functiong(x) in the second term is analytic fo
small x, implying that theqth cumulant of the correlation
function of free-energy fluctuations scales asLq/3. Thus, the
characteristic exponent for the free-energy fluctuation, wh
is called the stiffness exponent~8!, is obtained asu51/3,
being consistent with extensive numerical results of trans
matrix calculations@23# and other analytical approaches su
as mapping to the noisy Burgers equation@54#.

Parisi@46# pointed out another important spectrum of e
cited states in which replicas are grouped intoclustersof
bound states. Each cluster is supposed to be described
Bethe-Ansatz-type wave function so that there is replica~per-
mutation! symmetry within each cluster. An important a
sumption is that these clusters are located far enough f
each other so that their mutual overlap is negligible. T
latter is allowed if the transverse size of the system is in
nitely large.

In our present context, we have two kinds of bosons c
responding to the two real replicasA and B, which can be
distinguished from each other. Thus, it is natural to consi
an excited state which consists of separate Bethe-type c
ters ^CRS

A u for A and ^CRS
B u for B, with no mutual overlaps,

^CRSBu5^CRS
A u^CRS

B u, ^CRS
B uCRS

A &50. ~57!

Its associated energy is readily obtained as
1-8
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ERSB52
kBT

2k

1

3
l2n~n221!32. ~58!

This wave function has the reduced replica symmetry m
tioned in Sec. III, i.e., it is symmetric under permutatio
among A and B groups and the exchange operationA↔B.
We will call this state as the replica-symmetry broken~RSB!
state in the following.

A very important feature is that the gap of the RSB e
cited state with respect to the RS ground-state energy, w
is of orderO(n3), becomes vanishingly small in then→0
limit. Thus, such an excited state should be also taken
account since we must taken→0 beforeL→` in the evalu-
ation of the replicated partition function. Presumably ea
cluster of bound states can have its own center of mass
tion. Therefore, the RSB excited state should have the c
tinuum of the excited states of c.m. motion similar to th
associated with the RS ground state mentioned above. T
the resultant partition functionZA1B

n , which will be obtained
by integrating out these RSB excited states and the ass
ated continuum due to c.m. motions, may be put again
the scaling form~56!. The latter will again yieldu51/3.

To summarize, the replica symmetry is not broken b
only in amarginalway. As suggested by Parisi@46#, the role
of these RSB excited states will become important if pert
bations are considered. In the following we generalize
approach of@46# and exploit its implications to study th
stability of the frozen phase against the various perturbat
we considered in Sec. IV.

Perturbative approach by replica scalingAnsatz

Now we address the situation in which the two real re
licas A and B are under infinitesimally weak perturbation
The partition function of the system under such a pertur
tion can be formally written as

ZA1B
n ~L !5E )

G5A,B
)
a51

n

DfG,aexp~2SA1B@fG,a#

2dSA1B@fG,a#!, ~59!

where the actionSA1B@fG,a# is the original one Eq.~48!,
which is fully replica symmetric and the second on
dSA1B@fG,a#, is the perturbation term. Suppose that we c
map the problem onto the quantum mechanical one such
the corresponding Schro¨dinger operator becomes

HA1B5H01dH, ~60!

whereH0 is the original fully replica-symmetric 2n-boson
operator given in Eq.~50! anddH corresponds to thedS in
the path integral. As we will see in the following, these p
turbations try to break the RS present in the original sys
down to the reduced symmetry: replica symmetric o
within A andB subgroups. At this stage, the whole quantu
problem cannot be solved exactly. However, we can obta
useful insight into our problem by the perturbation analy
proposed by Parisi@46#.
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Here let us note a problem in the case of perturbation
the random tilt field considered in Sec. IV C 2. If one tries
obtain a continuous model starting from a lattice model
considered by Kardar@41#, one can find that inter-replica
coupling terms due to the random tilt field emerge at sec
order in the transverse hopping rate of the lattice string~de-
noted asg in @41#!. This implies that the mapping in th
continuous limit to a Schro¨dinger equation is invalid in this
case because the Schro¨dinger equation contains only first
order time derivatives. Thus, we do not consider this cas
this section.

From standard perturbation theory we can evaluate
first-order corrections to the original ground-state energy

ED
RS52

1

3

kBT

2k
l22n~4n221!1

^CRSudHuCRS&

^CRSuCRS&
, ~61!

where the labelD stands for the perturbation strength a
^CRSu is the ground-state wave function given in Eq.~52!.
The first term corresponds to the ground-state energy g
in Eq. ~53!.

Following Parisi, we will consider the RSB excited sta
~57!,

^CRSBu$xG,a%&}expS 2l (
a,b

UxA,a2xA,bU D
3expS 2l (

a,b
UxB,a2xB,bU D ~62!

with l5kD/(kBT)3. This wave function has the reduce
replica symmetry. At first order in perturbation theory, w
can compute the energy of the RSB excited states as follo

ED
RSB52

1

3

kBT

2k
l22n~n221!1

^CRSBudHuCRSB&

^CRSBuCRSB&
,

~63!

where the first term is the energy of the unperturbed sys
given by Eq.~58!.

Let us introduce the ratio of the contributions to the p
tition functionZA1B

n due to the RS ground state and the RS
excited state,

D~n,L ![~ED
RSB2ED

RS!L5D0~n,L !2dD~n,L !, ~64!

where

D0~n,L !5
kBT

k
l2n3L.0 ~65!

is the original energy gap and the correction is due to the
order perturbation

dD~n,L !5LS ^CRSBudHuCRSB&

^CRSBuCRSB&
2

^CRSudHuCRS&

^CRSuCRS&
D .

~66!

In the following we callD(n,L) a gap. If it is large enough
the contribution of the RSB excited state to the partiti
1-9
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MARTA SALES AND HAJIME YOSHINO PHYSICAL REVIEW E65 066131
function becomes negligible. We will find that, in gener
the correction term of the gap has the form

2dD~n,L !52DnpL,0. ~67!

Here the symbolD stands for the strength of the perturb
tion. Most importantly, the correction term2dD(n,L)/L5
2npD will turn out to benegativefor all the perturbations
under consideration. In what follows we will refer top as the
order of the perturbation, which will play a central role.
More precisely, the correction to the gap2dD(n,L)/L will
contain several terms of different powers ofn. Herep is the
exponent of the term with thesmallestexponent, which be-
comes most relevant in then→0 limit.

If the first-order correction turns out to give a null cont
bution, we have to proceed to higher-order perturbation
culations, which is obviously impossible without the com
plete knowledge of the whole spectrum of excited sta
Fortunately for all the cases except for the case of the
turbation by uniform tilt field we will find nonzero first-orde
corrections. Higher-order correction terms will be higher
der in D, which will be unimportant since we are interest
in the scaling properties in the infinitesimally weak perturb
tion limit D→0. Furthermore, it is unlikely that the highe
order terms are lower orders ofn. Thus, they will be irrel-
evant in then→0 limit. For the case of uniform tilt field, we
will fortunately find exact RS and RSB bound states of
system, which will allow the evaluation of the gapD(n,L)
also in this situation.

