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Fragility of the free-energy landscape of a directed polymer in random media
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We examine the sensitiveness of the free-energy landscape of a directed polymer in random media with
respect to various kinds of infinitesimally weak perturbation including the intriguing case of temperature chaos.
To this end, we combine the replica BetAasatzapproach outlined by Sales and Yoshieprint cond-mat/
0112384, the mapping to a modified Sinai model, and numerically exact calculations by the transfer-matrix
method. Our results imply that for all the perturbations under study there is a slow crossover from a weakly
perturbed regime, where rare events take place, to a strongly perturbed regime at larger length scales beyond
the so-called overlap length, where typical events take place leading to chaos, i.e., a complete reshuffling of the
free-energy landscape. Within the replica space, the evidence for chaos is found in the factorization of the
replicated partition function induced by infinitesimal perturbations. This is the reflex of explicit replica-
symmetry breaking.
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[. INTRODUCTION dences for the anomalous response to nonthermal perturba-
tions has been accumulatgd9-132, the intriguing problem
A very interesting problem of glassy systems with disor-Of temperature chaps remains very.controversial. For_the
der and frustration is the possible instability of the glassySherrington-Kirkpatrick mean-field spin-glass model, which
frozen states against infinitesimally weak perturbations suclf the EA model embedded in infinite dimensional space, it is
as an infinitesimal change of temperatures and realizations 6f&!ized that saddie point solutions both with and without

quenched randomness. Such a perturbation does not brﬁgmperature chadd3-17 exist and apparently new theoret-

; al ideas are needed. On the other hand, numerical studies
the system out of the frozen phase but possibly changes t IEport conflicting result§9,10,12,18—21

Iugged_ Ia_ndsca_pe of the free energy ina dramatic way. Let us Recently we developed an analytical scheme to study the
call this intriguing property thdragility .Of the frge-energy fragility of the free-energy landscape of randomly frustrated
Iandscape A class of phenomgnologlcal scaling theor'eSsystems against various kinds of perturbati¢®g]. Espe-
started first in the context of spin glass by Bray and Moorégq 1y we proposed to prove the onset of chaos in terms of
[1] and Fisher and Hus,3] generically implies that equi- statistical decoupling of a set of replicated partition func-
librium states of systems with disorder and frustration resistjons, and applied the method to the directed polymer in
against such infinitesimally weak perturbations of strengthandom medidDPRM). The DPRM[23] is a simple model
0<1 up to a finite crossover length scalg(s) called the  compared to spin-glass models. In spite of this, it is believed
overlap length, but change into completely different states afo possess many of the subtle properties of glassy systems,
larger length scales, resulting in the vanishing of the correthus, it deserves to be called “baby spin glaga4]. Indeed,
lations between the two states. The overlap lengthd) the anomalous response of DPRM towards various kinds of
diverges as— 0 but remains finite for any nonze® Such  weak perturbations has already been reported by many nu-
an anomalous response is called tieos referring to the  merical studie$24—2§ including a signature of temperature
feature that the distance between the perturbed and unpeshaos[3]. DPRM belongs to the wide class of elastic mani-
turbed systems becomes infinitely large in phase space evéolds in random medi®29—-33, which encompasses a vari-
by infinitesimally weak perturbation as the system dize ety of physical systems of much interest, such as the domain
becomes macroscopically lardgL (5)— [1]. Unfortu-  walls of ferromagnet$34,35 with weak bond randomness
nately, the validity of the prediction has not been provenand the flux lines in type-1l superconductors with randomly
explicitly by theoretical studies except for some Migdal- distributed pointlike pinning centef86,37, charge-density
Kadanoff-type real-space renormalization-group studiesvave, and vortex lattice systems with weak random-periodic
[4,5]. Especially, the issue dfemperature chagsi.e., the pinnings[32,38,39.
sensitivity of glassy phases with respect to a small change of The scope of this paper is to present a unified study on the
temperature, has been of great interest because of its potefnagility of the free-energy landscape of DPRM with respect
tial relevance for the rejuvenatiofthaog effects found in  to various weak perturbations using the replica Bethsatz
temperature-shift and temperature-cycling experimentapproach outlined inf22], mapping to a modified Sinai
[6-8]. model and numerically exact transfer-matrix calculations.
The majority of the previous theoretical and numericalOur main results are the following. We find that infinitesi-
studies concerning the problem of the fragility of glassymally weak perturbations amount to replica-symmetry break-
phases has been done on Edwards-Ande{B#&) spin-glass ing terms in the effective action, which lead to the statistical
models, which have been considered as prototypical modeldecoupling of two sets of replicas. The outcome can be natu-
for glassy systems. While a rich amount of numerical evi-rally understood as a manifestation of spontaneous replica-
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symmetry breaking following the definition of Parisi and Vi-  Now let us consider an equivalent definition of chaos,
rasoro[40]. Interestingly enough, the replica approach turnswhich is more suited for analytical approaches based on the
out to give results quite consistent with the phenomenologifeplica method. Let us suppose that each of the sys#ems
cal scaling approacfB,24—2§ and predicts the same over- andB are replicated further inta replicas and consider the
lap lengthL.(8). Within the replica approach, apparently dlforder—averaggd partition functlorj of the tqtal system
different perturbations can be naturally classified into a fewZa+g(L). As noticed by Kardaf41], if an analytical con-
universality classes. Concerning the well known correspontinuation forn—0 is possible, the disorder average of such a
dence between the effective free_energy |andscape Of DPRMartmon function can be identified as the generator of cumu-
and the Sinai model, the statistical decoupling of replicad@nt correlation functions of sample-to-sample fluctuations of
(chao$ naturally suggests the emergence of statistically in{T€€ energie42]. Thus, the complete knowledge of the dis-
dependent Sinai valleys for different subsets of replicas. T@rder average of the replicated partition function allows one
examine the anticipated universal aspects of the anomalod@ ?ptam fﬂt]r? d;stnbuﬂon fug]cn:)n of sample-tto-satn1p{e tfrlluc—
response, we present and discuss the outcome of a detail%a lon of the free e”e,rQV“ - N .o_ur present context, the
numerical analysis using transfer-matrix methods. disorder-averaged partition functiatf, g(L) generates cu-
The plan of the paper is the following. In the following mulant correlation functions of the total free-energy as the
sections we propose a general framework to define and studg!lowing:
the fragility of the free-energy landscape of randomly frus- n2 .
trated systems. In Sec. lll, we define the DPRM model. In lim InZ}  g(L)=nInZ,, g(L)+ ?[In Zpig(L)]g+- -
Sec. IV, we review and summarize the previous scaling ar- "0

guments. In Sec. V, we present details of the replica Bethe nP

Ansatz approach outlined if22]. Then, in Sec. VII, we +—{InZp,g(L)15+- -
present the outcome of an exhaustive numerical analysis us- p:

ing the transfer-matrix method. Finally, we summarize our =n[= BaFA(L)— BaFa(L)]

results in Sec. VIII.

2
n
+ == BaFa(L)— BgFg(L)]2+ - -
Il. STATISTICAL DECOUPLING OF REAL REPLICAS 2[ BaFa(L) ~ BeFe(L)]e

In this section we discuss a general strategy to study the nP 5
sensitivity of the free-energy landscape of a generic class of + a[_lBAFA_ﬁBFB]c’L T 4
systems. The free enerdgyof a random system is a random
quantity with a certain mean and variance. Let us denote thehere[ - - - 1? stands forpth cumulant correlation functions
deviation of the free energy of a given sample from the meawf the total free energies BaFao— BsFg, with Fo(L) and
as Fg(L) being free energies of subsysteisand B, respec-
_ tively, andB, and Bg being inverse temperatures AdfandB,
AF=F—F. (1) respectively.
Obviously, the decorrelation of the free-energy fluctua-
Here and hereaﬁem denotes the average over diﬁerent tions betweerm andB is equivalent to the factorization of
rea”zations Of randomness_ the replicated partition fUnCtion,
Now let us consider two systems, sAyand B. Initially - _ Sn n
they are prepared as two identical copies with the same ran- (L"J‘O 1'TMI]'TOZA+B(L’5)_ZA(L) B(L)- ®)
domness, temperature, and other parameters. Such systems
are calledreal replicas We are interested in how the statis- Note that if the latter result holds, automatically E)
tical correlation betweeA and B changes by introducing a holds too. An important remark is that the order in which
perturbation of strengths. Then it is useful to define a limits are taken is crucial to obtain sensible results: the limit

disorder-averaged correlation function n— 0 mustbe taken before the thermodynamic linhit>
and finally the limit6— 0 must be taken. In what follows, we
AFA(L)AFg(L) will use Eq. (5) as our definition of chaos in the replica
Ce(L,6)= - . (2 approach. We have to stress, though, that this definition is
\/AFi(L)\/AFé(L) general and holds for generic random systems.

The above definition of chaos implies that it can be re-
If the correlation function vanishes at large length scales 9arded as a spontaneous symmetry breaking phenomenon. If
the perturbation is absent, A and B are equivalent and one
lim lim Cg(L,8)—0, (3)  expects the exchange symmetky-B to be present. One
50 L— also expects to have permutation symmetry among the rep-
licas associated with each groépor B. Such an invariance
it implies that the free-energy landscapefofindB decorre- under permutations is usually called replica symmetry in
lates completely. If the statistical decoupling betwéeand  short. However, in general, it turns out that the disorder-
B occurs even with an arbitrarily weak perturbatid®1, we  averaged replicated partition function of then Zeplicas
say that there igshaos Zj) . g Without any perturbation has an even higher symme-
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try: it is invariant under any permutation among the @2p-  +46V')/\1+ &%, where |§|<1 and V' follows the same
licas. Now, if Eq.(5) holds, this higher symmetry is reduced: Gaussian distribution asV. Then Vg($,z2)=0 and
after having introduced a perturbation, the permutation symy (4, 7)V.(¢',z')=2Dgg 8(¢p— ¢') 8(z—2') with Daa
metry remains at most within each subset associated Avith _ Dgg=D andD ag= D/\/mz<D_

andB. Thus, in order that this phenomena happens, the per- ;) Random tilt field A andB are subjected to statistically
turbation should show up in the replicated partition fU”Ct'Onindependent weak random tilt field.

as a symmetry breaking term, which tries to break the full (v) Temperature differend@]. Slightly different tempera-

permutation symmetry. Now, definitiod) tells us that this  ,.asT, =T+ §T andTa=T- 8T for A andB respectively.
symmetry breaking happens even with an arbitrary weak pety;i, 5-'/5/-'- <1 . ’ ’

turbation. Therefore, chaos defined as €jis a spontane-

ous replica-symmetry breaking phenomenon. We note that
such a definition of replica-symmetry breaking was intro-

duced under the namexplicit replica symmetryirst by Pa- We first review and discuss the scaling approach picture
risi and Virasorg[40], who tried to give a sound thermody- [3,24—2§ for the problem of the anomalous response. Let us
namic definition for the replica-symmetry breaking consider a simple-minded picture consisting in the deepest
phenomena known in the saddle point solutions of meanvalley corresponding to the ground-state configuration and

