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A B S T R A C T

Estimating the Shannon entropy of a discrete distribution from which we have only observed a small sample is
challenging. Estimating other information-theoretic metrics, such as the Kullback–Leibler divergence between
two sparsely sampled discrete distributions, is even harder. Here, we propose a fast, semi-analytical estimator
for sparsely sampled distributions. Its derivation is grounded in probabilistic considerations and uses a
hierarchical Bayesian approach to extract as much information as possible from the few observations available.
Our approach provides estimates of the Shannon entropy with precision at least comparable to the benchmarks
we consider, and most often higher; it does so across diverse distributions with very different properties. Our
method can also be used to obtain accurate estimates of other information-theoretic metrics, including the
notoriously challenging Kullback–Leibler divergence. Here, again, our approach has less bias, overall, than the
benchmark estimators we consider.
1. Introduction

Information theory is gaining momentum as a methodological frame-
work to study complex systems. In network science, information theory
provides rigorous tools to predict unobserved links [1] and to in-
fer community structure [2]. In neuroscience, Shannon entropy of
spike train distributions characterizes brain activity from neural re-
sponses [3], while mutual information identifies correlations between
brain stimuli and responses [4]. Recently, the Kullback–Leibler diver-
gence [5] and its regularized version, the Jensen–Shannon distance,
have also been successfully used in a wide variety of contexts: in
neuroscience, to reconstruct structural connectivity from neuronal ac-
tivity [6]; in cognitive science as a measure of ‘‘surprise’’, to quantify
and predict how human attention is oriented between changing screen
images [7]; in quantitative social science, in combination with topic
models, to track the propagation of political and social discourses [8,9]
or to understand the emergence of social disruption from the analysis
of judicial decisions [10]; and in machine learning, at the intersection
between the statistical physics of diffusive processes, probabilistic
models and deep neural networks [11].

Information theoretical metrics are measured on distributions. In
practice, a distribution 𝝆 over the possible states of a system, as well as
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(R. Guimerà).
1 Given an estimator ̃ for the quantity  , its bias is defined as E[̃ ] −  , where E[⋅] denotes the expected value.

functions  (𝝆) of this distribution (such as Shannon entropy or other
metrics), have to be inferred from experimental observations. However,
this inference process is difficult for many real complex systems since
we have no information about the underlying generative process of
our data and, due to experimental limitations, the observations are
often sparse [12], and statistical estimates of the distribution 𝝆 and
its functions can be severely biased.1 Here, we focus on the particular
yet important case of discrete (or categorical) distributions 𝜌𝑖, 𝑖 =
1,… , 𝐾, where 𝐾 is the number of possible states (or categories), which
is known and fixed. Inferences about 𝝆 and any function must be
based on 𝑛𝑖, the number of observations in the 𝑖th state (with 𝑁 =
∑

𝑖 𝑛𝑖 the sample size). We assume that samplings from the underlying
distribution are independent and identically distributed (but see, for
example, Ref. [13]). In the undersampled regime we are interested in,
𝑁 ≲ 𝐾. The challenge is thus, from the sparse observations {𝑛𝑖}, to
infer the probability 𝜌𝑖 of each category 𝑖 and estimate metrics  (𝝆).

A theoretically well-founded approach to tackle this problem is
provided by the principles of conditional probability, encapsulated
in Bayes’ theorem [14]. The probabilistic framework is in general
preferable because of its transparency; it requires that all assumptions
of the underlying generative model for the data are made explicit,
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expressed via the choice of a likelihood function and a prior distribution
that reflects the knowledge about the system before observing any data.
In probabilistic reasoning, the combination of observations and prior
distribution provides an updated (posterior) probability distribution of
the quantity under study. Other estimation strategies make implicit
assumptions and often provide only point estimates, as opposed to full
distributions.

A class of expressive generative models for categorical distributions
amenable to a Bayesian framework is the well-studied family of Dirich-
let distributions. A specific infinite mixture of those prior was exploited
by Nemenmann, Shafee, and Bialek (henceforth NSB), in their seminal
work Ref. [15], to propose a very precise estimator of the Shannon
entropy that works for a wide variety of distributions, even in the sparse
sampling regime 𝑁 ≲ 𝐾.

An unbiased estimator for Shannon entropy does not exist [16];
owever, NSB can be considered the state-of-the-art (among the
ayesian methods but also when compared to non-Bayesian ap-
roaches) for estimating entropy in the above-mentioned context [17].
evertheless, it is not simple to implement from scratch, and it does
ot provide estimates for the distribution 𝝆, and in particular for the
on-observed 𝜌𝑖. For this reason, its applicability is limited to estimat-
ng the Shannon entropy and related information theoretic quantities
ike mutual information and Jensen–Shannon distance, which can be
xpressed in terms of the former. By contrast, as we discuss below, it
annot be used to estimate the Kullback–Leibler divergence.

To cover this gap, Hausser and Strimmer (henceforth HS) derived
James–Stein-type shrinkage estimator for 𝝆 [17], which has the ad-

antage of being analytical and applicable to any information-theoretic
etric, but at the price of making implicit ad hoc assumptions, of being
ore biased than NSB for the Shannon entropy, and of lacking error

stimation. Besides NSB and HS, other methods have been proposed
ver the years to estimate information-theoretic metrics. Here, we limit
urselves to a comparison with these two methods because: (i) they are
idely used; and (ii) previous benchmarking has shown that they are

ypically less biased than other approaches [17].
Here, we propose an alternative semi-analytical estimator that ap-

lies to generic discrete distributions and is simple to implement, and
verall less biased than to NSB and HS for the diverse distributions we
est. Its derivation is grounded in probabilistic considerations, without
ny ad hoc assumptions. We consider Dirichlet generative models and
se a hierarchical Bayesian approach to extract as much information
s possible from the few observations at hand. In the case of Shannon
ntropy, we can estimate the expected value and higher order moments
ith precision at least indistinguishable from the NSB estimator, and
ften better. Additionally, because our method provides estimates of
he probability distribution, it can be used to obtain estimates of the
ullback–Leibler divergence. In this case, our approach also performs
qually or better than the HS estimator.

. Background

Let us consider a system with 𝐾 possible output states whose obser-
ations follow an unknown discrete distribution 𝝆 = {𝜌𝑖; 𝑖 = 1,… , 𝐾}

with ∑

𝑖 𝜌𝑖 = 1. The vector 𝐧 = {𝑛𝑖; 𝑖 = 1,… , 𝐾} represents the number
f times each state was observed in a set of ∑

𝑖 𝑛𝑖 = 𝑁 independent
bservations of the system. We also consider a function  (𝝆) of 𝝆, such

as, for example, the Shannon entropy

𝑆(𝝆) = −
𝐾
∑

𝑖=1
𝜌𝑖 log 𝜌𝑖, (1)

which we want to estimate from the set of observations. As noted
above, here we assume that 𝐾 is fixed and known, and that the samples
from the distribution are independent and identically distributed.