Now using Eqs.~67! and ~65! in Eq. ~64! we find

D~n,L !5D0~n,L !F12S n

n* ~D!
D 2(32p)G , ~68!

with

n* ~D!5S D

l2kBT/k
D 1/(32p)

. ~69!

From the above result we can generalize the argument
by Parisi for the explicit repulsive case (p51) to extract the
following conclusions. As far asn is integer and the strengt
of the perturbationD is small, the contribution of the RSB
state becomes negligible in the thermodynamic limitL→`.
However, we have to consider the other limiting case:
n→0 limit should be taken beforeL→`. Now if p,3,
which will turn out to be the case for all the perturbatio
under study, an arbitrarily small perturbationD will induce a
level crossing atn* (D) below which the contribution of
RSB excited state becomes larger than that of the orig
ground state~RS!. The result~68! matches perfectly with ou
definition of chaos Eq.~5!, since it suggests that the partitio
function of the total system factorizes in then→0 limit as

lim
n/n* →0

ZA1B
n 5ZA

n ZB
n if p,3 ~70!

implying a complete change of the free-energy landscap
06613
,

l-

s.
r-

-

-

e

ed

e

al

Now let us further exploit the above result to find a mo
physical picture. In the absence of perturbations, the lo
rithm of the replicated partition function has a function
form ~56!, which reads as lnZA1B

n 52bfL(2n)1g(2nL1/3). On
the other hand, Eq.~68! implies thatn/n* is another natural
variable of the replicated partition function@55#. Combining
the two, we conjecture the following scalingAnsatz:

ln ZA1B
n 1b f L~2n!5g̃~2nL1/3,n/n* !5g̃~2nL1/3,L/L* !,

~71!

where we introduced a characteristic lengthL* defined as

L* ;~n* !23;D23/(32p). ~72!

An interesting observation is that then→0 limit induces the
thermodynamic limitL→ if the variablenL1/35x is fixed.
Then for fixedx we expect

g̃~x,L/L* →0!.g~2x!, L/L* !1 ~n/n* @1!

~weak perturbation regime!

g̃~x,L/L* →`!.2g~x!, L/L* @1 ~n/n* !1!

~strong perturbation regime!. ~73!

The first equation means that for small enough length sca
the effect of perturbation is small and the partition function
essentially the same as that of the unperturbed system on
replicas given in Eq.~56!. The second equation is the cons
quence of having two statistically independent systems in
limit L→`.

From the above scalingAnsatz, it follows that the corre-
lation function of the free-energy fluctuationsCF(L) consid-
ered in Sec. IV F should have the scaling formC̃F(L/L* ),
which goes to 0 asL/L* →`. Similarly the overlap function
q(L,dU) considered in Sec. IV E should also have the sc
ing form q̃(L/L* ), which goes to 0 asL/L* →`. Thus, the
crossover lengthL* should be identified with the overla
lengthLc(dU). The aboveAnsatzimplies that the decorrela
tion of the free-energy landscape betweenA and B takes
place as a universal phenomenon whose features are c
fied according to the order of the perturbationp. In the fol-
lowing, we consider the perturbations considered in the p
vious real-space scaling argument~Sec. IV specifically! one
by one based on the replica approach and evaluate the
rection to the gap, Eq.~67!, explicitly and extract the
strength of perturbationD and the order of perturbationp.
Interestingly enough, we will find that the two approach
give the same overlap length.

Finally let us comment on how to choose detailed for
of perturbations, which we discuss in the following. We co
sider perturbations such that the original symmetry is p
served as much as possible: the 2n-replica system remains
invariant at least under permutation amongn replicas be-
longing to the same subsetA andB and exchangeA↔B, i.e.,
the reduced replica symmetry.
1-10
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1. Short-ranged repulsive coupling

Let us begin with the perturbation that introduces an
plicit repulsion term between stringsA andB as given by the
Hamiltonian in Eq.~17!. The corresponding Schro¨dinger op-
erator for the replicated system can be obviously put into
form of Eq. ~60!—fully replica-symmetric term 1
perturbation—to obtain

HA1B5H01dH

with

dH5
e

kBT (
a51, . . . ,n

d~xA,a2xB,a!, e.0. ~74!

Clearly the repulsive perturbing term breaks the original
@46#.

Computing explicitly the expectation value of th
d-interaction term with respect to the Bethe ground state,
obtains@46#,

^CRSud~xA,a2xB,a!uCRS&

^CRSuCRS&
5

l

6
~2n11!, ~75!

while

^CRSBud~xA,a2xB,a!uCRSB&

^CRSBuCRSB&
50. ~76!

because the bound states of A and B subsets have no ov
^CRSBuCRSB&50 @Eq. ~57!#.

Thus, the correction term to the gap, Eq.~67!, is obtained
as

2
dD~n,L !

L
52

l

6
~2n11!S e

kBTDn. ~77!

Note that the reduced replica symmetry—permutation sy
metry amongn replicas belonging to the same subset p
the exchange symmetryA↔B—is still preserved. Thus, the
leading order of the perturbation~smallest power ofn, which
becomes most relevant in then→0 limit! is read off asp
51 and the strength of perturbation asD;e. Finally, using
the relation~72! we obtain the crossover lengthL* ;e23/2.
Remarkably the latter turns out to be the same as the ove
length ~20! found in the real-space scaling argument.

2. Potential change

If a slight difference of the random potential is introduc
as described in Eq.~21!, the corresponding Schro¨dinger op-
erator of the 2n replica system reads as
06613
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e
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e
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H52(
G,a

kBT

2k

]2

]xG,a
2

2
D

~kBT!2 (
(a,b)

d~xA,a2xA,b!

2
D

~kBT!2 (
(a,b)

d~xB,a2xB,b!

2
1

A11d2

D

~kBT!2 (
(a,b)

d~xA,a2xB,b!5H01dH

~78!

with the symmetry breaking term

dH5
d2

2 (
(a,b)

d~xA,a~z!2xB,b~z!!. ~79!

Here we are in the infinitesimally weak perturbation limitd
→0, so higher-order terms can be ignored.

A remarkable feature is that the second term of the
equation, which is the perturbation termdH, is againrepul-
sive. Note that the sum is taken overn2 rather thann(n
21)/2 pairs. The expectation value of thed function with
respect to the RS ground state and the RSB excited state
already been computed in Eqs.~75! and ~76!, hence we im-
mediately find the correction to the gap as

2
dD~n,L !

L
52

l

6
~2n11!

d2

2
n2. ~80!