IV. DROPLET SCALING APPROACH

field models[44-49 of a class of glassy systems. many branched valleys of lowdree) energy excitations,
which, for given longitudinal sizé., differ from the ground
1. MODEL state over a transverse siag(L/Ly)¢, ¢ being the so-called

. ) . L . roughness exponent. Note that we have introduced a charac-
We study DPRM in -1 dimensions, which is described yeyistic longitudinal length, which should be understood
by the following Hamiltonian in the continuous limit, as the Larkin lengtt47] beyond which pinning becomes
important as well as its associated transverse length sgale

2
Ho[V.h, ¢]= J'LdZ X dé(2) +Vo(h(2),2)|.  (6) The free-energy gap of these excited states with respect to
o |2\ dz the “ground state” is expected to scale typically as
The scalar fieldp represents the displacement of the elastic AFYP=Uq(L/Lg)". (8)

object at pointz in a one-dimensional internal space of size

L. We assume that the field is a single-valued function of HereUy is the energy scale associated with the Larkin length
z, which means thadrientedobjects with no overhangs are and# is the stiffness exponent which is related to the rough-
considered. In the following, we assume that one end of th@ess exponen by the exact scaling relation

string is fixed asp(0)=0, while the other end)(L) is al-

lowed to move freely. The first term in the Hamiltonian is the 6=2¢{—1. ©)
e!astlc energyi being the elastic constant. The random pm.'l|n a (1+1)-dimensional system these exponents are believed
ning media is modeled by the quenched random potentlat

; ) . .10 be exactlyd=1/3 and{=2/3[23,34,41. The probability
Vo(¢,2) with zero mean and short-ranged spatial Correlat'ondistribution function of the free-energy g, is expected

to have a natural scaling form

Vo(¢,2)=0,
Vo($,2)Vo(¢',2')=2D8(p— ) 8(z=2'). (D) (AF)A(AF) ”( °F ) AR
.z Z')= - z-7'). =
° ° P T P Ug(LiLg)? | Ug(LILg)?
Many exact properties of thiel+1)-dimensional model are . o . L
known[23]. Itis in the frozen phase at all finite temperaturesWith @ nonvanishing amplitude at the origin,
in the sense that its scaling properties are always governed ~
5(0)>0, (1)

by the T=0 glassy fixed point.

We implement the basic strategy explained in the preced\;vhiCh allows rare, gapless excited staf824).

ing section as the following. First, we start with a system of Let us now consider a generic perturbation which triggers

two real replicas, say A and B, whose configuratighgz) an excitation from the ground state witlirae-energy gairof
and ¢g(z) are subjected to exactly the same random poten- rder

tial and temperature. Second, we apply small perturbations to
them. In the present paper we consider five different kinds of L\a
perturbations. oU ( L—) (12

(i) Tilt field [24]. A andB replicas are subjected to a tilting 0
field of opposite sign—h¢,(L) +heg(L) with h<1.

(i) Explicit short-ranged repulsive couplinf24,46. A
and B replicas are subjected to explicit repulsive short- SU/Uy—0. (13)
ranged interactiorcfédz&(m(z)— ¢s(2)) with 0<e<1.

(iii ) Decorrelation of random potentidR5,26. The ran-  In the following we consider perturbations such tlat 6.
dom potential ofB obtained from that ofA as Vg=(Va Under the influence of such a perturbation, the system in the

in the infinitesimally weak perturbation limit
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deepest valley may jump into other valleys with a free-This result was previously obtained by ¥&d in[24] by
energy gapAF if the possible gain of free energy due to using essentially the same argument and supporting his result
perturbation (12) becomes larger than the original free- by a numerical transfer-matrix calculation.

energy gap itself. The probability of such an event is esti-

mated as B. Explicit repulsive coupling

statistical rotational symmetry. First we consider the case of
having a short-ranged repulsive coupling between the two
(149 real replicas by which the total Hamiltonian becomes

>a0 The other perturbations that we consider do not break the

L.sU —FU‘”LC‘)“ AF,)dAF
pjump( ' )_ 0 PL( L) LC(5U)

with a characteristic length scale callederlap length Harg=Hol[ Vo, dal+Hol Vo, dg]
A +ede25 zZ)— z 19
LC(5U)~LO<U—O) as 6U/Uy—0. (15 o (da(2) — ¢8(2)) (19
Let us also define a characteristic transverse length sca}@ith €>0.

This type of perturbation was first considered by Parisi

which is conjugate td.c(oU), and Virasord40] in the context of spin-glass models in order

L (SUY\& to give a precise definition of spontaneous replica-symmetry
u.(8U)=uj el )) (16) (RS breaking. It explicitly breaks the RS noted in Sec. |. It
Lo was also used in the DPRM problem by Parisi{46] and

was further examined by Mard using the numerical
It is important to note that the above expressions makéransfer-matrix methof24].

sense only for short enough length scdlesL .(5U). In this If the two replicas jump into different valleys to avoid
regime the effect of the jumps on physical quantities can béouching each other, the energy is reduced by an amount of
analyzed in a perturbative way because the probability of @rder e(L/Lg). Thus, we read ofik=1 and éU =€ so that
jump is small enough. Let us call this regime theakly the overlap lengtt{15) becomes
perturbed regimeHowever, in thestrongly perturbed regime
L>L.(6U), perturbative treatments will fail because jump —s/2
events will happen with probability one. The latter implies Lc(€)~|—0<u—) . (20
that after having applied the perturbation the free-energy 0
landscape is drastically different from the original on length-
scales larger than the overlap length. The overlap letigih
diverges assU/Uy,— 0 with exponent-1/(«— 6), which is
sometimes called a chaos expongs], but remains finite

Again this length scale agrees with the result obtained by
Mézard for the same quantity {r24].

for arbitrary small strength of perturbatiah C. Potential change, random tilt field, and temperature change
Now we introduce three other kinds of perturbations that
A. Uniform tilt field do not break rotational symmetry. As we explain in Sec. V,

this class of perturbations also breaks the RS noted in Sec. I.

We first consider the application of a uniform tilt fighdo However, the strength of perturbation is subextensive
the end point of the real replica B @=L by which the | 12 (a=1/2), and much weaker than in the case of ex-
statistical rotational symmetry is violated. In the presence Of)licit repulsive coupling, which is extensiveL(a=1).
the tilt field the Hamiltonian becomes

L d¢p(2) 1. Potential change
B
Ha+s=Hol[Vo,Pal+Ho[ Vo, ds]— huniJO dz——. We consider three different perturbations@f 1/2. The

17) first one is to introduce a small difference between the real-

izations of the pinning potential foh and B [25-2§. Sup-
pose thatA has a certain realization of the pinning potential
V. Then we can construct the potential Bras the sum of
V, and a new statistically independent random num¥ger
Then the total Hamiltonian becomes

The unperturbed HamiltoniaH is given in Eq.(6). If the
string makes a jump responding to the uniform tilt field over
a distance of ordeny(L/L)¢ into the next valley, it obtains
an energy gain of order,ug(L/Lo)¢. Thus, the unit for the
gain in energy(12) reads a®dU = h ,uy with a characteristic _ — =
exponenta={=2/3. Therefore, we find the overlap length Ha+g=Hol Vo, dal+Hol (Vo+ 8V1)/V1+ 5% ¢g].

(15) to be (21)

h _3 Here & is the strength of the perturbation aMj has the
Lc(huni)NLO( “”‘uo) ) (18) same statistical properties ¥g given in Eq.(7). Namely, it
Uo has zero mean and short-ranged correlations,
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Vi(¢.2)Vi(¢',2)=2D6(p—¢") (2~ 2"), However, it is argued that the free energy is optimized so that
these wild fluctuations cancel with each other as much as
Vo(b,2)V1(d',2')=0. (22) possible in such a way that valley-to-valley fluctuations of

the free energy are much smaller,

Note that the pinning potential for replica B is normalized by
the factor 1{/1+ &%, so that it has the same amplitude as AF(L)=Uqg(L/Ly)? with 6<1/2. (29
replicaA.

pThe characteristic fluctuation of the extra energy gainln other words, there is a stromggativecorrelation between
along a configuration due to the random variation of thethe fluctuations of entropy and energy such that
potential scales typically a8Uq/L/L, since it gives contri-
butions with random signs. Thus, we read off (AS/kg)(0E/Ug) ~—(L/Lo)<0 (30

=1/2, S6U=6U, and the the overlap lengiti5) becomes
due to the thermodynamic relatidx-=AE —kgTAS. Note

Le(8)~Los™° (23)  that a similar argument lies at the heart of the droplet theory

. o i for spin glasses, which suggests temperature cHa@k Ac-
This length scale was found by Feigel'man and Vinokur byy,a)ly the exponent for the free-energy fluctuations is be-

essentially the same argumé@e6]. Previous numerical cal- |iayed to be exactlyy=1/3, which is definitely smaller than
culations[25,28 appear consistent with it but the anticipated 15 ' rthermore, the stronger fluctuation of entropy and en-
crossover phenomena had remained to be clarified. ergy (28) was confirmed numerically by a transfer-matrix
calculation while the smaller fluctuation of free energy with
0#=1/3 was also observed simultaneousy49]. Then under
Similarly, we consider the application of a random tilt a slight temperature difference between the two replitas
field to the end point oB, and B, it is possible that one of the replicas jumps into a
different valley taking advantage of the large gain in entropy.

L d¢s(2) i i
HA+B=HO[V0101¢A]+HO[VOva‘z’B]_‘SJOdzr(z) Bz _ Such a gain should typically scale axg|oT,

2. Random tilt field

d — 6Tg|(L/Lo)Y? and, therefore,a=1/2 and 6U=Kkg|56T,
(24 — 6Tg|. From Eq.(15), one then finds the overlap length as,
Here & is the strength of the perturbation amqz) is a ke|ST|\ ¢
Gaussian random number with zero mean and short-ranged Lc(éT)~( U ) (3D
0

correlations,

h(z)=0, h(z)h(z')=28(¢—¢')8(z—2'). (25  With 6T=6T,—6Tg. This length scale was found by Fisher

and Huse i 3]. Indeed their transfer-matrix calculation pre-
Within the lattice model we study numerically, the energeticsented i 3] suggests the existence of crossover phenomena.
gain of energy typically scales again8ld,+/L/Ly. Thus, we However, details of the scaling properties and comparison
find a=1/2 andsU = 5U,, which gives the overlap length with the case of the perturbation on the potential have re-
mained to be explored. So we try to complete the investiga-

Le(8)~Lod~°, (26)  tion in Sec. VILI.
As we summarized above, what is crucial is the role of
3. Temperature change entropy. In the so-called Larkin mod47], in which the

All perturbations discussed so far are nonthermal pertur€fféct of pinning is modeled by quenched random forces
bations. Finally we consider the introduction of a slight tem-With short-ranged correlations, entropy plays very little role
perature difference between the two real replidaand B, and free energy is dominated by energy so that there is no

temperature chaosee[50]).
Tao=T+6Tx,
D. Moments of transverse jump distances
Tg=T+Tg, 27 . . .
In order to characterize the jump events triggered by the
where §T,# 8T . Although this perturbation appears to be perturbations, it is useful to introduce appropriate correlation
rather different from the two other cases above, it is alsdunctions. First, let us introduce the disorder average of the
expected to giver=1/2 based on the following observation. dth moment of the transverse distance between the end

Fisher and HusE3] conjectured that valley-to-valley fluc- Points of the two real replicas,
tuations of the energy and the entropy are just that of a sum
of random variables put on a string of lendgth Thus the Bq(L,6U)=[PA(L) — Pg(L)]° (32)
amplitude of valley-to-valley fluctuation scales as

It was introduced and studied numerically by Zhand26]

AS(L)~kg(L/Lg)*2, and continued further if28] for the case of perturbation on
the random potential. The following is an extension of the
AE(L)~Uq(L/Lg)Y2 (28)  argument by FeigeI’'man and Vinokur described 26].
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1. Weakly perturbed regime rigorously using the statistical rotationéilt) symmetry of

In the weakly perturbed regime<L .(5U), a jump event the system24,52. This is a rather special property of the
first moment. All other moments are sensitive to the cross-

happens with a probability smaller than 1 as given in Eq. ¢ K . .