The posterior distribution over the values of the function  given
the observed counts 𝐧 is

𝑝 ( |𝐧) = 𝑑𝝆 𝛿 ( −  (𝝆)) 𝑝(𝝆|𝐧), (2)
2

∫ h
where 𝑝(𝝆|𝐧) is the posterior of the distribution 𝝆 given the counts 𝐧. We
further assume that the prior over distributions depends on a parameter
𝛽, which becomes a hyperparameter of our generative model. Then,
using the laws of conditional probability, we can write the posterior
𝑝(𝝆|𝐧, 𝛽) as

𝑝(𝝆|𝐧, 𝛽) = 𝑝(𝐧|𝝆, 𝛽) 𝑝(𝝆|𝛽)
𝑝(𝐧|𝛽)

, (3)

where 𝑝(𝐧|𝝆, 𝛽) is the likelihood, 𝑝(𝝆|𝛽) is the prior over distributions,
and 𝑝(𝐧|𝛽) = ∫ 𝑑𝝆 𝑝(𝐧|𝝆) 𝑝(𝝆|𝛽) is the evidence and acts as normalization
actor. The likelihood is the probability of the empirical observations

given 𝝆; for independent multinomial samples, the probability of
bserving an event of type 𝑖 is 𝜌𝑖, and the full likelihood is the
roduct 𝑝(𝐧|𝝆, 𝛽) = 𝑁!

∏𝐾
𝑖 𝜌

𝑛𝑖
𝑖 ∕𝑛𝑖! and, given 𝝆, it is independent of

he hyperparameter 𝛽. The prior 𝑝(𝝆|𝛽) expresses the probability of
ach distribution 𝝆 prior to observing any data, and plays a crucial
ole in the discussion below. Symmetric Dirichlet distributions are
onvenient priors because they are a generative model for a broad class
f discrete distributions. Additionally, they have been widely used in
his setting [18]; they are parametrized as follows

(𝝆|𝛽) = 1
B𝐾 (𝛽)

𝐾
∏

𝑖=1
𝜌𝛽−1𝑖 , B𝐾 (𝛽) =

𝛤 (𝛽)𝐾

𝛤 (𝛽𝐾)
, (4)

where 𝛤 is the gamma function, while the hyperparameter 𝛽 is a real,
positive number known as the concentration parameter (see Fig. 1, first
row, for examples of categorical distributions sampled from symmetric
Dirichlet priors).

Besides being very expressive, Dirichlet priors are conjugate distri-
butions of categorical likelihoods, meaning that the posterior is still a
Dirichlet distribution, a property that often makes the inference via
Eqs. (2) and (3) analytically tractable. For example, when  (𝝆) = 𝝆,
Dirichlet priors lead to expected posterior probabilities ⟨𝜌𝑖⟩ given by
the widely-used generalized Laplace’s formula

⟨𝜌𝑖⟩ =
𝑛𝑖 + 𝛽
𝑁 +𝐾𝛽

. (5)

Note that by taking the limit 𝛽 → 0 (which is equivalent to assuming
that the vast majority of observations fall in the same category), we
recover the maximum likelihood (or frequency) estimator 𝜌ML

𝑖 = 𝑛𝑖∕𝑁 .
By contrast, for 𝛽 > 0, Laplace’s formula assigns non-zero probability
to non-observed states, a desirable property when estimating Kullback–
Leibler divergences for sparse observations, as it will become evident
later. This result also illustrates how non-Bayesian approaches to infer-
ence make implicit and non-trivial assumptions; in this case, assuming
𝛽 → 0 amounts to assuming that infinitely concentrated distributions 𝝆
are a priori much more plausible than more homogeneous ones.

Going back to the estimation of  from the observations 𝐧, and
given Eq. (5), one may be tempted to directly plug the value of ⟨𝜌𝑖⟩
in the explicit expression of  (𝝆) to get a point estimate. However, this
is just an approximation; the exact procedure consists in finding and
using the whole posterior 𝑝( |𝐧). Specifically, the expected value of this
posterior ⟨⟩ = ∫ 𝑑  𝑝( |𝐧) minimizes the mean-squared error [19],
nd its mode is a consistent estimator, meaning that it converges to the
rue value of  (𝝆) when the number of observations increases, regard-
ess of the prior and, in particular, regardless of the hyperparameter
. Wolpert and Wolf in Refs. [19,20] provided analytical formulas for
ll the moments of 𝑝( |𝐧) when  is the Shannon entropy considering
irichlet priors (we report the formula for the mean in Eq. (17) and for

he second moment in Appendix E).
However, even considering the whole posterior 𝑝( |𝐧), an unbiased

stimation of  is not guaranteed for small samples. This is often the
ase for Dirichlet priors, especially when the parameter 𝛽 is unknown.
everal options for assigning a value of 𝛽 have been proposed in
iterature, each one suitable to some specific case but deficient in others
for a discussion, refer to Refs. [15,17]). In [15], NSB suggested that,
hen samples are scarce, any attempt to find a single universal 𝛽 is

opeless, the fundamental reason being that categorical distributions
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generated by a Dirichlet have a Shannon entropy that is narrowly
determined by, and monotonically dependent on, 𝛽. In other words,
for small samples, the posterior distribution (2) is dominated by the
prior. To overcome this problem, Refs. [15,21] proposed, as the prior
𝑝NSB(𝝆), an infinite mixture of Dirichlet priors

𝑝NSB(𝝆) ∝ ∫ 𝑑𝛽 𝑝NSB(𝛽) 𝑝(𝝆|𝛽), (6)

where the weights 𝑝NSB(𝛽) were set so as to obtain a flat prior over
entropies 𝑆, and have the functional form

𝑝NSB(𝛽) ∝
𝑑 E[𝑆|𝑛𝑖 = 0, 𝛽]

𝑑𝛽
= 𝐾𝜓1(𝐾𝛽 + 1) − 𝜓1(𝛽 + 1), (7)

where E[𝑆|𝐧, 𝛽] is the expected entropy given the observations 𝐧, and
then E[𝑆|𝑛𝑖 = 0, 𝛽] is the expected entropy of the distributions 𝝆
generated from a symmetric Dirichlet priors (that is if there are no
observations), with fixed 𝛽 and 𝐾, and 𝜓𝑚(𝑥) =

(

𝑑
𝑑𝑥

)𝑚+1
log𝛤 (𝑥) are the

olygamma functions. The NSB prior leads to very accurate estimates
f the Shannon entropy. Even if best suited for situations in which the
umber of states 𝐾 is known and fixed, it is quite versatile and has
een later extended for countable infinite number of states [22] and
urther optimized for binary states [23] and long tail distributions [22].
ther estimators, for example the Chao-Shen estimator [24], perform
t most as well as the NSB (or its derivatives), but never better (see [17]
or a comprehensive review). Additionally, given an estimator of 𝑆,

number of other quantities can be indirectly estimated. For exam-
le, the mutual information 𝑀 between two distributions 𝝆 and 𝝈 is
(𝝆;𝝈) = 𝑆(𝝆) +𝑆(𝝈) −𝑆(𝝅), where 𝝅 is the joint distribution of 𝝆 and
[25]. Similar relations can be derived for Jensen–Shannon distance

nd other information-theoretic quantities [26].2
However, consider the estimation of the Kullback–Leibler diver-

ence (𝐷KL) between two distributions 𝝆 and 𝝈 with the same
imension 𝐾

KL(𝝆∥𝝈) =
𝐾
∑

𝑖=1
𝜌𝑖 log

𝜌𝑖
𝜎𝑖
. (8)

To estimate 𝐷KL from samples 𝐧 = {𝑛𝑖; 𝑖 = 1,… , 𝐾} from 𝝆, and
= {𝑚𝑖; 𝑖 = 1,… , 𝐾} from 𝝈, one cannot use the NSB approach. First,
KL is not a combination of the Shannon entropies of the two un-
erlying distributions 𝝆 and 𝝈. Second, 𝐷KL is unbounded, and any
ttempt to find a hyperprior in the spirit of Eq. (7) results in im-
roper hyperpriors. Finally, with the NSB prior one renounces to any
stimation of 𝛽 and, therefore, to a good a point estimation of 𝐷KL
y means of Laplace’s formula. In fact, lacking a way to directly
stimate 𝐷KL, we stress that a good estimation of the two involved
robability distributions is necessary, and such estimation must also
ssign non-zero probabilities to non-observed states, to avoid potential
ingularities arising from the presence of 𝝈 in the denominator of
q. (8). Our method, which we present in the next section addresses
his issue by using Bayesian reasoning to correctly estimate 𝛽 from
bservations.