Note that this perturbation contains the reduced replica s
metry. The latter was made possible by a specific choice
the perturbation by introducing the rescaling factor 1/A11d2

used in Eq.~21!. We can now read off the order of the pe
turbation asp52 and the strength of the perturbation asD
;d2. Now using Eq.~72!, we obtain the overlap lengthL*
;d26. Indeed, the latter turns out to be that obtained by
real-space scaling argument given in Eq.~23!.

3. Temperature change

Now two real replicas in the same quenched random
tentialV„f(z),z… are subjected to a small temperature diffe
ence.

The Schro¨dinger operator for the 2n-replica system with
A at temperatureTA andB at temperatureTB is the follow-
ing:

H52(
a

kBTA

2k

]2

]xA,a
2

2(
a

kBTB

2k

]2

]xB,a
2

2 (
„(G,a),(G8,b)…

D

~kBTG!~kBTG8!
d~xG,a2xG8,b!.

~81!

The RS is apparently lost in the operator. Let us choose
following specific parameters of perturbation:
1-11
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TA→T1dT,

TB→T2dT,

D→DF123S dT

T D 2G . ~82!

Then we can put the operator in the form

H5H01dH ~83!

with the symmetry breaking terms

dH52(
a

kBdT

2k

]2

]xA,a
2

12
dT

T (
a,b

D

~kBT!2
d~xA,a2xA,b!

1(
a

kBdT

2k

]2

]xB,a
2

22
dT

T (
a,b

D

~kBT!2
d~xB,a2xB,b!

12S dT

T D 2

(
a,b

D

~kBT!2
d~xA,a2xB,b!1OS dT

T D 3

. ~84!

In this last equation, we are considering the limit of an
finitesimally weak perturbationdT/T→0 to neglect higher-
order terms. The expectation value of the perturbing oper
with respect to the RS ground state is obtained as

^CRSudHuCRS&52S dT

T D 2 D

~kBT!2 (
a,b

^CRSud~xA,a

2xB,b!uCRS&

5
l

6

D

~kBT!2
~2n11!2S dT

T D 2

n2. ~85!

Here we have used the fact that the ground-state wave f
tion is symmetric with respect to the exchangeA↔B plus
Eq. ~75!. Due to the latter, the terms of orderO(dT) cancel
out and we are left with theO(dT2) term. Note also that the
sum is again taken overn3n pairs of replicas rather tha
n(n21)/2.

On the other hand, the expectation value of the perturb
term with respect to the RSB excited state is obtained im
diately as^CRSBudHuCRSB&50 using Eq.~76!, and the fact
that RSB wave function is symmetric with respect to t
exchangeA↔B and Eq.~57!. Using the above results w
find the correction to the gap as@56#

2
dD~n,L !

L
52

l

6

D

~kBT!2
~2n11!2S dT

T D 2

n2. ~86!

Note that the resultant gap is invariant under the excha
A↔B, which was made possible by the antisymmetric dir
tion of the change of temperature Eq.~82!. From the above
results, we read off the order of the perturbation asp52 and
the strength of the perturbation asD;(dT)2. Quite remark-
06613
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ably the latter used in Eq.~72! again yields the crossove
lengthL* ;(dT)26, which is the same as that found by th
real-space scaling argument~31!.

4. Uniform tilt field

Finally we consider applying a uniform tilth to one real
replica and2h to the other. The effective action describin
the uniform field perturbation~17! is the following:

SA1B@fG,a#5E
0

L

dzF(
G,a

k

2kBT S dfG,a~z!

dz D 2

2
D

~kBT!2 (
G,G8,a,b

d„fG,a~z!2fG8,b~z!…

2
h

kBT (
a

dfA,a~z!

dz
1

h

kBT (
a

dfB,a~z!

dz G .

~87!

Here not only the full permutation symmetry among then
replicas, but also the global rotational symmetry is lost d
to the field. Thus, the universality of this perturbation shou
be very different from those discussed so far. The cor
sponding Schro¨dinger operator of the quantum mechanic
problem reads as

H52(
G,a

kBT

2k

]2

]xG,a
2

2
D

~kBT!2 (
G,G8,a,b

d~xa2xb!

2
h

k (
a

]

]xA,a
1

h

k (
a

]

]xB,a
. ~88!

Note that the first two terms are the original operatorH0
given in Eq.~50!.

Now let us analyze the change of the RS state~52!. One
can easily see that the first-order perturbation vanishes
ply because the total momentum of the ground state is z
On the other hand, one can also easily note that when a
is applied, the original wave function is no longer an eige
state. Fortunately, the exact eigenstate can be found in
odd situation in which particles belonging to different su
sets (A and B) are driven into opposite directions. Th
former Schro¨dinger operator~88! can be rewritten into the
fully symmetric form of the original problem~50! by shifting
the momenta,

]

]xA,a8
5

]

]xA,a
2

h

kBT
,

]

]xB,a8
5

]

]xB,a
1

h

kBT
. ~89!

Notice that this transformation preserves the commuta
relations between conjugated coordinates and moments~i.e.,
@]/]xG,a8 ,xG,a#5@]/]xG,a ,xG,a#). In terms of these new co
ordinates, the RS ground state again takes the form of
1-12
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BetheAnsatzsolution of Eq.~52!. And, therefore, the fina
ground state can be obtained from Bethe’s wave function
undoing the previous shifting of moments,

C;CRS~$xG,a%!expS h

kBT (
a

xA,aD expS 2
h

kBT (
a

xB,aD ,

~90!

whereCRS($xG,a%) is the original BetheAnsatzwave func-
tion for 2n replicas given in Eq.~52!. The eigenvalueEh
corresponding to this wave function is obtained as

Eh5E01
nh2

kkBT
, ~91!

which does not depend on the ordering of the particles. H
E0 is the original ground-state energyEg given in Eq.~53!.
Although the original full permutation symmetry is lost
the wave function~90!, it still described a sort of bound stat
on 2n particles. So we may refer to it as the RS state. In
following section, we will discuss the mapping onto the S
nai model and the physical meaning will become clearer. T
second term of Eq.~91! gives the change of the eigenvalu
of the RS state due to the perturbationDERS5nh2/(kkBT).

Next let us consider the change of the eigenvalue co
sponding to the RSB excited state, which again is formed
two separate bound states forA and B subsets. Here it is
useful to note that ifall the particles are subjected to th
common field, the unperturbed single-bound-state w
function is still an eigenstate of the operator. Based on
observation, one immediately finds that the unperturbed R
wave function is still a valid eigenstate under the field b
cause of a twofold reason:~i! there is no overlap betweenA
and B and ~ii ! rotational and replica symmetries are pr
served within the same subsets. Thus, the eigenvalue o
RSB state does not change by the perturbationDERSB50.

Using the above values ofDERS andDERSB we obtain

2
D~n,L !

L
52

nh2

kkBT
. ~92!

We can now read offp51 and D;h2, which yields the
overlap lengthLc;h23. Then using Eq.~72! we find the
same overlap lengthL* ;h23, being consistent with the re
sult ~18! of the real-space scaling argument.