(14). With a single event, a transverse displacement of ordePVer from weak to strong perturbation regimes.

Ug(L/Lo)¢ will take place. Thus, we expect Let us now consider higher momengs>1. Since jump
events areypical in the strongly perturbed regime, we ge-

L\¢]d nerically expect a simple relation between different mo-
Bqg(L,6U)~| ug L Pjump( L, 6U) ments,
L \(@-2)i+a+l a (Bl(L,5U))q
~ qf —— < By(L,8U)=ud(8U)| ——=——| , L>L(8U),
ug(8U) (LC(5U)) . L<L(8V), oL, 8U)=uc(8U)| = 555 c(U)

(37

where note that the natural unit for tiggh moment is now
ud(sU). Note that in the weakly perturbed regime such a
2. Strongly perturbed regime simple relation between diﬁ‘ere_nt moments does not hold be-
cause of the rareness of the jump events. The first moment
) e , ; obeys a scaling law such thBt(L,sU)/u(sU) is a func-
events W'_th longitudinal _S'Zic(ﬁu_)_ and transverse size of L/L.(6V) also in the strongly perturbed regime as we
uc(6U) will take place with probability 1. Let us first con- nentioned above. This implies that the higher moments (
sider the behavior of the first momeBt(L,SU) in this re- >1) obey a scaling law such th&(L,éU)/uﬂ@U) be-

gime. comes a function olL/L (sU)(>1) in the strongl -
; ; c gly per
In the strongly perturbed regime, the two repli¢aandB }]urbed regime.

are subjected to very different free-energy landscapes. |
such a situation, we expect that the two repliéaandB will

make excursions independently. Thus, we expect a simple _ _ _
scaling form, To summarize, we expect a generic scaling form for the

behavior of theqth moment including both weakly and
strongly perturbed regimes as

(33

where in the last step we have used the scaling reldfinn

In the strongly perturbed regime>L.(5U), the jump

3. Summary

{
Bl(L,(sU):uc(fsU)(ﬁ), L>L.(8U). (34)

(39

~ L
Bq(L,5U)=Ug(5U)Bq(m).

However, the situation is slightly different in the case of
the uniform tilt field considered in Sec. IVA, because the
uniform tilt field continues to increase the Separation be'Here the Sca"ng function presents the asymptotic forms in
tweenA andB SyStematica"y ak —oo. After making atrans- the Weak|y perturbed regimb< LC((‘)‘U) and Strong|y per-

verse jump of ordeno(L/Lo)¢, another jump into a further turbed regimeL>L(5U), which we discussed above.
valley in the direction of the field can take place if the

strength of the fieldh is increased further. The latter happens
when the new increment of the Zeeman energy
shug(L/Le)¢, due to another increment of the fiefth, be- Another useful quantity to probe the jump events is the
comes again comparable to the typical free-energy[§ap  overlap function defined d24,46

AFYP(L) given in Eq.(8).

1L
5hu0(|_/|_0)§~A|:typ(|_)_ (35) Q(L15U):Efo dz6(Xo(2) —Xsu(2)). (39

E. Overlap function

The number of times that such a sequence of jumps OCCURR/e expect it to scale as
by increasing the field from O th will typically be h/sh. xpect!

Each jump will have a typical transverse size of order L
Uo(L/Lg)¢. Thus, the first moment grows as q(L,AU) =0 ——=—]|. (40
L.(8U)
L\¢ L
B1(L,hug) =Uo| {—| = = Uc(huo) L.(hug) ) Note that 1-q is essentially the probability that the string
0 ctro jumps to a different valley. Thus, in the weakly perturbed
L>L (hug) (36) regimeL<<L.(6U), we expect that it behaves as
c .
a—~0
In the last equation, we used the scaling relati®n Note _ _jump _ L
that the first momentg=1) grows linearly withL not only 1=q(L,ou)~pHL, oU) L.(8U) (41)

in the strongly perturbed regime but also in the weakly per-
turbed regime as one can see using { in Eq. (33). Actu-  In the strongly perturbed regime>L.(5U), we expect that
ally the linear growth of the first moment can be provedq (i.e., the probability of staying in the same valiedecays
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faster down to 0 as./L.(6)—o because the free energy V. REPLICA BETHE ANSATZ APPROACH
Itﬂgtr:i:capes of the two replicas are increasingly different Now let us take the replica approach introduced in Sec. Il

to study chaos. We start from the partition function of 2
_ _ replicas:A andB and theirn copies. It can be expressed by a
F. Correlation of the free-energy fluctuation path integral over all possible configurations af Beplicas
In order to probe the difference of free-energy landscapetabeled by two indice&=A,B anda=1, ... n,
between the perturbed and unperturbed systems, we study
the correlation functiori2) of the sample-to-sample fluctua-

n
tions of the free energy between the two systems, which ZR+B(|—):J GL{B };[1 Do, eXp — Sa+pl hG,al),

reads as (47)
AF(L,00AF(L,8V) where we have introduced the dimensionless effective action,
Cr(L,0U)=— , . (42
VAF2(L,0) VAF2(L,8U) L Kk (dbe.u(2)\2
SA+B[¢G,a]:f d7 X kT T)
HereAF(L,0) andAF(L,8U) are deviations from the mean 0 G <78
free energy of the unperturbed and perturbed systems. A
similar correlation function was studied numerically for the _ D E Sbg o(2)— dar 4(2))
case of perturbation of the temperature shif{3). We ex- (keT)2 6l mp  OF CLEE

pect it to scale as
(48)

(43)  To obtain the last equation we have used &g. Here one

end of each replica is fixed agg ,(0)=0, while the other

end ¢g (L) is allowed to move freely as we noted above.
The effective action48) has several important symme-

e tries. First, it has a symmetry under global rotation in the
the weakly perturbed regime<L..(5) can be guessed by a (z,#) plane. Second, it is symmetric under all possible per-

S|mple argument pr_oposeq by Bray and M(.)@lé for the mutations among therRreplicas. Let us call the latter RS for
equivalent problem in a spin-glass model. First, we are con-

sidering perturbations such that perturbed and unperturb 3jmplicity. As we explained in Sec. Il our primary interest is

systems have the same statistical properties. Thus, we must.. the RS is broken by infinitesimally weak perturbations.
h)z/ive prop ' ' Now we focus on the study of the disorder-averaged par-

tition functionZ} , g(L). To this respect we will use the well

, ; L\? known mapping to am-body imaginary time gquantum me-
\/AZF(L,(SU): \/AZF(L,O)~UO(—) . (44)  chanical problem in one-dimensional space, which was also

Lo first noted by Kardaf41,42. The advantage of this approach

, i is that one can make use of the Betkiesatz which provides
Suppose that we introduce a perturbation that scales sy with the exact ground state of the quantum problem.

CF(L,AU)zéF(m),

and decay down to 0 ds—oo.
A possible functional form of the correlation function in

1
AF(L,8U)= 1 AF(L,0)+ U

6U(L/Lo)* as given in Eq(12). Then the fluctuations of the \;oreqver, from the latter one gets many hints about how to
free energy of the perturbed system have two contributionsynsiryct the relevant excited states. In what follows, the
the original fluctuatiomAF(L,0) plus the change due to the main steps in this procedure are outlined to emphasize sev-
perturbation, eral points which will become relevant in the analysis of the
N perturbation. The path integral of the partition function de-
L fined in Eq.(47) through the action in Eq48) can be rein-
1 ) . (45) A : ;
0 terpreted as that of a quantum system in imaginary time. In
the absence of temperature difference betw&emdB, the
Here N\ is a normalization factor which assures that the staSchralinger equation reads as
tistics of the perturbed and unperturbed systems remain the
same as in Eq44). It is assumed that the two terms between d — -
brackets in expressiof5) are uncorrelated. When perform- — gt ZarsXe.al ) =HoZa,s({Xe uh ), (49)
ing the average over the disorder, the cross terms due to the
two terms in Eq(45) cancel out to give the following scaling ith the following Schrdinger operator for & bosons:
function for the correlation function:

1 SU L \2@0)]-172 H __2 kB_T 32 B D
~— - 0™
CrlL AU~ 1+(Uo Lo) } B Eu 28 oxg,  (keT)?
For the strongly perturbed reginte>L .(5), the correlation X 2 O(Xg,a—XG" ) (50
function may decay faster. ((G,a),(G".,B))
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The first term represents the kinetic energy. The second term Although the ground state makes the most important con-
stands for attractive short-ranged interactions between theibution to the partition function, it may not be the only one.
bosons where the sum is taken over all possible pairs dff one only takes into account the contribution of the ground
bosons(excluding unphysical self-interactions which are ab-state neglecting all other excited states, one would wrongly
sent in lattice mode)s conclude from Eq(53) and the relatiori4) that only the first

Let us note that here we have two kinds of bosons. Thand third cumulants of the correlation functions of free-
bosons ofA can be distinguished from those Bfand vice  energy fluctuations exist. This conclusion is definitely un-
versa while the bosons cannot be distinguished from eacphysical because the second cumulant cannot be zero. Such a
other within the subgroups. However, the Salinger opera- pathology implies existence of continuum of gapless excited
tor has an even higher bosonic symmetry: it is symmetricstates which give important contributions to the partition
under permutations of all then2replicas. This is nothing but function.
the RS we mentioned above. Bouchaud and Orlan{b3] pointed out that the transla-

By integrating out the coordinates of the free ends of theional symmetry of the Schdinger operator allows to con-
string ({x,,G},L) while keeping the other ends fixed at struct a continuous spectrum of excited states by considering
(0,0), we formally obtain the disorder-averaged partitioncenter of masgc.m) motion. Such an excited state with
function of the replicated system as wave vectork has the form

n

Zh. g(L)= Gg : }1 dXg oZh+5(1XG a}sL) <‘I’Rs,tJ{XG,a}>:eXF( ik(;a XG,a)<‘PRsJ{XG,a}> (54

with eigenvalue

=§ e‘LEuf 11 ﬁ dXg o

G=AB a=1

keT
X ({Xo,at[4,) (¥ {OD), (51) Ecu(K)=Eg+2n5 k2 (55

where| ¥,) andE, are the eigenstates and eigenvalues of th&'he resultant partition function obtained by integrating out