Hausser and Strimmer proposed and alternative effective and
idely used estimator [17]. Specifically, they extended the James–Stein

hrinkage estimator [28] to the case of discrete probability distribu-
ions. In short, the method consists in finding the target probabilities 𝜌𝑖
y using a convex combination of the estimates for 𝜌𝑖 from two extreme
odels (the uniform and maximum likelihood estimators) as follows:
HS
𝑖 = 𝜆 1

𝐾
+ (1 − 𝜆)𝜌ML

𝑖 , 𝜆 ∈ [0, 1]. (9)

2 As observed in Refs. [25,27], mutual information can be expressed in
erms of different combinations of the Shannon entropy of the two distribu-
ions. But its estimations in general differ. The expression 𝑀(𝜌; 𝜎) = 𝑆(𝜌) +
(𝜎) − 𝑆(𝜋) seems to be the less biased, however, in the absence of a unique
onsistent prior over the joint distribution, it is not guaranteed to minimize
3

he mean-squared error.
he maximum likelihood estimator 𝜌ML
𝑖 plays the role of a high-

imensional model that tends to overfit the observations, with a high
ariance and small bias. By contrast, the uniform distribution 1

𝐾 assigns
equal probability to all states, and corresponds to a low-dimensional
model with low variance and high bias. 𝜆 is the shrinkage intensity,
whose optimum value 𝜆⋆ balances the two extremes and, after a series
of assumptions and simplifications [29] can be calculated as

𝜆⋆ =
1 −

∑𝐾
𝑖=1(𝜌

ML
𝑖 )2

(𝑁 − 1)
∑𝐾
𝑖=1(

1
𝐾 − 𝜌ML

𝑖 )2
. (10)

Note that the maximum likelihood and the uniform distribution corre-
spond to the two extreme choices of Dirichlet priors with 𝛽 → 0 and
𝛽 → ∞, respectively. The main advantage of the HS estimator lies in
its analytical form and in its versatility, since it provides good results
for different kinds of experimental data. However, this is at the price
of making implicit ad hoc assumptions, of being less precise than NSB
for the Shannon entropy, and of lacking error estimation.

3. Hierarchical Bayes point estimate for 𝜷

Here, we propose a new approach that addresses these limitations
of the NSB and the HS estimators. We posit that the success of the NSB
approach stems, not from mixing infinitely many values of the concen-
tration parameter 𝛽, but rather from the flexibility to accommodate for
any particular value of 𝛽. Indeed, we surmise that, in general, only a
narrow interval of 𝛽 values are compatible with a given observation 𝐧
and therefore contribute to the mixture, whereas most others do not
contribute. Motivated by this, we propose an approach that aims to
directly estimate the value of 𝛽 that most contributes to the posterior
given the data 𝐧.

First, we observe that the posterior 𝑝(𝝆|𝐧) can be written as

𝑝(𝝆|𝐧) = ∫ 𝑑𝛽 𝑝(𝝆|𝐧, 𝛽) 𝑝(𝛽|𝐧)

= ∫ 𝑑𝛽
𝑝(𝐧|𝝆) 𝑝(𝝆|𝛽)

𝑝(𝐧|𝛽)
𝑝(𝛽|𝐧),

(11)

here we have applied Bayes’ rule, and the fact that, as mentioned
bove, 𝐧 conditioned on 𝝆 is independent of 𝛽, that is, 𝑝(𝐧|𝝆, 𝛽) = 𝑝(𝐧|𝜌).

Then, we assume that the conditional distribution 𝑝(𝛽|𝐧) is very
eaked around a given value 𝛽⋆, so that the posterior 𝑝(𝝆|𝐧) can be

approximated as

𝑝(𝝆|𝐧) ≈ 𝑝(𝐧|𝝆) 𝑝(𝝆|𝛽⋆)
𝑝(𝐧|𝛽⋆)

. (12)

This approximation, sometimes referred to as empirical Bayes, is a point
estimate for the fully hierarchical probabilistic model given by 𝑝(𝐧|𝝆)
and 𝑝(𝝆|𝛽). Eq. (12) is identical to Eq. (3), with the difference that the
concentration parameter is now the most likely value of 𝛽 given the
observed counts 𝐧, that is,

𝛽⋆ = argmax
𝛽

𝑝(𝛽|𝐧) = argmax
𝛽

𝑝(𝐧|𝛽) 𝑝(𝛽)
𝑝(𝐧)

, (13)

where 𝑝(𝐧|𝛽) = ∫ 𝑑𝝆 𝑝(𝐧|𝛽,𝝆)𝑝(𝝆|𝛽). For Dirichlet priors as in Eq. (4),
∗ satisfies
𝐾
∑

𝑖=1

𝑛𝑖−1
∑

𝑚=0

1
𝑚 + 𝛽⋆

−
𝑁−1
∑

𝑚=0

𝐾
𝑚 +𝐾𝛽⋆

+ 1
𝑝(𝛽⋆)

𝑑 𝑝(𝛽)
𝑑 𝛽

|

|

|𝛽⋆
= 0, (14)

hich is the key analytical result of this paper (see Appendix A for
complete derivation of the equation and for an argument for the

niqueness of 𝛽⋆).
The hyperprior 𝑝(𝛽) reflects our prior knowledge about the shape of

he distribution of the hyperparameter. To be completely agnostic in
his regard, we can use a uniform hyperprior

U(𝛽) =
1 = const., 𝛥𝛽 = 𝛽max − 𝛽min, (15)

𝛥𝛽
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Fig. 1. Examples of synthetically-generated distributions used to test the estimators. First row: three categorical distributions sampled from symmetric Dirichlet with (a) 𝛽 = 0.01,
b) 𝛽 = 1,(c) 𝛽 = 10. Second row: (d) categorical distribution sampled from a uniform Dirichlet with 𝛽 = 1, but where half bins are set to zero; (d) fast decaying (‘‘rough’’)
istribution; (e) long tail Zipf’s (power law) distribution with exponent 𝑎 = 1.001.
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ith cut-offs 0 < 𝛽min < 𝛽max < ∞. In this case, the derivative term in
q. (14) disappears. The NSB hyperprior (7) is a valid alternative; in
his case, the last term in Eq. (14) is (see Appendix A for details)

1
𝑝NSB(𝛽∗)

𝑑 𝑝NSB(𝛽)
𝑑 𝛽

|

|

|

|𝛽∗
=
𝐾2𝜓2(𝑘𝛽⋆ + 1) − 𝜓2(𝛽⋆ + 1)
𝐾𝜓1(𝑘𝛽⋆ + 1) − 𝜓1(𝛽⋆ + 1)

. (16)

Despite the complex appearance of Eq. (14), 𝛽∗ is not hard to obtain
numerically,3 giving a computational improvement with respect to the
NSB estimator, whose algorithm has a higher computational cost. For
a discussion about some algorithm details see Appendix B.