VI. MAPPING TO A MODIFIED SINAI MODEL

In the preceding section, we found decorrelation of
free-energy landscapes of perturbed and unperturbed
tems. Here we analyze the problem further for the case
uniform tilt field based on the connection between the
11)-dimensional DPRM and the statistical mechanics of
Sinai model@24,46,53,57#. With this mapping, an effective
one-dimensional energy landscape for the free endx(L) of
the ~111!-dimensional DPRM is obtained as a Sinai pote
06613
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tial, which is generated by a simple random walk in a on
dimensional space.

Here we consider this mapping onto the Sinai model
the presence of the uniform tilt field by evaluating the pa
tion function ~51!. First, we evaluate the partition functio
assuming the RS and using the ground-state wave func
given in Eq. ~90!. Second, we perform another evaluatio
assuming RSB, which only allows reduced replica symme
and using the clustered wave function~62!. The former is
supposed to be good for the weakly perturbed regimeL
!Lc(h) while the latter is good for the strongly perturbe
regimeL@Lc(h). In order to interpolate the two limits, we
propose a phenomenological model using a bounded S
potential.

A. Replica symmetric case

We start by considering the fully RSAnsatz following
Bouchaud and Orland@53#. The ground-state wave functio
under a uniform tilt is given by Eq.~90!. In order to take into
account the motion of the center of mass~c.m.! of the 2n
replicas, we consider the spectrum of excited states wh
wave functions are given by

CRS~h,k:$xG,a%!;CRS~$xG,a%!

3expF h

kBT S (
a

xA,a2(
a

xB,aD G
3expS ik(

G,a
xG,aD . ~93!

The first factor is the Bethe wave function given in Eq.~52!,
which describes the unperturbed bound state of 2n replicas.
Now we use the Gaussian transformation introduced by
risi in @46# to represent Bethe’s wave function as follows:

CRS~$xG,a%!;expS 2l (
((G,a),(G8,b))

Uxa,G2xb,G8U D
5E DV expF2E dx

1

4l S dV
dxD

2G
3expS (

G,a
V~xG,a! D . ~94!

The second factor arises from the uniform tilt perturbationh
to subsetA and2h to subsetB. The last factor is the plane
wave of wave vectork, which accounts for the free c.m
motion. Here the ground state is included as thek50 case.
One can easily find the eigenvalues to be

ERS~h,k!5E01
nh2

kkBT
1n

kBT

k
k2. ~95!
1-13
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The first term is the original ground-state energyEg of the
unperturbed system given in Eq.~53!, the second term is du
to the perturbation, and the third term is due to the c
motion.

Let us now suppose that replicas have both ends fix
one at (0,0) and the other atxA in the case of subsetA and at
xB in the case of subsetB. Then the partition function~51! is
evaluated by integrating out the spectrum of excited state

ZRS~0,0uxA ,xB!;e2[E01nh2/(2kkBT)]L

3E DVexpF2E dx
1

4l S dV
dxD

2G
3exp@nV~xA!1nV~xB!#

3exp@~h/kBT!~nxA

1nxB!#E dkALn
kBT

kp

3expS 2Ln
kBT

k
k21 ik~nxA1nxB! D

;e2(E01nh2/(kkBT))L

3@exp$2nL1/3ERS-Sinai~T,h,V;yA ,yB!%# Ṽ ,

~96!

where@•••# Ṽ means the average over the effective poten
Ṽ,

@•••# Ṽ5E DṼ expF2E dy~1/4l!S dṼ
dy

D 2

•••G ~97!

andERS-Sinai(T,h,yA ,yB) is the effective Hamiltonian,

ERS-Sinai~T,h,V;yA ,yB!5
k

2kBT

~yA1yB!2

2
1Ṽ~yA!1Ṽ~yB!

2
h̃

kBT
yA1

h̃

kBT
yB ~98!

in terms of the scaled variables

x5L2/3y, V52L1/3Ṽ, h5L21/3h̃. ~99!

By increasingnL1/3, the partition function will be domi-
nated by the minimum of the effective Hamiltonia
ERS-Sinai(T,h,V;yA ,yB). Then the following physical inter-
pretation can be made: the end points of the stringsA andB
are subjected to thesame effective quenched random pote
tial which displays the long-ranged correlations in transve
space just as the Sinai model,
06613
.
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@$Ṽ~y!2Ṽ~y8!%2# Ṽ}uy2y8u. ~100!

Furthermore, the c.m. of the total system is subjected to
effective Hookian spring, which tries to bind together t
two real replicas. The effect of the uniform tilt field amoun

to an effective transverse forceh̃ applied at the end points o
A andB replicas, which tries to drive them into the oppos
directions. From Eq.~99!, it can be seen that the effectiv

force h̃ increases by increasing the system sizeL ~with fixed
h).

B. Replica-symmetry broken case

In Sec. V A 4, we found out that replica-symmetry brea
ing becomes important atL@Lc(h) with Lc(h);h23 given
in Eq. ~18!. Here we perform the evaluation of the partitio
function ~51! based on the RSBAnsatz. In this case, we
consider a spectrum of excited states whose wave funct
are given by

CRSB~h,kA ,kB :$xG,a%!

;CRS~$xA,a%!CRS~$xB,a%!expS ikA(
a

xA,aD
3expS ikB(

a
xB,aD . ~101!

The first two factors are due to the original wave function
the RSB state~62!, which consists in two clusters of boun
states. As we noted in Sec. V A 4, it remains as an eigens
even under the uniform tilt field since it is assumed that th
clusters have zero overlap. Moreover, this absence of ove
also allows independent c.m. motions ofA and B subsets.
The latter two factors account for such separate c.m. m
tions. The eigenvalues are the following:

ERSB~h,kA ,B!5ERSB1n
h

k
~ ikA!1n

h

k
~ ikB!1n

kBT

2k
kA

2

1n
kBT

2k
kB

2 . ~102!

The first term is the original ground-state energyERSB of the
unperturbed RSB state given in Eq.~58!. The second and
third terms come from the perturbation. The last two ter
are due to the separate c.m. motions. The partition func
~51! is evaluated by integrating out the spectrum of exci
states as
1-14
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ZRSB~0,0uxA ,xB!;e2E0LE DVAexpF2E dx
1

4l S dVA

dx D 2G E DVBexpF2E dx
1

4l S dVB

dx D 2G
3exp@nVA~xA!1nVB~xB!#E dkAALn

nkBT

2kp E dkBALn
kBT

2kp

3expS 2Ln
2kBT

k
kA

22Ln
2kBT

k
kB

22Ln
h

k
~ ikA!1Ln

h

k
~ ikB!1 ik~nxA1nxB! D

;e2[E01(2n)h2/(2kkBT)]L

3@exp$2nL1/3ERSB-Sinai~T,h,ṼA ,ṼB ;yA ,yB!%# ṼA ,ṼB
, ~103!
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whereERSB-Sinai(T,h,ṼA ,ṼB ;yA ,yB) is the effective Hamil-
tonian, again in terms of the scaled variables,

ERS-Sinai~T,h,ṼA ,ṼB ;yA ,yB!