Schralinger operatof{, defined in Eq.50). In the largeL  the continuous spectrum can be put into the following scal-

(large time limit, the partition function will be dominated by ing form [42]:

the eigenstates of the Schlinger operator with lowest ei-

genvaluegenergieg including the ground state. InZh 5= —2n,8?L+g(2n LY3), (56)
The ground-state wave function is well known to satisfy

the BetheAnsatzreading

wheref in the first term represents the average free-energy
density. The functiomg(x) in the second term is analytic for

(WrdiXc,al) small x, implying that theqth cumulant of the correlation
function of free-energy fluctuations scalesl&$’. Thus, the
~exp( -x X6~ Xp,G/ ) characteristic exponent for the free-energy fluctuation, which
((G,),(G".B)) is called the stiffness expone(#), is obtained as¥=1/3,

being consistent with extensive numerical results of transfer-
with \=«D/(kgT)3, (52  Mmatrix calculation$23] and other analytical approaches such
as mapping to the noisy Burgers equatj6d].
where the sum is taken over all possible pairs among the 2 . Parisi[46] _pointgd out a_nother important spectrum of ex-
replicas labeled asQ[=A,Bl,a[=1, ... n]). The index cited states in which rephcgs are grouped mtuster;of
RS stands for the fact that this wave function has RS, j.gPound states. Each cluster IS supposed to b? desgnbed by a
permutation symmetry among alhzeplicas. In the follow- Bethe_Ansatztype wave f‘!”C“O” so that there IS repliger-
ing we label this state as RS. mutatl_or) symmetry within each cluster. An important as-
In general, the ground state of one-dimensiondiody sumption is that these clusters are located far enough from

problems with contact interaction is constructed in the fol—eaCh _other SO that their mutual oyerlap IS neghglble_. Th_e
lowing way: the 2 particles are ordered and occupy a cer.latter is allowed if the transverse size of the system is infi-
tain segment within which they are free. The global waven't(laly large. ¢ text h wo kinds of b

function consists of the product ofn2plane waves whose h our present context, we have two Kinds ol bosons cor-

moments\ ,, have to fulfill certain matching and boundary g?;?ﬁn&g?eéofrtgri tevélif:egl];?p!}%ﬁamfhgzg; tcc:)agoggi der
conditions which in our case result ky,=(2n+1—2m)\ 9 : '

: _ : an excited state which consists of separate Bethe-type clus-
with m=1, ... 4. The ground-state energy is then the sum TA | for A and(¥B. for B. with I |
of the kinetic energy of the 12 free-particles, ters(Wrd for Aand(Wed for B, with no mutual overlaps,

o1 2 T 1 (Vrse = (VRd(VRd, (VRdVr9=0.  (57)
Eg=— —— > A=———-\22n(4n’-1). (53 , , , ,
2K m=1 2k 3 Its associated energy is readily obtained as
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keT1 , Here let us note a problem in the case of perturbation by
Ersg= — 5 - 3An(n"—1)x2. (58 the random tilt field considered in Sec. IV C 2. If one tries to
obtain a continuous model starting from a lattice model as
considered by Kardaf41], one can find that inter-replica
coupling terms due to the random tilt field emerge at second
order in the transverse hopping rate of the lattice st(dey
noted asy in [41]). This implies that the mapping in the
continuous limit to a Schidinger equation is invalid in this

A very important feature is that the gap of the RSB ex-Case because the ScHioger equation contains only first-

cited state with respect to the RS ground-state energy, whicfrder time derivatives. Thus, we do not consider this case in

is of orderO(n®), becomes vanishingly small in the—0 thISFSQCtIO![’]. dard turbation th luate th
limit. Thus, such an excited state should be also taken int? rom standard perturbation theory we can evaluate the

account since we must take0 beforel — in the evalu- irst-order corrections to the original ground-state energy as

ation of the replicated partition function. Presumably each 1 kaT Vo d SHIW

cluster of bound states can have its own center of mass mo-  ERS= — = =2 \22n(4n2-1)+ M
(VrdVre)

where the labelA stands for the perturbation strength and

tion. Therefore, the RSB excited state should have the con- 3 2«
rg is the ground-state wave function given in E§2).

tinuum of the excited states of c.m. motion similar to that
associated with the RS ground state mentioned above. Th
the.resultant partition functioZR+B,_which will be obtained The first term corresponds to the ground-state energy given
by integrating out these RSB excited states and the assogj; Eq. (53).
ated continuum due to c.m. motions, may be put again into Fo|iowing Parisi, we will consider the RSB excited state
the scaling form(56). The latter will again yieldd=1/3. (57)

To summarize, the replica symmetry is not broken but

XB, o~ XB,g

This wave function has the reduced replica symmetry men
tioned in Sec. lll, i.e., it is symmetric under permutations
among A and B groups and the exchange operafienB.
We will call this state as the replica-symmetry broK&EB)
state in the following.

, (61)

only in amarginalway. As suggested by Par{g6], the role

of these RSB excited states will become important if pertur- (‘I’RSB|{XG,a}>°‘eXF( —A 2
bations are considered. In the following we generalize the “p
approach of{46] and exploit its implications to study the

stability of the frozen phase against the various perturbations X exp( —A 2,3
we considered in Sec. IV. “

Xa,a XA, 8

) (62)

with A=«D/(kgT)3. This wave function has the reduced
Perturbative approach by replica scalingAnsatz replica symmetry. At first order in perturbation theory, we
can compute the energy of the RSB excited states as follows:

(Vrsd 0H| Vrsp)

Now we address the situation in which the two real rep-
licas A and B are under infinitesimally weak perturbations. 1 kgT

The partition function of the system under such a perturba-  ER®8=— AZ2n(n?—1)+

tion can be formally written as 3 2« (Vrse Vrsa) ,(63)
n
7 ()= D exo —S where the first term is the energy of the unperturbed system
ace(L)= | 1 TI Do aexp(—Sasal b0l given by Eq.(58)

Let us introduce the ratio of the contributions to the par-

tition functionZ} | 5 due to the RS ground state and the RSB
excited state,

—6Sa+eldG,ql), (59

where the actiorS, g[ ¢ ] is the original one Eq(48),
which is fully replica symmetric and the second one, D(n,L)E(EZ‘SB— EES)L:DO(n,L)— sD(n,L), (64)
S+l ¢c o]s Is the perturbation term. Suppose that we can

map the problem onto the quantum mechanical one such thgihere

the corresponding Schidinger operator becomes

keT , 4
Harg=Ho+ OH, (60) Do(n,L)=T)\ n°L>0 (65)

whereH, is the original fully replica-symmetric rizboson s the original energy gap and the correction is due to the first
operator given in Eq(50) and §H corresponds to théS in order perturbation

the path integral. As we will see in the following, these per-

turbations try to break the RS present in the original system (Vred OH|Wrsp  (Vrd 6H|Vre)
down to the reduced symmetry: replica symmetric only oD(n,.L)=L Vet Vrsd  (Vad¥rd
within A andB subgroups. At this stage, the whole quantum (66)

problem cannot be solved exactly. However, we can obtain a
useful insight into our problem by the perturbation analysisin the following we callD(n,L) a gap. If it is large enough,
proposed by Parigi46]. the contribution of the RSB excited state to the partition
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function becomes negligible. We will find that, in general, Now let us further exploit the above result to find a more

the correction term of the gap has the form physical picture. In the absence of perturbations, the loga-
rithm of the replicated partition function has a functional
—oD(n,L)=—AnPL<0. (67 form (56), which reads as Ff,, 5= —BfL(2n)+g(2nL3). On

the other hand, Eq68) implies thatn/n* is another natural
Here the symbol\ stands for the strength of the perturba- yariaple of the replicated partition functigs5]. Combining

—nPA will turn out to benegativefor all the perturbations
under consideration. In what follows we will refer paas the InZ" B+,3?L(2n) =3(2nLY3 n/n*)=g(2nLY3 L/L*)
+ 7 L L

order of the perturbationwhich will play a central role.

More precisely, the correction to the gapsD(n,L)/L will (72)

contain several terms of different powersrofHerep is the  \here we introduced a characteristic length defined as

exponent of the term with themallestexponent, which be-

comes most relevant in the—0 limit. L* ~(n*) 3~A3G=p), (72)
If the first-order correction turns out to give a null contri-

bution, we have to proceed to higher-order perturbation calAn interesting observation is that time-0 limit induces the

culations, which is obviously impossible without the com-thermodynamic limitL— if the variablenL®*=x is fixed.

plete knowledge of the whole spectrum of excited statesThen for fixedx we expect

Fortunately for all the cases except for the case of the per-

turbation by uniform: tilt field we will find nonzero first-order g(x,L/L* —=0)=g(2x), L/L*<1 (n/n*>1)
corrections. Higher-order correction terms will be higher or-
der in A, which will be unimportant since we are interested (weak perturbation regime

in the scaling properties in the infinitesimally weak perturba-
tion limit A—0. Furthermore, it is unlikely that the higher-
order terms are lower orders of Thus, they will be irrel-
evant in then—0 limit. For the case of uniform tilt field, we

g(x,L/IL* —0)=2g(x), L/L*>1 (n/n*<1)

will fortunately find exact RS and RSB bound states of the (strong perturbation regime (73
system, which will allow the evaluation of the g&(n,L) i _
also in this situation. The first equation means that for small enough length scales,
Now using Eqs(67) and (65) in Eq. (64) we find the effect of perturbation is small and the partition function is
essentially the same as that of the unperturbed system of 2
-(3-p) replicas given in Eq(56). The second equation is the conse-
D(n,L)=Dy(n,L)|1— ( ) ] , (68) quence of having two statistically independent systems in the
n*(A) limit L—o0.
From the above scalingnsatz it follows that the corre-
with lation function of the free-energy fluctuatio@s (L) consid-
1(3-p) ered in Sec. IVF should have the scaling foBp(L/L*),
n*(A)= A 69) which goes to 0 ak/L* —oo. Similarly the overlap function
N2KgT/k ' q(L,éU) considered in Sec. IV E should also have the scal-

ing form'q(L/L*), which goes to 0 ak/L* —o. Thus, the
From the above result we can generalize the argument usedossover lengtiL* should be identified with the overlap
by Parisi for the explicit repulsive casp€ 1) to extract the lengthL (8U). The aboveAnsatzimplies that the decorrela-
following conclusions. As far as is integer and the strength tion of the free-energy landscape betwe&rand B takes
of the perturbatiom is small, the contribution of the RSB place as a universal phenomenon whose features are classi-
state becomes negligible in the thermodynamic limit.  fied according to the order of the perturbatipnin the fol-
However, we have to consider the other limiting case: thdowing, we consider the perturbations considered in the pre-
n—O0 limit should be taken beforé —«. Now if p<3, vious real-space scaling argumé8ec. IV specifically one
which will turn out to be the case for all the perturbationsby one based on the replica approach and evaluate the cor-
under study, an arbitrarily small perturbatianwill induce a  rection to the gap, Eq(67), explicity and extract the
level crossing amn*(A) below which the contribution of strength of perturbatiolh and the order of perturbatiop.
RSB excited state becomes larger than that of the origindnterestingly enough, we will find that the two approaches
ground stat€RS). The result(68) matches perfectly with our give the same overlap length.
definition of chaos Eq(5), since it suggests that the partition ~ Finally let us comment on how to choose detailed forms
function of the total system factorizes in the-0 limit as of perturbations, which we discuss in the following. We con-
sider perturbations such that the original symmetry is pre-
lim Zh,z=2h Z% if p<3 (70 served as much as possible: the-2plica system remains
ninx —0 invariant at least under permutation amongeplicas be-
longing to the same subsatandB and exchangé&« B, i.e.,
implying a complete change of the free-energy landscape. the reduced replica symmetry.
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1. Short-ranged repulsive coupling KT 2 D
B