4. Results

We validate our method in a variety of scenarios and compare the
results with the main alternative available estimators: the NSB [15,21]
and the HS [17] for entropy, the HS and the Laplace’s estimator (5) with
𝛽 = 1 for 𝐷KL. Our validation includes both synthetically generated dis-
tributions and empirical data. Indeed, for the Shannon entropy, many
other estimators have been proposed so far: by Miller-Madow [30],
Schürman and Grassberger [31], and Grassberger [32], to name a few.
However, these have been already carefully compared among them
and against HS and SBN in Ref. [17], and showed lower performances.
Finally, the Chao-Shen [24] and Valiant [33] estimators are designed
for the cases where 𝐾 is unknown, while for fixed 𝐾 they do not provide
better results than NSB (see Refs. [33,34] for a comparison).

4.1. Synthetic distributions

In our synthetic experiments, we generate target distributions and
sample multinomial counts {𝑛𝑖} from those distributions. We fix 𝐾 =
1000 and generate samples of increasing size 𝑁 = 20,… , 10000. After
alculating 𝛽⋆ from (14), we estimate the Shannon entropy 𝑆 and
he Kullback–Leibler divergence 𝐷KL. For each case, we repeat this
rocedure 1000 times, generating a new distribution 𝝆 each time. We
lways report averages over these repetitions and, in the case of the

3 The source code for the Python implementations can be accessed via
itHub at https://github.com/angelopiga/info-metric-estimation/ and is per-
anently archived on Zenodo: https://zenodo.org/records/10592747 (DOI
0.5281/zenodo.10592747).
4

t

entropy, compare the averaged estimation with the average over the
ground truth values (labeled �̂�true in figures).4

As synthetic target distributions we consider both distributions that
are typical in the Dirichlet prior (that is, they are generated by a sym-
metric Dirichlet prior; we use several values of concentration parameter
𝛽 = 0.01, 1, 10; see first row in Fig. 1) and distributions that are atypical
in the Dirichlet prior (that is, they have a negligible probability of
being generated from a symmetric Dirichlet prior; second row in Fig. 1).
Among the latter, we consider: (i) distributions with added structural
zeroes: we sample from a symmetric Dirichlet prior with a given 𝛽, but
half of the categories are then forced to have zero probability5; (ii) a
distribution with fast-decaying probabilities, 𝜌𝑖 ∝ 50 − 4(log 𝑖)2;6 (iii) a
power-law (Zipf’s) distribution: characterized by ranked probabilities
𝜌𝑖 ∝ 𝑖−𝑎, and a very slow decay with an exponent 𝑎 ≳ 1 (long tail
distribution; power laws serve as an approximate model in a plethora
of contexts, in biological as well as social systems [35]).

To estimate the posterior 𝑝(𝑆|𝐧) of the Shannon entropy we use
the exact formulas of its moments (derived in Refs. [19,20] and later
refined in Ref. [22]) with the estimated values of 𝛽⋆. The first moment
is given by

E[𝑆|𝐧, 𝛽⋆] = ∫ 𝑑𝝆 𝑆(𝝆|𝛽⋆) 𝑝(𝝆|𝐧)

= 𝜓0(𝑁 +𝐾𝛽⋆ + 1)

−
𝐾
∑

𝑖=1

𝑛𝑖 + 𝛽⋆

𝑁 +𝐾𝛽⋆
𝜓0(𝑛𝑖 + 𝛽⋆ + 1).

(17)

n Appendix E, we also show the expression of the standard deviation.
In practice, given a dataset 𝐧 we calculate the most probable 𝛽⋆f

rom Eq. (14) by assuming a flat hyperprior, Eq. (15). Then, we
ompute the required moments of the Shannon entropy, indicated as
(𝛽⋆f ).

In Figs. 2, we show that our estimator is the most accurate estimator
verall. In particular, 𝑆(𝛽⋆f ) is consistently more accurate than the

4 Averaging on multiple runs is preferable in order to highlight the scal-
ng behaviors of the estimators while mitigating the effects of outliers (for
xample, very singular distributions or samples).

5 This scenario corresponds to an experiment in which some states are not
bservable. Therefore, we are testing the robusteness of the method where 𝐾
s unknown.

6 In Refs. [15,21] a rigorous definition of atypicality is provided, related to

he decaying rate of the probabilities 𝜌𝑖 with respect to the rank.

https://github.com/angelopiga/info-metric-estimation/
https://zenodo.org/records/10592747
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Fig. 2. Shannon entropy estimation for synthetic distributions ((a) to (f)) as in Fig. 1. Each point corresponds to an average over 1000 samples. Main plots: relative errors of
entropies 𝛥𝑆rel = (𝑆est − �̂�true)∕�̂�true, where 𝑆est is the estimated entropy with different methods and �̂�true is the average of the true entropies of the 1000 synthetically generated
distributions, both measured in nats and divided by log(𝐾) (so the maximum entropy is 1). Black squares: our estimator with 𝛽⋆ from a flat hyperprior. Pink upper triangle: NSB
estimator. Red crosses: Hausser-Strimmer estimator. Insets: roots mean-squared errors (note the logarithmic scale in both axes). The value of �̂�true in the titles serves as a reference
and indicates the average over the entropies of the runs. Standard-errors bars of the main plots are smaller then symbols and are not shown. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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NSB estimator, except in the deep sparse regime 𝑁 < 30 of one of
the distributions atypical in the Dirichlet prior (the case with added
structural zeroes), where it is comparable but slightly less accurate.
The Bayesian estimators also behave better than the HS estimator 𝑆HS
except for very uniform distributions sampled from the Dirichlet prior
with 𝛽 = 10. Overall, the 𝑆(𝛽⋆f ) has little bias even in the very sparse
regime and for distributions atypical in the Dirichlet prior.7

We also analyze the variability of the Shannon entropy estimates,
as measured by the root mean squared error

√

E[(𝑆 − 𝑆true)2] (insets in
Figs. 2). This analysis reveals that, besides having less bias, the 𝑆(𝛽⋆f )
estimator has a variability that is typically comparable to or smaller
than the other estimators.8

Regarding the Kullback–Leibler divergence 𝐷KL, there are no exact
formulas for the moments of the posterior distribution 𝑝(𝐷KL|𝐧). There-
fore, we have to rely on a point estimate of the mean by first estimating
the distributions via Laplace’s formula Eq. (5) with the inferred 𝛽⋆, and
hen plugging these values into Ew. (8). The flat hyperprior in Eq. (15)
s the only reasonable one to estimate 𝛽⋆ in this case, since the NSB
rior can only be justified for the Shannon entropy.