5
k

2kBT
yA

21ṼA~yA!2
h̃

kBT
yA1

k

2kBT
yB

2

1ṼB~yB!1
h̃

kBT
yB . ~104!

It is interesting to compare the last result with the RS o
given in Eq. ~98!. Here the two subsetsA and B are now
subjected toindependent Hookian springs, which try to con-
fine the c.m. of each subset while thetotal c.m. was confined
in the RS case. Moreover, the two replicas are now subje
to completely independent Sinai potentialsṼA and ṼB . The
effect of the uniform tilt field again amounts to an effecti
transverse forceh̃ applied at the end points of replicasA and
B, which tries to drive them into opposite directions just as
the replica-symmetric case.

FIG. 1. The lattice (111)-dimensional DPRM model. This ex
ample has longitudinal sizeL512 and transverse sizeU514. The
thick zigzag line is an example of the configuration. The string
directed in the direction of thez axis with transverse displacemen
in the direction of theu axis.
06613
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C. Discussion

In Sec. V, we conjectured a possible scaling form~71! of
the crossover from the weakly perturbed regime at len
scales shorter than the overlap lengthLc , where the RS
holds, to the strongly perturbed regime where replic
symmetry breaking becomes relevant,

ln ZA1B
n 1b f L~2n!5g̃~2nL1/3,L/Lc!. ~105!

Indeed, the partition function based on the RS and RSBAn-
satzegiven in Eqs.~96! and~103! has the expected form; th
O(n) term which provides the average free ener
b f L(2n), plus a function which contains the two scalin
variablesnL1/3 andh̃5L1/3h5@L/Lc(h)#1/3. In the last equa-
tion we used the relationLc(h);h23 given in Eq.~18!.

Here we have only discussed the two limitingAnsatze: RS
and RSB. The crossover between the two limits remains
open problem. Here let us propose a modified Sinai mo
which interpolates the limits. We define an effective Ham
tonian for the end points’ positions of replicasA andB at a
given length, which reads as follows:

H5HA1HB , HA5
k

2kBT
yA

21Ṽ~yA!1h̃yA ,

HB5
k

2kBT
yB

21Ṽ~yB!2h̃yB , ~106!

whereṼ(x) is a boundedSinai potential with correlations,

@ Ṽ~x!2Ṽ~y!#2}C~ ux2yu!

with

C~u!5y1~12u!u~u21!. ~107!

Here the correlation grows asC(u)5u for u<1 and satu-
rates,C(u)51, for larger separationsu.1. The latter satu-
ration ~confined random walk! allows us to realize statisti
cally independent Sinai valleys at large separations~RSB!.
Actually, such a saturation of the effective energy landsc
was observed numerically in the DPRM by Me´zard @24#.

s
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FIG. 2. B2(L) of uniform tilt field case. The data is shown on the left and its scaling plot is shown on the right. Here the s
parameters areLc(h)5h23 anduc(h)5Lc(h)z52/3.
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In Sec. VII A we analyze the crossover phenomena in
tail by a transfer-matrix method. Subsequently, in Sec. VII
we analyze the phenomena numerically using the modi
Sinai model defined above and compare the result with
obtained in the original DPRM.

VII. NUMERICAL ANALYSIS

Now we examine numerically in detail the properties
the anomalous response of the DPRM towards various
turbations discussed in the preceding sections by trans
matrix calculations. We focus on the anticipated univer
scaling properties of the crossover from the weakly
strongly perturbed regime across the overlap length, wh
has not been clarified in previous numerical studies~see,
however,@24#!.

Specifically, we consider a lattice model on a tw
dimensional lattice of sizeL3U as shown in Fig. 1. The
string of lengthL is directed along thez axis with transverse
displacements in the direction of theu axis. The configura-
tion of the string is represented by the positions of the ve
ces X which the configuration goes through, i.e.,„u(z),z…
with z51, . . . ,L. The gradients(z)5u(z11)2u(z) is
constrained to take only the values11 or 21. Note that
elasticity is realized entropically within this lattice mode
The random potentialV(u,z) is defined on each vertex (u,z)
on which it takes a random value drawn from a unifo
distribution between2V0 andV0. The energy of a configu
ration $u(z)% is given by

E@V,u#5(
z51

L

V„u~z!,z…. ~108!

One end of the configuration is fixed at (0,0) and t
other end is allowed to move freely. On the transverse dir
tion we have imposed periodic boundary conditions such
V(u1U,z)5V(u,z). The natural unit for the temperature
the scaled thermal energykBT/V0, whereV0 is the unit for
the random potential. In the following, the Boltzmann co
06613
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stant is set tokB51 and the unit for the random potential t
V051, so that we will often denote the scaled thermal e
ergy simply asT.

First we prepare two real replicasA and B identically
except for small perturbations, which we will describe
detail. Depending on the type of the problem, we use eit
zero temperature@34# or finite temperature versions@58# of
the transfer-matrix method to compute correlation functio
Here and in the following,X denotes the average of a qua
tity X over different realizations of the random potential a
^X& denotes the thermal average ofX ~or simply the value of
X at ground state in the case of zero temperature!. We have
examined various system sizes up toL5104 and have aver-
aged overNs5104 different realizations of the random po
tential except for the explicit repulsive coupling case f
which we used system sizes up toL5103 andNs5104. The
limitation of the system size used for the latter case is that
have to take into account explicitly the inter-real-replica co
pling in the transfer matrix, which requires one to keep tra
of trajectories of two strings simultaneously and thus mu
larger computational effort@24#.

First, we examine the mean-squared transverse displ
ment of the end point due to the perturbation,

B2~L !5^uA~L !2uB~L !&2. ~109!

Here uA(L) and uB(L) stand for the position of the en
points of replicasA andB, respectively. Second, we compu
the exact free energies~or ground-state energies at zero tem
perature! of both replicas by the transfer-matrix method a
examine the correlation of the free energies,

CF~L !5
DFA~L !DFB~L !

ADFA
2~L !ADFB

2~L !

, ~110!

whereDF is the deviation from the mean free energy,
1-16
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FIG. 3. CE(L) of the uniform tilt field case and its scaling plot withLc(h)5h23. The fit is CF(L)51/„11A@L/Lc(h)#2(2/321/3)
… with

A;2.0.
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s,
DFA~L !5FA~L !2FA~L !, DFB~L !5FB~L !2FB~L !.

~111!

We also computed the overlap functionq(L,dU) defined
in Eq. ~39! using the method of@24#. However it requires
much computational effort because one has to keep trac
the trajectories of the two strings simultaneously and co
putation was limited to smaller system sizesL;500. So we
do not display the result in the following. We only note th
the anticipated scaling~40! was checked within the limited
system sizes.