2 O(Xa,a—Xa,g)

Let us begin with the perturbation that introduces an ex- &, 2k §Xé,a (kgT)2 (4H)

plicit repulsion term between stringsandB as given by the
Hamiltonian in Eq.(17). The corresponding Schilmger op-
erator for the replicated system can be obviously put into the - 5 > 8(Xg.a—Xs 8)
form of Eq. (60—fully replica-symmetric term + (kgT)* (@) ’ '

perturbation—to obtain

e S i Xe )= Hot OH
o o= Hoot 61 V1+ 6% (kgT)? (@h)
(78)
with with the symmetry breaking term
€ 5
H=j g 2 O0na X, 0. (74) SH=5 2 60X.a(2)~ X5 5(2)). (79

. . - ere we are in the infinitesimally weak perturbation lirdit
Clearly the repulsive perturbing term breaks the original Réio, so higher-order terms can be ignored.

[46]. A remarkable feature is that the second term of the last

Sintoracion ferm wih respot t ihe Bethe ground sate, ongIUAION: Which IS he perturbation (e, s agaiepul-
P 9 '~ 'Sive Note that the sum is taken over rather thann(n

obtains[46], —1)/2 pairs. The expectation value of tldefunction with
respect to the RS ground state and the RSB excited state has
(Vrd 8(Xa o= XB.a)| PRe A\ already been computed in Eq§5) and(76), hence we im-
(Wrd Vro =g (2n+1), (75 mediately find the correction to the gap as
. sD(n,L) i1 8, 80
while —— |  ~"g@+h5n% (80)
(Vrsd (XA 0= X8 o) |V Rsp) Note that this perturbation contains the reduced replica sym-
(Vrsd Vrsa =0. (76) metry. The latter was made possible by a specific choice of

the perturbation by introducing the rescaling factofli+ &
used in Eq(21). We can now read off the order of the per-
because the bound states of A and B subsets have no overlagbation asp=2 and the strength of the perturbation &s

(Vrsd Vrsp =0 [Eq. (57)]. ~ 5%. Now using Eq.(72), we obtain the overlap length*
Thus, the correction term to the gap, E§7), is obtained  ~ 576, Indeed, the latter turns out to be that obtained by the
as real-space scaling argument given in E23).
sD(n,L) A ¢ 3. Temperature change
T L T~ €(2n+1) kB_T) n. (77) Now two real replicas in the same quenched random po-
tential V(¢(z),z) are subjected to a small temperature differ-
ence.

Note that the reduced replica symmetry—permutation sym- The Schrdinger operator for the i2-replica system with
metry amongn replicas belonging to the same subset plusA at temperaturd , and B at temperaturd g is the follow-
the exchange symmet#«— B—is still preserved. Thus, the ing:

leading order of the perturbatidemallest power of, which

becomes most relevant in thre—0 limit) is read off asp 2 2
=1 and the strength of perturbation As- €. Finally, using H=— > >~ 5 5
the relation(72) we obtain the crossover lengtht ~ e~ %2, o EK O OXp . o« £K dXp,

Remarkably the latter turns out to be the same as the overlap
length (20) found in the real-space scaling argument.

- —5(XG,a_XG’,B)'
(G.a).(c",8)) (KgTg)(KgTg/)

2. Potential change (81

If a slight difference of the random potential is introduced
as described in Eq21), the corresponding Schiinger op-  The RS is apparently lost in the operator. Let us choose the
erator of the 2 replica system reads as following specific parameters of perturbation:

066131-11



MARTA SALES AND HAJIME YOSHINO PHYSICAL REVIEW E65 066131

Tao—T+6T, ably the latter used in Eq.72) again yields the crossover
lengthL* ~(5T) ~®, which is the same as that found by the
Tg—T— 6T, real-space scaling argume(3tl).
5T\ 2 4. Uniform tilt field
D—D|1-3| =] |. (82 . . . . .
T Finally we consider applying a uniform titi to one real
i replica and—h to the other. The effective action describing
Then we can put the operator in the form the uniform field perturbatioi17) is the following:
H=Hy+ H (83
with the symmetry breaking terms B fL Kk (dég o(2)
SA+B[¢G,a]_ 0 dz &, 2kBT dz
kgdT 92 oT D D
SH=—2, 2= 2 ——— 8(Xp . Xnp) - 8( 2)— dgr 4(2))
o 2K aXA,a T B (kBT)2 (kBT)Z Gygaﬁ d)G,a( ) (/bG ,B(
kgoT &2 5T D h déan(z) h dog o(2)
+> —2— > ———8(Xg 0—Xg 5) NN ARY N PR
T 2 2, T ab(kgT)? o BP KeT ; dz kT < dz |
5T\ ? D 5T\ 3 (87)
+2<T) 2 ——8(Xa,—Xg ) +O 7) . (89
# (K ere not only the full permutation symmetry among t
«p (kgT) H ly the full i e 2

replicas, but also the global rotational symmetry is lost due
to the field. Thus, the universality of this perturbation should
Obe very different from those discussed so far. The corre-
gponding Schidinger operator of the quantum mechanical
problem reads as

In this last equation, we are considering the limit of an in-
finitesimally weak perturbatio@T/T—0 to neglect higher-
order terms. The expectation value of the perturbing operat
with respect to the RS ground state is obtained as

8T\> D 2
Y d SH| W =2(—) Wrd 8(Xa 4 kT 4 D
< RSI | RS> T (kBT)ZO’Zﬁ< RSI ( A, H=— Zi >~ 5 2 5(Xa_xﬁ)
Ga 2K x5, (KgT)“ GG ap
_XB,B)|"PRS> h E J h E J -
A 5T\2 T D e K axg (88)
=— (2n+1)2|—=| n% (85 ' ’
6 (kgT)? T

Note that the first two terms are the original operdkty

Here we have used the fact that the ground-state wave fun&iven in Eq.(50).

tion is symmetric with respect to the exchange-B plus Now let us analyze the change of the RS s(&@®. One
Eq. (75). Due to the latter, the terms of ordex( 5T) cancel ~ €an easily see that the first-order perturbation vanlsh_es sim-
out and we are left with th©(S5T2) term. Note also that the ply because the total momentum of t.he ground state is zero.
sum is again taken overxn pairs of replicas rather than ©On the other hand, one can also easily note that when a field
n(n—1)/2. is applied, the original wave function is no longer an eigen-

On the other hand, the expectation value of the perturbin§tate. Fortunately, the exact eigenstate can be found in this
term with respect to the RSB excited state is obtained imme2dd situation in which particles belonging to different sub-

diately as(W gsg SH|¥ree) =0 using Eq.(76), and the fact sets A anq B) are driven into opposite d!rectic_)ns. The
that RSB wave function is symmetric with respect to theformer Schrdinger operatox88) can be rewritten into the

exchangeA« B and Eq.(57). Using the above results we fully symmetric form of the original problertb0) by shifting
find the correction to the gap §56] the momenta,

sD(nL) A D
- = ~(2n+1)2

5T 2
-z —| n% (86 F J h d
L 6 (kgT) T) (89

= =, —_— = + —.
IXp o Faa KeT' gxi, XBa KeT

(89

Note that the resultant gap is invariant under the exchange

A« B, which was made possible by the antisymmetric direcNotice that this transformation preserves the commutation
tion of the change of temperature E§2). From the above relations between conjugated coordinates and mon{eats
results, we read off the order of the perturbatiorpas2 and [/ 9Xg , . XG o]l =[ 9/ IXG,a:Xg,e])- IN terms of these new co-
the strength of the perturbation as-(5T)?. Quite remark-  ordinates, the RS ground state again takes the form of the
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Bethe Ansatzsolution of Eqg.(52). And, therefore, the final tial, which is generated by a simple random walk in a one-
ground state can be obtained from Bethe’s wave function bylimensional space.
undoing the previous shifting of moments, Here we consider this mapping onto the Sinai model in
the presence of the uniform tilt field by evaluating the parti-
tion function (51). First, we evaluate the partition function
h h assuming the RS and using the ground-state wave function
W~ Wrd{Xg,a})eX KeT ; xA'a)ex% T kaT ; XB,a>' given in Eq.(90). Second, we perform another evaluation
(90) assuming RSB, which only allows reduced replica symmetry,
and using the clustered wave functié2). The former is
whereWr4({Xs .}) is the original BetheAnsatzwave func-  supposed to be good for the weakly perturbed reglme
tion for 2n replicas given in Eq(52). The eigenvalueE;,, <L (h) while the latter is good for the strongly perturbed

corresponding to this wave function is obtained as regimeL>L.(h). In order to interpolate the two limits, we
propose a phenomenological model using a bounded Sinai
potential.
E,=Eq+ nh” (91)
h=Eo™ >
kkgT A. Replica symmetric case

which does not depend on the ordering of the particles. Here We start by considering the fully R&nsatzfollowing

E, is the original ground-state ener@ given in Eq.(53). Bouchaud and O.rla}nEB'B]. The ground-state wave function
Although the original full permutation symmetry is lost in under a uniform tilt is given by Eq90). In order to take into

the wave functior(90), it still described a sort of bound state account the motion of the center of magsm,) of the 2n

on 2n particles. So we may refer to it as the RS state. In théeplicas, we consider the spectrum of excited states whose
following section, we will discuss the mapping onto the Si-wave functions are given by

nai model and the physical meaning will become clearer. The

second term of Eq91) gives the change of the eigenvalue

of the RS state due to the perturbatidEqs=nh?/(xkgT). Vrs(h K {Xg,ah) ~ Wre({XG,a})
Next let us consider the change of the eigenvalue corre- h
sponding to the RSB excited state, which again is formed by Xexr{ﬁ( Z xAya—z XB,Q)}
B @ @

two separate bound states fArand B subsets. Here it is
useful to note that ifall the particles are subjected to the
common field, the unperturbed single-bound-state wave xexp{ ik, Xe,a)- (93
function is still an eigenstate of the operator. Based on this G
observation, one immediately finds that the unperturbed RSB
wave function is still a valid eigenstate under the field be-The first factor is the Bethe wave function given in E5R),
cause of a twofold reasofi) there is no overlap betweel  which describes the unperturbed bound stateroféplicas.
and B and (ii) rotational and replica symmetries are pre- Now we use the Gaussian transformation introduced by Pa-
served within the same subsets. Thus, the eigenvalue of thési in [46] to represent Bethe’s wave function as follows:
RSB state does not change by the perturbafi@ksg=0.