We compare the results with Laplace’s estimator Eq. (5) with 𝛽 = 1
and with the HS estimator, since both have the same desirable property
of assigning non-null probabilities to unobserved states (𝑛𝑖 = 0) and
are suitable estimators for computing 𝐷KL. Indeed, 𝛽 = 1 in Laplace’s
formula is a common choice and amounts to assigning the same prob-
ability to all possible distributions. We test the estimators in a scenario
typical in machine learning and variational inference, in which one
wants to minimize the 𝐷KL between a complex, target distribution and
some model approximation. Here, after generating a synthetic discrete
distribution 𝝆, we measure the 𝐷KL(𝝆; �̂�), where �̂� is the distribution

7 Using our method but with 𝛽⋆ calculated from the NSB hyperprior
(Eq. (14) and (16)) is generally worse than that with the flat hyperprior and
it is discussed in Appendix C.

8 It is worth noting that, unlike Bayesian estimators, for which all the
moments can be estimated also from a single sample, the HS estimator is
5

limited to a point estimate of the mean value of Shannon entropy. n
estimated from counts; hence a good estimator should make 𝐷KL as
small as possible.

In Fig. 3, we show that our estimator and the HS estimator provide
similar results, although 𝐷KL(𝛽⋆f ) is more accurate in the very sparse
regime 𝑁 < 50, and when the target distributions are atypical in the
Dirichlet priors, especially in the important case of power-law distribu-
tions. The estimator based on Laplace’s formula with 𝛽 = 1 performs
generally worse, unless in the case when the target distribution itself
was also generated just from a Dirichlet with 𝛽 = 1. Importantly, in this
case, where 𝛽 = 1 is optimal, our approach provides virtually identical
esults.

In Appendix D, the results are shown for simulations performed on
he same synthetic distributions, but maintaining fixed the sample size

and increasing 𝐾. Also in these cases, our estimator outperforms the
thers.

.2. Empirical networks

To assess our estimator on real data, we examine the degree dis-
ributions of empirical complex networks [38]. In complex network
heory, a node’s degree represents its number of links (edges), and
he degree distribution describes the probabilities 𝜌𝑖 of each degree
. This distribution offers some insights into the network structural
roperties. For example, power laws or mixtures of power laws (with
istinct exponents for different ranks), sometimes truncated [39], are
ommonly observed. Particularly the entropy of the degree distribution
s a preliminary measure of the complexity of the network [40].

We consider two empirical networks. The first is the network of
itations between US patents from 1975 to 1999 [36], consisting of
, 774, 768 nodes (patents) and 16, 522, 438 edges (citations). The sec-
nd is the brain functional connectome [37], comprising 1, 827, 242
odes (functional regions of the brain) and 143, 158, 339 edges (con-

nections between regions).9 Fig. 4 shows the degree counts and the

9 Both datasets are accessible at: Tiago P. Peixoto, ‘‘The Netzschleuder
etwork catalogue and repository’’, https://networks.skewed.de/ (2020).

https://networks.skewed.de/
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Fig. 3. Kullback–Leibler estimation for synthetic distributions ((a) to (f)) as in Fig. 1. Each point corresponds to an average over 1000 samples. Here, 𝐷𝐾𝐿 is taken between a given
istribution and a second one estimated from a sampling of the former: the target value of 𝐷𝐾𝐿 is, therefore, 𝐷true

𝐾𝐿 = 0 and the analysis of the RMSE results unnecessary, since
t equals the averaged value of 𝐷𝐾𝐿. Black squares: our estimator, that is Laplace’s formula with 𝛽⋆f estimated from a flat hyperprior. Red crosses: Hausser-Strimmer estimator.
urple circles: Laplace’s estimator for uniform prior 𝛽 = 1. Standard-errors bars are often smaller then symbols and are not visible. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
Fig. 4. Empirical networks’ degree distributions. First row: US patents citation network from 1975 to 1999 [36] (3.774.768 vertices and 16.522.438 edges). Second row: brain
unctional connectome [37] (1.827.242 vertices and 143.158.339 edges). In both cases, for entropy as well as Kullback–Liebler divergence, each point corresponds to an average
ver 1000 samples of 𝑁 nodes from the original network; the vector 𝐧 of their degrees is used to estimate the target quantity (the Shannon entropy or Kullback–Leibler divergence)
ee also main text. (a), (d): the histograms of nodes’ degrees. (b), (e): Shannon entropy. Black squares: our estimator, (17) with 𝛽⋆f estimated from a flat hyperprior. Red crosses:

Hausser-Strimmer estimator. Pink upper triangle: NSB estimator. Green circles: maximum likelihood estimator. (c), (d): Kullbak–Leibler divergence. Black squares: our estimator, that
is Laplace’s formula with 𝛽⋆f estimated from a flat hyperprior. Red crosses: Hausser-Strimmer estimator. Purple circles: Laplace’s estimator for uniform prior 𝛽 = 1. Standard-errors
bars are often smaller then symbols and are not visible. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(

results for the estimation of the Shannon entropy and Kullback–Leibler
divergence.

Note that, as we have been discussing, typically only degree counts
are available from empirical networks, and the true probability distri-
bution and its metrics remain unknown. Therefore, strictly speaking,
there is no ‘‘ground truth’’ in this case. In the absence of such ground
truth, as a reference target entropy we use the entropies of probability
distributions inferred using the Laplace formula Eq. (5) with 𝛽 = 1
denoted as 𝑆𝛽=1ref ) or with 𝛽 = 0 (the frequentist estimation 𝑆ML

ref ,
orresponding to the direct normalization of the histogram). When
hese two estimates are close, we assume that they are reasonable
‘ground truths’’.

Our experiment for entropy involves the following steps: (i) ran-
omly sampling a subset of 𝑁 nodes from the original networks (for
S patents, 𝑁 ranges from 10 to 105; for human brain connectome,

ranges from 100 to 3 × 105); (ii) measuring the degree of each
6

e

node and constructing a new histogram that represents the vector 𝐧
of observations; (iii) estimating the entropy from that histogram.

For the Kullback–Leibler divergence, a further step is necessary after
step (ii) and before calculating 𝐷𝐾𝐿. In fact, since 𝐷𝐾𝐿 is defined
between two probability distributions (and not between a probability
distribution and a set of counts), we first need to define a probability
distribution from the original histogram of the degrees, which plays the
role of ground truth. Since there is no unambiguous way to do that, for
the sake of coherence, for each estimator we infer both distributions
using the same estimator under inquiry. That is, in the case of our
estimator, we first calculate (step (iii-A)) 𝛽⋆f from the original histogram
to obtain 𝝆(𝛽⋆f ) from Laplace’s formula and hence (step (iii-B)) we do
the same for the sample, obtaining 𝛽⋆,𝑁f and 𝝆(𝛽⋆,𝑁f ). Finally (step
iii-C)), we can calculate 𝐷𝐾𝐿(𝝆(𝛽

⋆,𝑁
f );𝝆(𝛽⋆f )). Analogously, for HS

stimator both distributions are estimated applying Eq. (9) and (10).
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Our estimator performs similar to the NSB estimator and outper-
forms the HS and ML estimators for Shannon entropy. Regarding the
Kullback–Leibler divergence, our estimator shows comparable perfor-
mance to HS for the US patent network and surpasses HS for the
human brain connectome, where the number of bins is larger. These
results confirm the findings presented for synthetic networks above and
in Appendix D, Fig. D.6, where we compare the different estimators for
synthetic distributions with increasing 𝐾.