A. Uniform tilt field

First, we examine the case of the perturbation by a u
form tilt field. For simplicity, the temperature is set to zer
T50. The two replicas have exactly the same random po
tial. The difference is that replicaB is subjected to a uniform
tilt field h, which amounts to a force acting just on its en

EA@V,hA50,uA#5(
z51

L

V„uA~z!,z…,

EB@V,hB5h,uB#5(
z51

L

@V„uB~z!,z…#2huB~L !. ~112!

We have used theT50 transfer-matrix method and obtaine
the ground states with various perturbation strengthsh
50,0.05,0.1,0.2,0.3,0.4 for each realization of the rand
potential.

Let us begin with the mean-squared transverse displ
ment of the end point due to perturbationB2(L) defined in
Eq. ~109!. B2(L) is expected to grow with increasing sizeL
asL112/355/3 in the weakly perturbed regime@see Eq.~33!#
and asL2 in the strongly perturbed regime@see Eqs.~37! and
~36!#. Here we used the exponent associated with this pe
bationa5z52/3 ~see Sec. IV A!. The crossover between th
two is expected to take place at the overlap lengthLc;h23

given in Eq.~18!.
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In Fig. 2, the data ofB2(L) and its scaling plot is shown
For very weak perturbationsh50.05, the data grows almos
entirely asL112/3 except for a short length transient. On th
contrary, the data corresponding to the strongest perturba
h50.4 grows almost entirely asL2, again except for a shor
length transient. The data for the intermediate range oh
displays a crossover between the two. Indeed, the sca
plot confirms the expected crossover scaling between the
regimes with no adjustable parameters.

Next let us examine the correlation of the ground-st
energies of the perturbed and unperturbed systems thro
~110!. In Fig. 3, the data of the correlation function and
scaling plot is shown. The data shows a decorrelation of
~free-! energy landscape of the two systems as expected.
scaling plot is obtained again without any adjustable para
eters. The initial part of the master curve is well fitted by t
expected form ~46! using a52/3, CL(F)51/„1
1A@L/Lc(h)#2(a21/3)

… with A;2.0. Note that the decay i
faster forL/Lc(h)@1.

B. Modified Sinai model

In Sec. VI we proposed a modified Sinai model as
effective model for the free ends of DPRM under uniform t
field. Here we study numerically the properties of grou
states of the modified Sinai model and the mean-squa
displacement corresponding to Eq.~109! and the correlation
function of the ground-state energies corresponding to
~110!. The effective Hamiltonian given in Eqs.~106! and
~107! at a given lengthL reads@59,60#

H5HA1HB, HA5
1

2L
xA

21V~xA!,

HB5
1

2L
xB

21V~xB!2hxB ~113!

whereV(x) is the modified Sinai potential with correlation

„V~x!2V~y!…25u1@u* ~L !2u#u„u2u* ~L !…

with

u* ~L !5L2/3. ~114!
1-17
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FIG. 4. B2(L) computed by the modified Sinai model and its scaling plot withRc(h)5(0.9h)22. In the scaling plot, the master curve o
DPRM under uniform tilt field plotted vsL/Lc(h) as in Fig. 3 is also included for comparison~black points!.
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First we prepared the Sinai potentialV(x) on a one-
dimensional latticeu51,2, . . . ,R of size R by generating
random walks in one-dimensional space~regarding the one-
dimensional space coordinate as the ‘‘time’’ coordinate
the random walk!. We generated theboundedSinai potential
by a one-dimensional random walk confined in a box of s
u* . Each step of the random walk has variance 1. The s
random potential is generated for two replicasA andB. For
replica B, we add an extra tilting potential2hu. Then we
numerically looked for the ground states of replicasA andB.
We examined various system sizes up toR5104 and used
104 samples for the disorder averages.

The second moment of the distance between the minim
is computed for variousL andh as

B2~L !5@uA
min~L !2uB

min~L !#2. ~115!

In Fig. 4, the mean-squared displacement is shown toge
with the scaling plot. In the scaling plot, we included t
master curve of the equivalent DPRM problem shown in F
2. We used the anticipated scaling factorsLc(h)5(0.9h)23
06613
r

e
e

m

er

.

and Rc(h)51.2h24. The numerical prefactors are chose
such that the master curve of the modified Sinai model
on that of the DPRM problem.

The correlation function of the fluctuation of ground-sta
energies is computed for variousL andh as

CE~L !5
DEA~L !DEB~L !

ADEA
2~L !ADEB

2~L !

, ~116!

whereDE(L) is the deviation of a ground-state energy fro
the mean ground-state energy. In Fig. 5 we show the co
lation function of the fluctuation of the ground-state ener
as well as its scaling plot using the anticipated scaling v
ableL/Lc(h). In the plot, we have included the master cur
of the equivalent DPRM problem shown in Fig. 3.

It can be seen that the agreement between the mod
Sinai model and the original DPRM under uniform tilt fie
is good. We checked that if the original unbounded Si
potential is used, the agreement becomes very bad for l
length scales. Especially, the correlation functionCE(L)
f
FIG. 5. CE(L) of Sinai model under uniform tilt field and its scaling plot withRc(h)5(0.9h)22. In the scaling plot, the master curve o
DPRM under uniform tilt field plotted vsL/Lc(h) as in Fig. 3 is also included for comparison~black points!.
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FIG. 6. B2(L) of the explicit repulsive coupling case and its scaling plot. Here the scaling parameters areLc(e)5e23/2 and uc(e)
5Lc(e)z52/3.
R
n

g
t

pu

siv

end

ed

.
rre-

e

e at

.
li-

e

tends to saturate. These results support the picture that
is needed to account for the decorrelation of the energy la
scape of DPRM under uniform tilt field.

C. Explicit repulsive coupling

Next we consider the case of explicit repulsive couplin
The two replicas are at zero temperature, have exactly
same random potential, and are coupled by an explicit re
sive couplinge,

E@V,V,e,uA ,uB#5(
z51

L

@V„uA~z!,z…1V„uB~z!,z…

1eduA(z),uB(z)#. ~117!