Using the above values &Er5and AEgggWe obtain

\I,RS({XG,a})weXF( -\ 2 Xa,G_xﬁ,G’ )
D(n,L) nh? ((G.).(G".B)
Tl T kkeTe (92)
B 1 (dV\?

. . =fDVex—fdx——
We can now read ofp=1 and A~h?, which yields the 4\ | dx
overlap lengthL.~h"2. Then using Eq(72) we find the
same overlap length* ~h~3, being consistent with the re- ><exp< > V(XG,Q))' (94)
sult (18) of the real-space scaling argument. G.a

VI. MAPPING TO A MODIFIED SINAI MODEL The second factor arises from the uniform tilt perturbation:

) ) . to subsetA and —h to subseB. The last factor is the plane
In the preceding section, we found decorrelation of theyave of wave vectok, which accounts for the free c.m.

free-energy landscapes of perturbed and unperturbed Sygsotion. Here the ground state is included as khe0 case.
tems. Here we analyze the problem further for the case ofne can easily find the eigenvalues to be

uniform tilt field based on the connection between the (1
+1)-dimensional DPRM and the statistical mechanics of the
Sinai model[24,46,53,57. With this mapping, an effective
one-dimensional energy landscape for the free xfig of

the (1+1)-dimensional DPRM is obtained as a Sinai poten-

nh? kT
+n—2

P 12
KkBT K KE. (95)

Ergh,k)=Eq+
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The first term is the original ground-state enefgy of the
unperturbed system given in E&3), the second term is due
to the perturbation, and the third term is due to the c.m.
motion.

Let us now suppose that replicas have both ends ﬁxed:urthermore the c.m. of the total system is subjected to an
one at (0,0) and the other g in the case of subsétand at effective Hookian spring, which tries to bind together the
xg in the case of subs& Then the partition functiofsl) is two real replicas. The effect of the uniform tilt field amounts
evaluated by integrating out the spectrum of excited states 46 an effective transverse forbeapplied at the end points of

A andB replicas, which tries to drive them into the opposite
directions. From Eq(99), it can be seen that the effective

[{Vy) =Wy ) Plv=ly—y'l. (100

Zrd(0,0% 4, xg) ~ € [Eot nh?/(2uckgT]IL forceh increases by increasing the system sizevith fixed
h).
f » f ] 1 (dy\? )
X Vexg — XK &
S exe MV(Xa) + M(Xg)] B. Replica-symmetry broken case
x exf] (h/kgT)(NXa _ In Sec. VA4, we found out that r.eplica-symmetry. break-
ing becomes important &t>L .(h) with L¢(h)~h~2 given
N dk /L in Eq. (18). Here we perform the evaluation of the partition
NXg)] n— function (51) based on the RSB\nsatz In this case, we
T consider a spectrum of excited states whose wave functions
xex;{—Ln%szrik(nxAJran)) are given by

Ne—(E0+nh2/(KkBT))L
Wrse(h,Ka Kg :{Xg,o})

X [exp{ — NLY*Ers sind .0, VYA, Ye) 7,
(96) ~*1’Rs({XA,a})\I'RS({xB,a})exp< ikAEC; xA,Q)

Where[ -]y means the average over the effective potential ><exp( iksz Xg a) (101)

V!

. - dy\ 2 The first two factors are due to the original wave function of
[-- ']i:f Dyex —f dY(1/4?\)(d—) ---| (97 the RSB staté62), which consists in two clusters of bound
y states. As we noted in Sec. VA4, it remains as an eigenstate

even under the uniform tilt field since it is assumed that these
clusters have zero overlap. Moreover, this absence of overlap
also allows independent c.m. motions Afand B subsets.

K (Yat+Vs)? 'I_'he latter two factors account for sgch separate c.m. mo-
Erssing T.N,V:Ya,V5) T3 +W(ya) +VYp) tions. The eigenvalues are the following:

andErs.sina T,h,Ya,Yg) Is the effective Hamiltonian,

2
h + h (998
keT /A" kT 7® h h KeT
ERSB(hvavB):ERSB+n;(|kA)+n;(|kB)+n§kA
in terms of the scaled variables
k6T 2 102
+n§ B- ( )

x=LPy, v=-LYy, h=L""h (99

By increasingnL'”?, the partition function will be domi-
nated by the minimum of the effective Hamiltonian The first term is the original ground-state eneBpgg of the
Erssind T.h,V;ya,Ye). Then the following physical inter- unperturbed RSB state given in E(8). The second and
pretation can be made: the end points of the strisgidB  third terms come from the perturbation. The last two terms
are subjected to theame effective quenched random poten-are due to the separate c.m. motions. The partition function
tial which displays the long-ranged correlations in transversé51) is evaluated by integrating out the spectrum of excited
space just as the Sinai model, states as
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dVA)

Zrse(0,0X4 ,Xg) ~€ EO'—J DV exr{ fdxm\( ix fDVBexr{ fdx (dd\iB)

Xexg nVa(Xa) +nVg(Xg) ]jdkA\/ fd ks \/L n—

2kgT 2kB
Xexp —Ln p kA k —Ln— (|kA)+Ln (|k)+|k(nxA+an)

~e[Eot+ (2n)h?/(2xkgT)]L

X [exp{ —NL™Ersp.sind T..Va, Ve YA Ye) 5, 5 (103
|
whereEgrsg.sinal TN, Va, Vs ;¥a,Yg) is the effective Hamil- C. Discussion
tonian, again in terms of the scaled variables, In Sec. V, we conjectured a possible scaling faift) of

the crossover from the weakly perturbed regime at length

scales shorter than the overlap lendth, where the RS

holds, to the strongly perturbed regime where replica-
T symmetry breaking becomes relevant,

2k TyA+VA(yA) TyA 2k TyB

ERS—Sina{TyhaT/A j}B 'Ya.Ys)

InZ%, g+ BfL(2n)=g(2nLY3 L/L,). (105
+VB(YB)+ h Vg . (104 Indeed, the partition function based on the RS and RSB
kgT satzegiven in Eqs.(96) and(103) has the expected form; the
O(n) term which provides the average free energy
It is interesting to compare the last result with the RS ong3fL(2n), plus a function which contains the two scaling
given in Eq.(98). Here the two subsetd andB are now  variablesnL®andh=L*h=[L/L.(h)]*2. In the last equa-
subjected tandependent Hookian springghich try to con-  tion we used the relatioh (h)~h~2 given in Eq.(18).
fine the c.m. of each subset while ttweal c.m. was confined Here we have only discussed the two limitiAgsatzeRS
in the RS case. Moreover, the two replicas are now subjectegihd RSB. The crossover between the two limits remains an
to completely independent Sinai potentidlg and V. The  open problem. Here let us propose a modified Sinai model
effect of the uniform tilt field again amounts to an effective which interpolates the limits. We define an effective Hamil-
transverse forch applied at the end points of replicasand  tonian for the end points’ positions of replicAsand B at a
B, which tries to drive them into opposite directions just as indiven length, which reads as follows:
the replica-symmetric case.

K ~ ~
H=HatHg,  Ha=gp FYAt VYA +hya,

z
1 %
_ K 2 = ~
B HBZHYB‘FV(YB)_ hysg, (106)
+ ~
C where)(x) is aboundedSinai potential with correlations,
% [V(x) = Wy) %= C(|x=y])
= with
+
+ C(u)=y+(1—u)b(u—1). (107
+
» U

Here the correlation grows &S(u)=u for u<1 and satu-

FIG. 1. The lattice (¥ 1)-dimensional DPRM model. This ex- ates,C(u) =1, for larger separations>1. The latter satu-
ample has longitudinal size=12 and transverse siaé=14. The  ration (confined random wa)kallows us to realize statisti-
thick zigzag line is an example of the configuration. The string iscally independent Sinai valleys at large separatidRSB).
directed in the direction of theaxis with transverse displacements Actually, such a saturation of the effective energy landscape
in the direction of theu axis. was observed numerically in the DPRM by kéed[24].
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108
108

10*

By(L)

10%

By(L)/aX(h)

10° | ¢4 0.4
power 1+2/3 T P |
107 ' Copower2 e[l P ]
L 10 107 102 107 10° 10" 10> 10°
L L/L.(h)

FIG. 2. By(L) of uniform tilt field case. The data is shown on the left and its scaling plot is shown on the right. Here the scaling
parameters are.(h)=h"3 andu.(h)=L.(h)¢=%2

In Sec. VII A we analyze the crossover phenomena in destant is set tdg=1 and the unit for the random potential to
tail by a transfer-matrix method. Subsequently, in Sec. VIIB,y/,=1, so that we will often denote the scaled thermal en-
we analyze the phenomena numerically using the modifieérgy simply asT.

Sinai model defined above and compare the result with that First we prepare two real replicas and B identically

obtained in the original DPRM. except for small perturbations, which we will describe in
detail. Depending on the type of the problem, we use either
VII. NUMERICAL ANALYSIS zero temperaturg34] or finite temperature version$8] of

) . ) ) ) the transfer-matrix method to compute correlation functions.
Now we examine numerically in detail the properties of Here and in the followingX denotes the average of a quan-
the anomalous response of the DPRM towards various pefyy x over different realizations of the random potential and
turba_ltlons dlsc_ussed in the preceding sections by transfebo denotes the thermal averageXfor simply the value of
matrix calculations. We focus on the anticipated universaly 4 ground state in the case of zero temperatule have
scaling properties of .the crossover from the weakly 0oy amined various system sizes uplts 10" and have aver-
strongly perturbed.r.eglme across the over_lap length, Wh'd&ged oveN = 10* different realizations of the random po-
has not been clarified in previous numerical studigse, (gntial except for the explicit repulsive coupling case for
howeve_rf,_[24|]l). ” latti del which we used system sizes uplte- 10° andNg=10". The
_Specifically, we consider a lattice model on a tWo-|imitation of the system size used for the latter case is that we
dimensional lattice of siz& XU as shown in Fig. 1. The e (g take into account explicitly the inter-real-replica cou-
string of lengthL is directed along the axis with transverse  jing in the transfer matrix, which requires one to keep track
displacements in the direction of theaxis. The configura- ¢ trajectories of two strings simultaneously and thus much
tion of the string is represented by the positions of the Vert']arger computational effof24].
ces X which the configuration goes through, i.€u(2),2) First, we examine the mean-squared transverse displace-

with z=1,... L. The gradiento(z)=u(z+1)—u(z) IS  ment of the end point due to the perturbation,
constrained to take only the valuesl or —1. Note that

elasticity is realized entropically within this lattice model.
The random potential(u,z) is defined on each vertexi(z)

_ 2
on which it takes a random value drawn from a uniform Ba(L)=(ua(L) —ug(L))" (109
distribution between-V, andV,. The energy of a configu-
ration{u(z)} is given by Here u,(L) and ug(L) stand for the position of the end

points of replica®A andB, respectively. Second, we compute

the exact free energider ground-state energies at zero tem-

L perature of both replicas by the transfer-matrix method and

E[V,u]= E V(u(z),2). (108 examine the correlation of the free energies,
z=1

One end of the configuration is fixed at (0,0) and the
other end is allowed to move freely. On the transverse direc- _
tion we have imposed periodic boundary conditions such that Cr(b)=— > —
V(u+U,z)=V(u,z). The natural unit for the temperature is VAFZ(L) VAFZ(L)
the scaled thermal enerdgT/V,, whereVy is the unit for
the random potential. In the following, the Boltzmann con-whereAF is the deviation from the mean free energy,

AFA(L)AFg(L)

: (110
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FIG. 3. Cg(L) of the uniform tilt field case and its scaling plot with(h)=h"3. The fit is C(L)=1/(1+ A[L/L(h)]2?* ¥3) with
A~2.0.