5. Conclusions

We have addressed the question of how to estimate categorical
distributions and their information-theoretical metrics, such as the
Shannon entropy or the Kullback–Leibler divergence, when only a
small number of observations are available. The estimation problem
in the sparse sampling regime is, theoretically and experimentally,
unavoidable in complex systems [12]. Its rigorous study is then
necessary, given the broad use of information-theoretical metrics in
physics—especially Shannon entropy and related quantities such as
the mutual information—and in data science and machine learning—
Kullback–Leibler divergence is at the core of approaches as successful
as variational autoencoders or diffusion models, to name just a couple
of very prominent examples.

Very few estimators for Kullback–Leibler divergence have been pro-
posed in the literature; they are more abundant for Shannon entropy.
However, in both cases they suffer from limitations. First, most existing
methods work well for specific contexts but fail in others, because
of implicit ad hoc assumptions in their derivations. Second, with few
exceptions, their application requires numerical algorithms that are
difficult to implement from scratch. Third, they often only provide
a point-wise estimation, without any estimation of the error. Finding
methods that alleviate these drawbacks is crucial for putting analysis
methods on solid grounds. Probabilistic approaches are particularly
well suited for this purpose [14].

In such a framework, the NSB estimator is still perhaps the most
widely used and often the most accurate [15], and has been of in-
spiration for many subsequent works extending the original method.
Crucial in NSB (and in Bayesian analysis, in general) is the choice of
the prior distribution, which explicitly expresses expectations about the
generation of the data. The NSB prior is a clever mixture of Dirichlet
distributions, which were broadly used well before NSB, as they are
expressive generative models for discrete distributions; but they gave
inconsistent estimations of the Shannon entropy. As pointed out by
NSB, the explanation is to be sought in the properties of Dirichlet
priors—they are defined by a set of hyperparameters 𝛽 and, as NSB
observed, when samples are scarce, the choice of 𝛽 narrowly determines
the estimation of the entropy. Since a prior-dependent inference is not
useful, and in light of the difficulties in determining a priori the correct
alues of 𝛽, NSB circumvented the problem by integrating over all
ossible values of 𝛽, which ultimately results in the aforementioned
ixture of priors. The impressive results of NSB at estimating Shannon

ntropy come with the shortcomings of not being able to estimate the
robability distribution 𝝆 itself, which might be necessary for other
pplications such as estimating the Kullback–Leibler divergence.

In this paper, we show that, whereas mixtures of priors are neces-
ary to accommodate for any possible value of the hyperparameter 𝛽,
n practice, considering a single value 𝛽⋆ leads to excellent estimation.
s we have shown, this value of the hyperparameter can be found
irectly, given few observations. Far from being a mere technical point,
nowing the hyperparameter 𝛽⋆ allows the full specification of the
enerative model and the estimation of the probability distribution.
mportantly, our results still follow from a purely Bayesian framework;
ore precisely, from a hierarchical probabilistic model, where Bayes’

ule is first applied at the higher level for the estimation of the prior
arameters. This way, the overall simplicity of the assumptions and

⋆

7

ransparency of the derivation are preserved. The value of 𝛽 is finally G
provided by a closed formula (Eq. (14)), which is easy to implement
and depends only on the vector of observations.

Additionally, as shown by simulations over a variety of distribu-
tions, both synthetic and from real-world empirical data, our estimators
provide results at least as accurate as, and most times more accurate
than, the widely used NSB and HS estimators for Shannon entropy and
Kullback–Leibler divergence.

Further study is still necessary to take into account priors other than
the symmetric Dirichlet. Although Dirichlet priors are perhaps the most
general generative models in the case of discrete distributions, we have
observed that certain distributions, particularly in the regime of sparse
sampling, are more challenging to estimate compared to ‘‘typical’’ ones
under these priors. This is the case of distributions with long tails
such as power laws. In specific scenarios where reliable theoretical
models of the studied system exist, along with indications regarding
the shape of the distributions, specific priors can be hypothesized, as
in Refs. [22,24].

Some aspects that may deserve further study include the trade-off
between bias and variance in the estimation of information-theoretic
metrics, as recently discussed in Ref. [41]. Although a systematic
comparison with their method would be illuminating, their estimator (a
generalization of Ref. [32]) requires a parameter whose value is not de-
termined without knowing the distribution. Further efforts should also
be devoted to relaxing the hypothesis of having a fixed number 𝐾 of
categories, as studied in [24,27,33], or for systems with memory [13],
where samples are not independent. Regarding the Kullback–Leibler
divergence, further experiments must be conducted to test the estimator
over samples from two different distributions, and efforts should be
devoted to designing estimators that go beyond the point estimation.
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Appendix A. Derivation of results (Eq. (14) in main text)

Let us suppose that we have 𝐾 different categories (or types of
andom events) and that we observe 𝑁 independent random events
istributed in the 𝐾 categories 𝐧 = {𝑛𝑖; 𝑖 = 1,… , 𝐾}, with ∑

𝑖 𝑛𝑖 =
𝑁 . We also assume that the probabilities of observing counts in each
category 𝜌𝑖 are distributed according to a Dirichlet prior with the same
hyper-parameters 𝛽 for all 𝝆 = {𝜌𝑖; 𝑖 = 1,… , 𝐾}, so that

𝑝(𝝆|𝛽) = 1
𝐵𝐾 (𝛽)

𝐾
∏

𝑖=1
𝜌𝛽−1𝑖 , 𝐵𝐾 (𝛽) =

𝛤 (𝛽)𝐾

𝛤 (𝛽𝐾)
. (A.1)

Our goal is to compute the most likely value of 𝛽 given the ob-
served counts {𝑛𝑖}. To that end, we need to compute the conditional
probability 𝑝(𝛽|𝐧). We can do this by marginalizing over the possible
combinations of 𝝆 = {𝜌𝑖} as follows:

𝑝(𝛽|𝐧) = 𝑝(𝛽)
𝑝(𝐧)

𝑝(𝐧|𝛽), 𝑝(𝐧|𝛽) = ∫ 𝑑𝝆 𝑝(𝐧|𝛽,𝝆)𝑝(𝝆|𝛽). (A.2)

Since the probability of observing an event in category 𝑖 is 𝜌𝑖, the
probability of observing 𝑛𝑖 events of type 𝑖 is 𝜌𝑛𝑖𝑖 . Therefore, for the
integral in Eq. (A.2) we have that

𝑝(𝐧|𝛽,𝝆) = 𝑁!
𝐾
∏

𝑖=1

𝜌𝑛𝑖𝑖
𝑛𝑖
, (A.3)

so that

𝑝(𝐧|𝛽) = 1
𝐵𝐾 (𝛽) ∫

𝑑𝝆
𝐾
∏

𝑖=1
𝜌𝑛𝑖+𝛽−1𝑖 , (A.4)

where we have used Eq. (A.1) for 𝑝(𝝆|𝛽) and the integral is over the
simplex that satisfies the condition ∑