Here e.0 is the strength of the perturbation. Me´zard @24#
proposed a transfer-matrix method to deal with such
coupled system atT.0. Here we used aT50 version of the
method and studied the ground states with different repul
couplingse50.05,0.07,0.1,0.2,0.3.
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In Fig. 6 the data of the mean-squared distance of the
points of the two replicasB2(L) is shown together with its
scaling plot. From the discussion in Sec. IV D, it is expect
to grow with increasing sizeL as L11152 in the weakly
perturbed regime andL4/3 in the strongly perturbed regime
Here we have used the exponent of the perturbation co
sponding to the explicit repulsive coupling perturbationa
51 found in Sec. IV B@which is related to the order of th
perturbationp52 in the replica analysis in Sec. V A#. The
crossover between both regimes is expected to take plac
the overlap lengthLc;e22/3 given in Eq. ~20!. These fea-
tures are well confirmed by the data and the scaling plot

In Fig. 7, the correlation of the energies of the two rep
cas EA5(z51

L V„uA(z),z… and EB5(z51
L V„uB(z),z… is

shown together with its scaling plot. The initial part of th
master curve matches properly with the expected form~46!
using a51, CL(F)51/„11A@L/Lc(h)#2(121/3)

… with A
;0.35. ForL/Lc(h)@1 the decay is much faster.
FIG. 7. CE(L) of the explicit repulsive coupling case and its scaling plot. Here the scaling parameter isLc(e)5e23/2. The fit is
CF(L)51/„11A@L/Lc(h)#2(121/3)

… with A;2.0.
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FIG. 8. B2(L) of the potential perturbation case and its scaling plot withLc(d)5d26 anduc(d)5Lc(d)z52/3.
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D. Perturbation on temperature, random potential,
and random tilt field

Finally we examine the class of perturbations which
clude temperature shift, potential change, and random
field. These perturbations are characterized by the expo
a51/2 found in Sec. IV C~which is related to the order o
the perturbationp52 in the replica analysis in Sec. V A!.
Our primary interest here is to clarify whether these app
ently different perturbations indeed lead to the same univ
sal scaling properties as anticipated by the analytical a
ments based on the replica-symmetry breakingAnsatz.

~1! Potential change. The Hamiltonian is given as

EA@V,uA#5(
z51

L

V„uA~z!,z…,

EA@V8,uB#5(
z51

L

V8„uB~z!,z…. ~118!

The temperature is set to zero,T50. First we generate a
random potentialV(u,z) with random numbers drawn from
06613
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a uniform distribution between21 and 1. This is the poten
tial for replicaA. In order to construct the perturbed rando
potential for replicaB, we draw another independent rando
numberU(u,z) from the same distribution and define

V8~u,z!5
V~u,z!1dU~u,z!

A11d2
, ~119!

whered is the strength of the perturbation. We have used
T50 transfer-matrix method and examined the ground sta
for different strengths of the perturbation d
50.1,0.2,0.3,0.4,0.5,0.6,0.8,1.0,1.2.

~2! Random tilt field. The Hamiltonian is given by

EA@V,uA ,hA50#5(
z51

L

V„uA~z!,z…EB@V,uB ,hB#

5(
z51

L

@V„uB~z!,z…#2d (
z51

L21

hB~z!

3„uB~z11!2uB~z!…. ~120!
FIG. 9. B2(L) of the random tilt field perturbation case and its scaling plot withLc(d)5(0.87d)26 anduc(d)5Lc(d)2/3.
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FIG. 10. B2(L) of the temperature-shift perturbation case and its scaling plot withLc(dT)5(0.43dT)26 anduc(dT)5Lc
2/3(dT).
a
e
te

r-

fe

dis-
-

ly
.

e
nts

ex-

ling
nu-

the
stin-
eak
The temperature is set to zero,T50. The two replicas have
the same random potentialV(u,z). The difference is that
replicaB is subjected to a random tilt fieldhB(z), which for
eachz takes a different random value that is drawn from
uniform distribution between21 and 1. We have used th
T50 transfer-matrix method to examine the ground sta
with different random tilt intensitiesd50.1,0.2,0.3,0.4,0.5
for each realization of the random potential.

~3! Temperature shift. In the case of temperature pertu
bation, the Hamiltonian ofA and B replicas are exactly the
same,

EB@V,uA#5(
z51

L

V„uA~z!,z…, EB@V,uB#5(
z51

L

V„uB~z!,z….

~121!

We have used the finite temperature version of the trans
matrix method. The temperature of replicaA is set toTA
50.1. The temperature of replicaB is varied asTB5TA
1dT with different temperature shifts dT
50.1,0.2,0.3,0.4,0.5,0.6,1.2.
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1. Transverse jumps

Let us first examine the mean-squared transverse
placement of the end pointB2(L) due to this class of pertur
bations. By substitutinga51/2 in Eq. ~33! we see that
B2(L) is expected to grow with increasing sizeL as
L11(1/2)53/2 in the weakly perturbed regime. In the strong
perturbed regime, it should grow asL4/3, as discussed in Sec
IV D 2, which is slightly slower than the growth in th
weakly perturbed regime. The difference between expone
is of only 1/6. The crossover between both regimes is
pected to take place at the overlap lengthLc;L0d26 as in
Eqs. ~23!, ~31!, and ~36! with d being the strength of the
perturbation.

In Figs. 8–10 the data forB2(L) corresponding to the
three perturbations are shown together with their sca
plots. In the scaling plots we have chosen an adequate
merical prefactorc in Lc(d)5(cd)26 in order that the mas-
ter curves corresponding to the three perturbations lie on
same curve. The resultant master curves become indi
guishable: the expected crossover behavior between w
FIG. 11. CE(L) of the potential perturbation case and its scaling plot with withLc(d)5(d)26.
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FIG. 12. CF(L) of the random tilt field perturbation case and its scaling plot withLc(d)5(0.87d)26.
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and strong perturbation regimes is indeed thesamefor the
three kinds of apparently different looking perturbations.

2. Decorrelation of fluctuations of free energies and
ground-state energies

In Figs. 11–13, the correlation of the the ground-st
energies or free energies of the perturbed and unpertu
systems are shown together with their scaling plots. In
scaling plots we have used the same numerical prefactorc in
Lc(d)5(cd)26 used in the scaling plot ofB2(L). As one
can see, the master curves for the three perturbat
merge. The initial part of the master curve fits nicely in
the expected form ~46! using a51/2, CL(F)51/„1
1A@L/Lc(h)#2(121/3)

… with A;1.5. One can see that the d
cay is faster forL/Lc(h)@1. To sum up, the expected cros
over behavior from the weakly perturbed regime and
strongly perturbed regime is indeed the same for the th
kinds of apparently different perturbations.

VIII. CONCLUSION

In this work we have studied the sensitivity of the glas
phase of DPRM against various types of thermal and n
thermal perturbations. We have obtained very coherent
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sults that strongly support the picture anticipated by the p
nomenological scaling arguments. As we increase the len
scaleL at which observations are made, there is a crosso
from the weakly perturbed regime dominated by rare eve
~i.e., jumps between neighboring free-energy valleys!, L
!Lc(d), to the strongly perturbed regime where these eve
become typical,L@Lc(d). This means that perturbations b
come strong at large length scalesL/Lc(d)→` such that the
configuration can easily jump from one valley to anoth
i.e., it becomes chaotic in the sense that the visited landsc
is totally different from that before.