AFA(L)=FA(L)—FA(L), AFg(L)=Fg(L)—Fg(L). In Fig. 2, the data 0B,(L) and its scaling plot is shown.
(111) For very weak Perturbatlorh;: 0.05, the data grows almost
entirely asL'"?"3 except for a short length transient. On the
contrary, the data corresponding to the strongest perturbation
h=0.4 grows almost entirely ds’, again except for a short
ngth transient. The data for the intermediate rangén of
isplays a crossover between the two. Indeed, the scaling

the tr_a]ectonel_s (.)f Lhe two s”trlngs SImuItagesogJOs(I)y gnd Comblot confirms the expected crossover scaling between the two
putation was limited to smaller system si - SOWe  egimes with no adjustable parameters.

do not display the result in the following. We only note that  “Next let us examine the correlation of the ground-state
the ant|C|.pated scaling40) was checked within the limited energies of the perturbed and unperturbed systems through
system sizes. (110. In Fig. 3, the data of the correlation function and its
scaling plot is shown. The data shows a decorrelation of the
A. Uniform tilt field (free) energy landscape of the two systems as expected. The
) ) . _scaling plot is obtained again without any adjustable param-
First, we examine the case of the perturbation by a unigters. The initial part of the master curve is well fitted by the
form tilt field. For simplicity, the temperature is set to zero, expected form (46) using a=2/3, C. (F)=1/1
T=0. The two replicas have exactly the same random potens+ A[L/L(h)]2(¢~ %)) with A~2.0. Note that the decay is
tial. The difference is that replid@ is subjected to a uniform  faster forL/L(h)>1.
tilt field h, which amounts to a force acting just on its end

We also computed the overlap functiq(L, sU) defined
in Eq. (39 using the method of24]. However it requires
much computational effort because one has to keep track

. B. Modified Sinai model

EA[V.ha=0u,]= V(Ua(2),2), In Sec. VI we proposed a modified Sinai model as an
ALV:Na Al Zl (U(2),2) effective model for the free ends of DPRM under uniform tilt
field. Here we study numerically the properties of ground
L states of the modified Sinai model and the mean-squared
_ _ _ displacement corresponding to EG09 and the correlation
Ee[V,hg=h,Ug] ;1 [V(us(2).2)]~hug(L). (112 function of the ground-state energies corresponding to Eg.
(110. The effective Hamiltonian given in Eq$106) and

We have used th&=0 transfer-matrix method and obtained (107) at @ given length. reads[59,60

the ground states with various perturbation strengths: 1
=0,0.05,0.1,0.2,0.3,0.4 for each realization of the random H=H+Hg, Ha=z—Xxa+W(Xp),
X 2L
potential.
Let us begin with the mean-squared transverse displace- 1
ment of the end point due to perturbatiBg(L) defined in HB=ZX§+ V(Xg) —hxg (113

Eq. (109. B,(L) is expected to grow with increasing sike

asL'*#%758in the weakly perturbed reginisee Eq(33)]  wherel(x) is the modified Sinai potential with correlations,
and ad_? in the strongly perturbed reginieee Eqs(37) and -

(36)]. Here we used the exponent associated with this pertur- V()= W(y))’=u+[u*(L)—u]f(u—u*(L))
bationa=¢=2/3 (see Sec. IV A The crossover between the with

two is expected to take place at the overlap lerigth-h~3
given in Eq.(18). u*(L)=L2%3 (114

066131-17



MARTA SALES AND HAJIME YOSHINO PHYSICAL REVIEW E65 066131

. . . ' ' . 10°

10 - 5 E s 10* L ]
108 - . =, o 10 1
~ o < '
T 42" ISR 1
. $ =g Q107 :
10°F s 8" " T 10° | -
10_2; "o o & 4

10° 100 10* 10® 10* 10° 10° 10% 107 10* 102 10° 10?

L L/L(h)

FIG. 4. B,(L) computed by the modified Sinai model and its scaling plot \itth) = (0.%h) 2. In the scaling plot, the master curve of
DPRM under uniform tilt field plotted v&/L.(h) as in Fig. 3 is also included for comparis@lack points.

First we prepared the Sinai potentigl(x) on a one- and R.,(h)=1.2h"% The numerical prefactors are chosen
dimensional latticeu=1,2, ... R of size R by generating such that the master curve of the modified Sinai model lies
random walks in one-dimensional spacegarding the one- on that of the DPRM problem.
dimensional space coordinate as the “time” coordinate for The correlation function of the fluctuation of ground-state
the random walk We generated theoundedSinai potential energies is computed for variollsandh as
by a one-dimensional random walk confined in a box of size

u*. Each step of the random walk has variance 1. The same AEA(L)AER(L)
random potential is generated for two repligasind B. For Ce(L)=— . : (116
replicaB, we add an extra tilting potentiat hu. Then we VAEZ(L) VAEZ(L)

numerically looked for the ground states of replidgaandB.
We examined various system sizes upRe 10* and used whereAE(L) is the deviation of a ground-state energy from

10* samples for the disorder averages. the mean ground-state energy. In Fig. 5 we show the corre-
The second moment of the distance between the minimur&tion function of the fluctuation of the ground-state energy
is computed for variout andh as as well as its scaling plot using the anticipated scaling vari-
ableL/L.(h). In the plot, we have included the master curve
B,(L)=[uM(L)—uf™(L)]2. (115  of the equivalent DPRM problem shown in Fig. 3.

It can be seen that the agreement between the modified
In Fig. 4, the mean-squared displacement is shown togeth&inai model and the original DPRM under uniform tilt field
with the scaling plot. In the scaling plot, we included theis good. We checked that if the original unbounded Sinai
master curve of the equivalent DPRM problem shown in Figpotential is used, the agreement becomes very bad for large
2. We used the anticipated scaling factaggh) =(0.%h) 3 length scales. Especially, the correlation functi@g(L)

1 u—!—.—g—r—ﬂ!q—rr—gw—.—gﬂ—q—i—.—ﬁr—rm—n—.—.-.—.—w 1 T T T
A ® o -
[ ] o é -

0.8 r e . 0.8 4
~0.6 | Sinai ~=0001 © & e e 1 —~06 F Sinai h=0.001 0O .
.0 am 3 o

. © .
O o4t 0.050 e : . 1 CQoat 0050 @ y
0.075 . 0.075
o]
02 . i 02 r .
0 5 i .......|1 i .......|2 i .......|3 ./‘.......4 O 1 1 1 1 1 a 1
10 10 10 10 10 107107510*10°107210™" 10° 10' 10% 10° 10*
R L/L.(h)

FIG. 5. Cg(L) of Sinai model under uniform tilt field and its scaling plot wi(h)=(0.%h) 2. In the scaling plot, the master curve of
DPRM under uniform tilt field plotted v&/L.(h) as in Fig. 3 is also included for comparis@lack points.
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FIG. 6. B,(L) of the explicit repulsive coupling case and its scaling plot. Here the scaling parametdrs(are e and u(e)

~Lo(e)"%

tends to saturate. These results support the picture that RSB In Fig. 6 the data of the mean-squared distance of the end
is needed to account for the decorrelation of the energy landsoints of the two replicaB,(L) is shown together with its

scape of DPRM under uniform tilt field. scaling plot. From the discussion in Sec. IV D, it is expected
to grow with increasing sizé as L'"1=2 in the weakly
C. Explicit repulsive coupling perturbed regime ant*? in the strongly perturbed regime.

Next we consider the case of explicit repulsive coupling.Here we have used the exponent of the perturbation corre-

The two replicas are at zero temperature, have exactly th@Ponding to the explicit repulsive coupling perturbatien
same random potential, and are coupled by an explicit repul= 1 found in Sec. IV B[which is related to the order of the

sive couplinge, . perturbationp=2 in the replica analysis in Sec. V|AThe
crossover between both regimes is expected to take place at
E[V’V’E’UA'UB]:Zl [V(ua(2),2)+V(us(2),2) the overlap lengti..~ e~ 23 given in Eq.(20). These fea-
tures are well confirmed by the data and the scaling plot.
+ €6u,(2).u50)]- (117 In Fig. 7, the correlation of the energies of the two repli-

Here e>0 is the strength of the perturbation. kégd[24] €S Ea=2;_,V(Ua(2),2) and Eg=3;_;V(us(2),2) is
proposed a transfer-matrix method to deal with such shown together with its scaling plot. The initial part of the
coupled system a>0. Here we used =0 version of the = master curve matches properly with the expected f646)
method and studied the ground states with different repulsivesing =1, C_(F)=1/(1+A[L/L,(h)]?®"¥3) with A

couplingse=0.05,0.07,0.1,0.2,0.3. ~0.35. ForL/L (h)>1 the decay is much faster.
'—.—.‘.-"-—‘E—BW :
1 .'(')20000 - .DD . o
®e = e=0.01
0.8 % o " 1 0.8 0.025
. 0.050
L — i | 0.075
g\;{ i e—ggég E RO ] @m 05 fit for initial part
3 ° °
O 04t 0.075 e T O 04t
02 . 02+
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FIG. 7. Cg(L) of the explicit repulsive coupling case and its scaling plot. Here the scaling parametgfejs= e~ > The fit is
Cr(L)=1/(1+A[L/L (h)]?2~3) with A~2.0.

066131-19



MARTA SALES AND HAJIME YOSHINO PHYSICAL REVIEW E65 066131

10® e 10* — - ' - 7
I - 6=0.1 &
5 4
18" F ) Eﬁ 102 | 0.2 ]
40 i 0.3 1
10° o 10° + 0.4 T
10° F < - : 1
-~ r ao —2
Q 2t S 10 r 0.6 F T
~ 10° ¢ = _y [power 1+1/2 =& 1
Qq ot | N 107 - power4/3 il
[ T ] & L |
0 [ 10
10 [ 06 a ] L
107! E power 1+j{g — 1078 | 1
power 4/3 - P
10-2 e g pegwdl  wop wemd Al pawed  woaa s g 10—10 i ] ] ] ] 1
10° 10! 10 10 10* 10° 107 10* 102 10° 10?
L LIL.()
FIG. 8. B,(L) of the potential perturbation case and its scaling plot withs) = 6~ ¢ andu (8) =L (8)¢=25.
D. Perturbation on temperature, random potential, a uniform distribution betweer 1 and 1. This is the poten-

and random tilt field tial for replicaA. In order to construct the perturbed random
Finally we examine the class of perturbations which in-Potential for replicaB, we draw another independent random

clude temperature shift, potential change, and random tiifumberu(u,z) from the same distribution and define
field. These perturbations are characterized by the exponent
a=1/2 found in Sec. IV Qwhich is related to the order of V' (u,2)= V(u,2)+U(u,2)
the perturbatiorp=2 in the replica analysis in Sec. WA ’ J1+ 62 ’
Our primary interest here is to clarify whether these appar-
ently different perturbations indeed lead to the same univerwhere§ is the strength of the perturbation. We have used the
sal scaling properties as anticipated by the analytical arguF =0 transfer-matrix method and examined the ground states
ments based on the replica-symmetry brealdmgatz for different strengths of the perturbation §

(1) Potential changeThe Hamiltonian is given as =0.1,0.2,0.3,0.4,0.5,0.6,0.8,1.0,1.2.