𝑖 𝜌𝑖 = 1.
To perform the integrals above we first evaluate the normalization

condition for 𝜌𝑘 = 1 − 𝑅𝐾−1 with 𝑅𝐾−1 =
∑𝐾−1
𝑖=1 𝜌𝑖 so that for 𝜌𝑘−1 we

ave the following integral:

𝐾−1 = ∫

1−𝑅𝐾−2

0
𝑑𝜌𝐾−1 𝜌

𝑛𝐾−1+𝛽−1
𝐾−1

(

1 − 𝜌𝑘−1 − 𝑅𝐾−2
)𝑛𝐾+𝛽−1 . (A.5)

To evaluate this integral we use the fact that

∫

(1−𝑅)

0
𝑑𝑥 𝑥𝑎(1 − 𝑥 − 𝑅)𝑏

=
𝛤 (𝑎 + 1)𝛤 (𝑏 + 1)
𝛤 (𝑎 + 𝑏 + 2)

(1 − 𝑅)𝑎+𝑏+1 if Re(𝑅) < 1 and Im(𝑅) = 0

(A.6)

so that

𝐼𝐾−1 =
𝛤 (𝑛𝐾−1 + 𝛽)𝛤 (𝑛𝐾 + 𝛽)
𝛤 (𝑛𝑘 + 𝑛𝐾−1 + 2𝛽)

(1 − 𝑅𝐾−2)𝑛𝐾+𝑛𝐾−1+2𝛽−1 (A.7)

Which gives for 𝜌𝐾−2 the following integral:

𝐼𝐾−2 = ∫

1−𝑅𝐾−3

0
𝑑𝜌𝐾−2 𝜌

𝑛𝐾−2+𝛽−1
𝐾−2

(

1 − 𝜌𝐾−2 − 𝑅𝐾−3
)𝑛𝐾+𝑁𝐾−1+2𝛽−1 (A.8)

=
𝛤 (𝑛𝐾−2 + 𝛽)𝛤 (𝑛𝐾 + 𝑛𝐾−1 + 2𝛽)
𝛤 (𝑛𝑘 + 𝑛𝐾−1 + 𝑛𝑘−2 + 3𝛽)

(1 − 𝑅𝐾−3)𝑛𝐾+𝑛𝐾−1+𝑛𝐾−2+3𝛽−1(A.9)

hich have evaluated using Eq. (A.6). If we do this for all 𝝆 we end up
aving

𝑑𝝆
𝐾
∏

𝑖=1
𝜌𝑛𝑖+𝛽−1𝑖 =

𝐾
∏

𝑖=1
𝐼𝑖 =

∏𝐾
𝑖=1 𝛤 (𝑛𝑖 + 𝛽)
𝛤 (𝑁 +𝐾𝛽)

. (A.10)

Thus, we obtain the following expression for 𝑝(𝐧|𝛽)

𝑝(𝐧|𝛽) = 1
𝐵𝐾 (𝛽)

∏𝐾
𝑖=1 𝛤 (𝑛𝑖 + 𝛽)
𝛤 (𝑁 +𝐾𝛽)

=
𝛤 (𝐾𝛽)
𝛤 (𝛽)𝐾

∏𝐾
𝑖=1 𝛤 (𝑛𝑖 + 𝛽)
𝛤 (𝑁 +𝐾𝛽)

(A.11)

Our goal is to find 𝛽⋆ that maximizes 𝑝(𝛽|𝐧) = 𝑝(𝛽)
𝑝(𝐧) 𝑝(𝐧|𝛽). To that end

we take the derivative of log 𝑝(𝛽|𝐧),

log 𝑝(𝛽|𝐧) = log𝛤 (𝐾𝛽) −𝐾 log𝛤 (𝛽) +
𝐾
∑

log𝛤 (𝑛𝑖 + 𝛽)
8

𝑖=1
− log𝛤 (𝑁 +𝐾𝛽) + log 𝑝(𝛽) − log 𝑝(𝐧) (A.12)

so that 𝛽⋆ is the one that satisfies the condition:
𝑑 log 𝑝(𝛽|𝐧)

𝑑𝛽
|

|

|

|𝛽=𝛽⋆
= 0. (A.13)

To evaluate this equation we use the following definitions and
properties of the log Gamma function:

1.
( 𝑑
𝑑𝑥

)𝑚+1
log𝛤 (𝑥) = 𝜓𝑚(𝑥) (A.14)

2. 𝜓0(𝑥 + 𝑛) =
𝑛−1
∑

𝑚=0

1
𝑥 + 𝑚

+ 𝜓0(𝑥). (A.15)

sing the expressions above we obtain that:

𝑑 log 𝑝(𝛽|𝐧)
𝑑𝛽

= 𝐾𝜓0(𝐾𝛽) −𝐾𝜓0(𝛽) +
𝐾
∑

𝑖=1
𝜓0(𝑛𝑖 + 𝛽)

− 𝐾𝜓0(𝑁 +𝐾𝛽) (A.16)

=
𝐾
∑

𝑖=1

𝑛𝑖−1
∑

𝑚=0

1
𝑚 + 𝛽

−
𝑁−1
∑

𝑚=0

𝐾
𝑚 +𝐾𝛽

+ 1
𝑝(𝛽)

𝑑 𝑝(𝛽)
𝑑 𝛽

. (A.17)

herefore the condition that gives 𝛽⋆ is

𝐾
∑

𝑖=1

𝑛𝑖−1
∑

𝑚=0

1
𝑚 + 𝛽⋆

−
𝑁−1
∑

𝑚=0

𝐾
𝑚 +𝐾𝛽⋆

+ 1
𝑝(𝛽⋆)

𝑑 𝑝(𝛽)
𝑑 𝛽

|

|

|𝛽=𝛽⋆
= 0, (A.18)

hat is, the Eq. (14) in main text. For uniform hyperprior 𝑝U(𝛽) = const.
the derivative term 1

𝑝(𝛽)
𝑑 𝑝(𝛽)
𝑑 𝛽 disappears. If instead we consider a prior

for 𝛽 that results in a close-to-uniform distribution of Shannon entropy
such as in Nemenman et al. [15,21] then

𝑝NSB(𝛽) =
𝑑𝑆
𝑑𝛽

, (A.19)

ith 𝑆 = E[𝑆|𝑛𝑖 = 0, 𝛽] = 𝜓0(𝐾𝛽 +1)−𝜓0(𝛽 +1), the average entropy of
the distributions generated from a Dirichlet prior 𝑝(𝝆|𝛽). Note that this
prior is already normalized since ∫ ∞

0 𝑑𝑆∕𝑑𝛽𝑑𝛽 = 𝑆(∞;𝐾)−𝑆(0;𝐾) = 1.
The derivative of the logarithm of this prior with respect to 𝛽 is then

𝑑 log 𝑝NSB(𝛽)
𝑑𝛽

= 1
𝑝NSB(𝛽)

𝑑𝑝NSB(𝛽)
𝑑𝛽

= 1
𝑑𝑆
𝑑𝛽

𝑑2𝑆
𝑑𝛽2

=
𝐾2𝜓2(𝑘𝛽 + 1) − 𝜓2(𝛽 + 1)
𝐾𝜓1(𝑘𝛽 + 1) − 𝜓1(𝛽 + 1)

.