In replica space we proposed a definition of chaos,
~5!, in terms of the global partition function (A1B) rather
than the correlation function itself. There is chaos if in t
adequate limits the partition function factorizes, so that
have two noninteracting systems. The decorrelation of s
temsA andB when introducing a perturbation can be unde
stood as a concrete example of explicit replica-symme
breaking as proposed by Parisi and Virasoro@40#. Concern-
ing the mapping to the Sinai model, it means that the fr
energy landscape of the perturbed DPRM cannot be
scribed anymore by a single Sinai potential. Instead, R
requires the coexistence of statistically independent Sinai
tentials.
FIG. 13. CF(L) of the temperature-shift perturbation case and its scaling plot withLc(dT)5(0.43dT)26.
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FRAGILITY OF THE FREE-ENERGY LANDSCAPE OF A . . . PHYSICAL REVIEW E65 066131
The key point in our DPRM case is the fact that the R
bound state of the quantum problem is marginally stable w
respect to RSB as noticed by Parisi@46#. Infinitesimally
weak perturbationsD!1 induce small replica-symmetr
breaking terms and induce a symmetry breaking transi
from a RS to a RSB state, which takes place in
n/n* (D)→0 limit for any small but nonzero strength of th
perturbation. It turns out that we can read off the over
lengthLc(d) from n* (D). Within the replica space, the pe
turbations are naturally classified according to their orde
perturbationp and the symmetries which are left conserve
For each class we have numerically verified that, inde
there are universal scaling functions of correlation functio
in terms of L/Lc(d) describing the crossover from th
weakly to strongly perturbed regimes. It is notable that
decay of the free-energy fluctuationCF(L) is very slow in all
the cases we studied. It will not be surprising that one can
have an impression of chaos by only making observati
within some limited length scales.

In mean-field models, RSB is always associated with
existence of many pure states@45#, which is not the case in
DPRM in a strict sense. In the DPRM, the mapping to qu
tum mechanics is always possible for an arbitrarily lar
number of dimensions of the transverse space~usually de-
noted asN, being N51 in our case! in which the ground
state must contain the bosonic symmetry of the Schro¨dinger
operator @61#. In this sense, RSB has to beweak in the
DPRM problem@24,46#, i.e., it is a latent feature that onl
manifests itself under certain circumstances. In the pre
(111)-dimensional model the existence of ahidden RSB
excited state with a vanishingly small gap with respect to
RS ground state in then→0 limit is extremely important.
Roughly speaking, the situation is not very far from havi
many pure states. In a really stable RS phase~such as ferro-
magnetic phases!, this phenomena cannot happen. It
tempting to speculate that some lessons obtained in
present (111)-dimensional DPRM case may turn out to
more general.

In the present paper, temperature chaos is confirm
Thus, the present model serves as a suitable testing grou
examine the possible connection between temperature c
and the restart of aging~rejuvenation! observed experimen
tally @6,7,62,63#. Experimentally, almost a complete resta
of agingor relaxation takes place only due to slight tempe
ture changes. Whether this restart of aging can be assoc
with temperature chaos remains an interesting open ques
Interestingly enough, recent experiments@62,63# suggest the
d
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rejuvenation~chaos! effect in random ferromagnetic system
A candidate to account for the mechanism of the phenom
may be the temperature chaos of pinned domain walls
ferromagnets, which is directly related to the present stu

Another surprise revealed by the temperature-cycling
periments is that initial aging is resumed when the tempe
ture is cycled back to the initial temperature, giving rise
the so-called memory effect. It appears contradictory to
temperature-chaos effect at first sight. Recently a coarse
model under cycling of target equilibrium states was stud
@64#. There, a hiddendynamical memory by ghost domain
was found and a scenario was proposed to explain the
triguing coexistence of the rejuvenation and memory effe
In the present context of pinned elastic manifold, rejuve
tion and memory can be easily explained by consider
Fourier components of the temporal configuration. When
temperature is shifted, Fourier components at waveleng
larger than the overlap length will be subjected to rejuve
tion. At time t after the temperature shift, Fourier comp
nents at wavelengths shorter thanL(t) will be adopted to the
new temperature. HereL(t) is a dynamical length scale ove
which the system can be equilibrated within a given timet.
However, Fourier components of an even larger wavelen
@.L(t)# remain the same as before the temperature s
Thus,dynamical memoryexists at the coarse-grained level
L(t).

Recalling that relaxational dynamics is extremely slow
glassy systems because of the dominance of the activ
processes, one has to seriously consider how a large
scale is needed to go beyond the overlap length. If it is
large, even experimental time scales@typically (1014–
1017)t0, where t0;10213 sec# may not be sufficient and
one must look for other mechanisms@65–67# to explain the
rejuvenation phenomena observed experimentally. Prev
numerical studies of the relaxational dynamics of the pres
DPRM model@68# imply that the needed time lies within th
time window of experiments and numerical simulations
some realistic parameters. More work in this direction wou
certainly be interesting.
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@15# I. Kondor and A. Végsö, J. Phys. A26, L641 ~1993!.
@16# S. Franz and M. Ney-Nifle, J. Phys. A28, 2499~1995!.
@17# T. Rizzo, J. Phys. A34, 5531~2001!.
@18# D. A. Huse and L-F. Ko, Phys. Rev. B56, 14597~1997!.
@19# A. Billoire and E. Marinari, J. Phys. A33, L265 ~2000!.
@20# R. Mulet, A. Pagnani, and G. Parisi, Phys. Rev. B63, 184438

~2001!.
@21# A. Billoire and E. Marinari, e-print cond-mat/0202473.
@22# M. Sales and H. Yoshino, e-print cond-mat/0112384.
@23# For a review of directed polymer in random media, see

Halpin-Healy and Y. C. Zhang, Phys. Rep.254, 215 ~1995!.
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@61# M. Mézard and G. Parisi, J. Phys. A25, 4521~1992!.
@62# K. Jonasson, J. Mattson, and P. Nordblad, Phys. Rev. Lett.77,

2562 ~1996!; K. Jonason and P. Nordblad, Eur. Phys. J. B10,
23 ~1999!.

@63# E. Vincent, F. Alet, J. Hammann, M. Ocio, and J. P. Boucha
Europhys. Lett.50, 674 ~2000!.

@64# H. Yoshino, A. Lemaitre, and J. P. Bouchaud, Eur. Phys. J
20, 367 ~2000!.

@65# J-P. Bouchaud, inSoft and Fragile Matter, edited by M. E.
Cates and M. R. Evans~Institute of Physics, Bristol, 2000!;
e-print cond-mat/9910387.

@66# J. P. Bouchaud, V. Dupuis, J. Hammann, and E. Vincent, Ph
Rev. B65, 024439~2001!.

@67# L. Bertheir and J.-P. Bouchaud, e-print cond-mat/0202069.
@68# H. Yoshino, Phys. Rev. Lett.81, 1493 ~1998!; and ~unpub-

lished!.
1-24