(2) Random tilt field The Hamiltonian is given by

(119

L
EAlV,ual= 2, V(Ua(2),2), L
et EA[VvuA-hAzo]zzzl V(ua(2),2)Eg[V,ug ,hg]
L
EAlV',ug]= ;1 V' (ug(2),2). (118 L-1

L
;1 [V(ug(2),2)]- 5;1 hg(z)

The temperature is set to zerd=0. First we generate a

random potentiaV/(u,z) with random numbers drawn from X (ug(z+1)—ug(2)). (120
106 S B B AR 104 T T T
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10° | eﬁg 10% 0.1 o .
_ .- - 10° + 03 o 1
10° | 1 9 ~
— i ] 8% 102
~ 2t of N 10 B 0.5 A 7]
—~ 10° B — _, [power 1+1/2 A
Q 100 9 N 107 | powerd/3 - # T
100 : 0.4 _: m 10_7 B 7
0.5 4 B
107! power 1+1/2 — 107 T
43 Y .
10—2 i sl s v POWCII' / T 10—10 A , 1 R ] , 1 . 1
10° 10! 107 10° 10* 10 107 10* 102 10° 107
L L/L.(0)

FIG. 9. B,(L) of the random tilt field perturbation case and its scaling plot withs) = (0.875) ~® andug(8) =L (8)?".
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FIG. 10. B,(L) of the temperature-shift perturbation case and its scaling plot Wit T) = (0.435T) ~® andu.(ST)=LZ3sT).

The temperature is set to zefb=0. The two replicas have 1. Transverse jumps
the same random potenti&l(u,z). The difference is that

. ; . o . Let us first examine the mean-squared transverse dis-
replicaB is subjected to a random tilt fielog(z), which for a

hz tak diff t rand lue that is d f placement of the end poil,(L) due to this class of pertur-
cachz lakes a difierent random value tnat 1s drawn Wom &, ¢ By substitutinge=1/2 in Eq. (33) we see that

uniform distribution between-1 and 1. We have used the . L . )
- . : B,(L) is expected to grow with increasing siZe as
T=0 transfer-matrix method to examine the ground state?_l+(1,2):3,2 in the weakly perturbed regime. In the strongly

with different random tilt intensities5=0.1,0.2,0.3,0.4,0.5 . : : :
perturbed regime, it should grow a4, as discussed in Sec.

for each realization of the random potential. Sha . .
(3) Temperature shiftin the case of temperature pertur- |V P2, which is slightly slower than the growth in the

bation, the Hamiltonian oA and B replicas are exactly the weakly perturbed regime. The difference between exponents

same, is of only 1/6. The crossover between both regimes is ex-
pected to take place at the overlap length-L,6° as in
L L Egs. (23), (31), and (36) with & being the strength of the
Ee[V,ual= 2, V(UA(2),2), EelViUgl= 2, V(Ug(2).D-  perturbation.
- - (121) In Figs. 8—10 the data foB,(L) corresponding to the

three perturbations are shown together with their scaling
We have used the finite temperature version of the transfeplots. In the scaling plots we have chosen an adequate nu-
matrix method. The temperature of replidais set toT,  merical prefactoc in L¢(8)=(c5) ° in order that the mas-
=0.1. The temperature of replicB is varied asTg=T,  ter curves corresponding to the three perturbations lie on the
+6T  with different  temperature shifts 6T  same curve. The resultant master curves become indistin-

=0.1,0.2,0.3,0.4,0.5,0.6,1.2. guishable: the expected crossover behavior between weak
| oy T e 5 oo 1
© © 00, " iy T
° ...N OOo Hgy
08 1 » ... . ."(fi) ° °oo.- i 08
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FIG. 11. Cg(L) of the potential perturbation case and its scaling plot with withs) = (5) ~©.
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FIG. 12. Cx(L) of the random tilt field perturbation case and its scaling plot withs) = (0.875) .

and strong perturbation regimes is indeed saenefor the  sults that strongly support the picture anticipated by the phe-
three kinds of apparently different looking perturbations.  nomenological scaling arguments. As we increase the length
scaleL at which observations are made, there is a crossover
2. Decorrelation of fluctuations of free energies and from the weakly perturbed regime dominated by rare events
ground-state energies (i.e., jumps between neighboring free-energy vallgys
In Figs. 11-13, the correlation of the the ground-state<L(9), to the strongly perturbed regime where these events
energies or free energies of the perturbed and unperturbdiecome typicall. >L (). This means that perturbations be-
systems are shown together with their scaling plots. In th€ome strong at large length scaled () —o such that the
scaling plots we have used the same numerical prefagtor ~ configuration can easily jump from one valley to another,
L.(8)=(cd) © used in the scaling plot oB,(L). As one i.€., it becomes chaotic in the sense that the visited landscape
can see, the master curves for the three perturbatioris totally different from that before.
merge. The initial part of the master curve fits nicely into  In replica space we proposed a definition of chaos, Eg.
the expected form(46) using a=1/2, C_(F)=1/(1 (5), in terms of the global partition functiorA(+ B) rather
+A[L/L¢(h)]12¢13) with A~1.5. One can see that the de- than the correlation function itself. There is chaos if in the
cay is faster fol./L,(h)>1. To sum up, the expected cross- adequate limits the partition function factorizes, so that we
over behavior from the weakly perturbed regime and théhave two noninteracting systems. The decorrelation of sys-
strongly perturbed regime is indeed the same for the thretemsA andB when introducing a perturbation can be under-

kinds of apparently different perturbations. stood as a concrete example of explicit replica-symmetry
breaking as proposed by Parisi and Viraspt6]. Concern-
VIIl. CONCLUSION ing the mapping to the Sinai model, it means that the free-

energy landscape of the perturbed DPRM cannot be de-

In this work we have studied the sensitivity of the glassyscribed anymore by a single Sinai potential. Instead, RSB

phase of DPRM against various types of thermal and nonrequires the coexistence of statistically independent Sinai po-
thermal perturbations. We have obtained very coherent reentials.

! ¥ e 1 i
o ¥ Y v X% : EEZO@ZD : o:,.):;
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~ 06 VVVVVVV ]
':3; 8r=02 = " %
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FIG. 13. CL(L) of the temperature-shift perturbation case and its scaling plot itéT) = (0.435T) ©.
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The key point in our DPRM case is the fact that the RSrejuvenation(chao$ effect in random ferromagnetic systems.
bound state of the quantum problem is marginally stable withA candidate to account for the mechanism of the phenomena
respect to RSB as noticed by Par[€i6]. Infinitesimally —may be the temperature chaos of pinned domain walls of
weak perturbationsA<1 induce small replica-symmetry ferromagnets, which is directly related to the present study.
breaking terms and induce a symmetry breaking transition Another surprise revealed by the temperature-cycling ex-
from a RS to a RSB state, which takes place in thePeriments is that initial aging is resumed when the tempera-
n/n* (A)—0 limit for any small but nonzero strength of the ture is cycled back to the initial temperature, giying rise to
perturbation. It turns out that we can read off the overlapn® So-called memory effect. It appears contradictory to the
lengthL.(8) from n* (A). Within the replica space, the per- temperature-chaqs effect at first s_|ght_. Recently a coarsening
turbations are naturally classified according to their order offodel under cycling of target equilibrium states was studied
perturbationp and the symmetries which are left conserved. .64l There, a hiddemlynamical memory by ghost domains
For each class we have numerically verified that, indeedV@S found and a scenario was proposed to explain the in-

there are universal scaling functions of correlation functiond"9Uing coexistence of the rejuvenation and memory effect.
in terms of L/L.(5) describing the crossover from the I_n the present context of plnne_d elastlc_ manifold, rejuvena-
weakly to strongly perturbed regimes. It is notable that thelon gnd memory can be easily explalljed by considering
decay of the free-energy fluctuati@(L) is very slow in all Fourier components of the te.mporal configuration. When the
the cases we studied. It will not be surprising that one cann t{emperature is shifted, Fourier components at Wavglengths
have an impression of chaos by only making observatiora‘sarger than the overlap length will be subjected to rejuvena-

within some limited length scales lon. At time t after the temperature shift, Fourier compo-
In mean-field models, RSB is always associated with thd'ents at wavelengths shor.ter thaft) W.'" be adopted to the
existence of many pure statg$5], which is not the case in new temperature. Helle(t) is a dynamical length scale over

DPRM in a strict sense. In the DPRM, the mapping to quan—WhiCh the system can be equilibrated within a given time
tum mechanics is always possible for an arbitrarily IargeHowever, Fourier components of an even larger wavelength

number of dimensions of the transverse spacially de- [>L(t)] remain the same as before the temperature shift.
noted asN, beingN=1 in our casgin which the ground Thus,dynamical memoregxists at the coarse-grained level of

state must contain the bosonic symmetry of the Sdinger L(tl)q' llina that relaxational d o ¢ v slow i
operator[61]. In this sense, RSB has to heeakin the | eca lntg a ge axa |onaf thynaclimlcg IS ex refrrlﬁysci\./v Irt] d
DPRM problem[24,46], i.e., it is a latent feature that only 9'aSSY Systéms because ot the dominance of the activate

manifests itself under certain circumstances. In the preserﬁ)(rocesses, one has to serlously consider how a large time

(1+1)-dimensional model the existence ofhaden RSB scale is needed to go beyon(_:i the overlap .Iength. If iE; is too
excited state with a vanishingly small gap with respect to théf(;%e’ evehn expSrllg_egtal time scal?%/pmallf)r/_ .(1?1 N d
RS ground state in the—0 limit is extremely important. )70, Where 7, sed may not be sufficient an

Roughly speaking, the situation is not very far from havingon.e must look for other mechamsr{ﬁﬁ—ﬂ_ to explain the_
many pure states. In a really stable RS ph@seh as ferro- rejuvenation phenomena observed experimentally. Previous

; ; .. numerical studies of the relaxational dynamics of the present
magnetic phasegs this phenomena cannot happen. It is . ; ; L
tempting to speculate that some lessons obtained in thgPRM mode| 68] imply that the needed time lies within the

present (1 1)-dimensional DPRM case may turn out to be time window of experiments and numerical simulations for
more general some realistic parameters. More work in this direction would

In the present paper, temperature chaos is confirmec&z.ertalnly be interesting.
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