(A.20)

The condition of the 𝛽⋆ that maximizes 𝑝(𝛽|𝑛) is in this case:
𝑑 log 𝑝(𝛽|𝐧)

𝑑𝛽
= 𝐾𝜓0(𝐾𝛽) −𝐾𝜓0(𝛽) +

∑

𝑖
𝜓0(𝑛𝑖 + 𝛽)

− 𝐾𝜓0(𝑁 +𝐾𝛽) + 1
𝑑𝑆
𝑑𝛽

𝑑2𝑆
𝑑𝛽2

=

=
𝐾
∑

𝑖=1

𝑛𝑖−1
∑

𝑚=0

1
𝑚 + 𝛽⋆

−
𝑁−1
∑

𝑚=0

𝐾
𝑚 +𝐾𝛽⋆

+
𝐾2𝜓2(𝑘𝛽⋆ + 1) − 𝜓2(𝛽⋆ + 1)
𝐾𝜓1(𝑘𝛽⋆ + 1) − 𝜓1(𝛽⋆ + 1)

= 0.

If the solution 𝛽⋆ exists, it is unique. Consider Eq. (A.18) (Eq. (14)
n the manuscript) for flat hyperpriors, which indicates that the values
f 𝛽 that maximize (or minimize) 𝑝(𝛽|𝐧) satisfy 𝐴(𝛽) − 𝐵(𝛽) = 0, with

(𝛽) =
𝐾
∑

𝑖=1

𝑛𝑖−1
∑

𝑚=0

1
𝑚 + 𝛽

, 𝐵(𝛽) =
𝑁−1
∑

𝑚=0

𝐾
𝑚 +𝐾𝛽

. (A.21)

Both functions are non-negative, and decrease monotonically with 𝛽
ecause their derivatives are always negative

𝑑𝐴 = −
𝐾
∑

𝑛𝑖−1
∑ 1

2
, 𝑑𝐵 = −

𝑁−1
∑ 𝐾2

2
. (A.22)
𝑑𝛽 𝑖=1 𝑚=0 (𝑚 + 𝛽) 𝑑𝛽 𝑚=0 (𝑚 +𝐾𝛽)
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Table B.1
Estimated 𝛽⋆ values for Dirichlet distributions with 𝐾 = 1000, and 𝛽 = 0.01 (left) and 𝛽 = 1 (right). For each sample size 𝑁 , we show: (1) the mean ̃

⟨𝛽⋆⟩ of all the 𝛽⋆ when
he algorithm succeeds (a minimum is found), along with the frequency (over 1000 repetitions) with which the algorithm converges to either of the cutoffs (%𝛽min ,%𝛽max); (2)
he median Median(𝛽⋆) of all 𝛽⋆s (including cases in which the algorithm converges to a cutoff value); and (3) the mean ⟨𝛽⋆⟩ including the extreme cutoffs. Cutoffs are set as:
min = 10−7, 𝛽max = 107.
N Dirichlet 𝛽 = 0.01 Dirichlet 𝛽 = 1

̃
⟨𝛽⋆⟩, (%𝛽min ,%𝛽max) Median(𝛽⋆) ⟨𝛽⋆⟩ ̃

⟨𝛽⋆⟩, (%𝛽min ,%𝛽max) Median(𝛽⋆) ⟨𝛽⋆⟩

30 0.010893 (0, 0) 0.009772 0.010893 0.552242 (0, 41.9) 0.735217 4190000.320853
40 0.010433 (0, 0) 0.009564 0.010433 1.734115 (0, 22.8) 3.425872 2280001.338737
60 0.010222 (0, 0) 0.010264 0.010222 2.268786 (0, 14.8) 1.342625 1480001.933006
100 0.010239 (0, 0) 0.009902 0.010239 5.868553 (0, 4.1) 1.075898 410 005.627942
300 0.009896 (0, 0) 0.009884 0.009896 1.068576 (0, 0) 0.996870 1.068576
1000 0.009952 (0, 0) 0.009839 0.009952 1.011258 (0, 0) 1.003212 1.011258
3000 0.009987 (0, 0) 0.009983 0.009987 1.002399 (0, 0) 0.998208 1.002399
10000 0.009982 (0, 0) 0.009935 0.009982 1.002354 (0, 0) 1.000571 1.002354
e
h
t
t
t
t
i
i
f
𝛽
a
w
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𝛽
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Additionally, the second derivatives are again non-negative

𝑑2𝐴
𝑑𝛽2

=
𝐾
∑

𝑖=1

𝑛𝑖−1
∑

𝑚=0

2
(𝑚 + 𝛽)3

, 𝑑2𝐵
𝑑𝛽2

=
𝑁−1
∑

𝑚=0

2𝐾3

(𝑚 +𝐾𝛽)3
. (A.23)

Therefore, 𝐴(𝛽) and 𝐵(𝛽) are both convex, monotonically decreasing
unctions, which means that they can only cross at one finite value
f 𝛽, namely 𝛽⋆. It follows that 𝑝(𝛽|𝐧) is unimodal. This argument is

confirmed by numerical simulations.

Appendix B. Algorithm details

The zeros of Eq. (14) can be easily found with a Newton algorithm.10

In general, both for the flat and the NSB hyperprior, the two extremes,
𝛽min and 𝛽max, of the interval where 𝛽 is searched must be defined,
and can be made arbitrarily small and large, respectively. Importantly,
they serve as regularizers when the sample is sparse and it is not
possible to find the zero of the target function because of lack of
convergence. Even though, as proved in Appendix A, a solution always
exists and is unique and, in practice, in sparse cases, the optimal 𝛽⋆
may be arbitrarily large (𝛽⋆ → ∞) or small (𝛽⋆ → 0), depending
on whether the original distribution was generated by large or small
𝛽, respectively. In particular, we found that if Newton algorithm does
not converge (i.e., in our implementation, the algorithm gets stuck in
the extreme 𝛽max), therefore one must choose 𝛽⋆! = 𝛽min (respectively
𝛽max) whenever the final value of the function is negative (respectively,
positive).

In Table B.1, we summarize the estimated 𝛽⋆ for two paradigmatic
cases in Fig. 2 of the main text, namely when the original distributions
are Dirichlet with 𝛽 = 0.01 and 𝛽 = 1, respectively, and 𝛽min = 10−7,
max = 107. For different sample sizes 𝑁 , we show: (1) the mean ̃

⟨𝛽⋆⟩
f all the 𝛽⋆ when the algorithm succeeds (a minimum is found), along
ith the frequency (over 1000 repetitions) with which the algorithm

onverges to one of the two extreme cutoffs (%𝛽min,%𝛽max); (2) the
edian Median(𝛽⋆) of all 𝛽⋆s (including cases in which the algorithm

onverges to a cutoff value); and (3) the mean ⟨𝛽⋆⟩ including the
xtreme cutoffs. The table shows that the algorithm is robust and 𝛽⋆

pproaches the true value as 𝑁 increases. Furthermore, in the Dirichlet
ase for 𝛽 = 0.01 the algorithm always converges (at least for that
articular set of 1000 distributions).

It is worth noting that when the algorithm converges to a cutoff it
s typically because the true value of 𝛽 is fully undetectable. In the case
f large 𝛽 (distributions close to uniform), this happens because each
bserved sample of the distribution falls in a different bin regardless of
he precise value of 𝛽. Conversely, in the case of small 𝛽 (most of the
eight in a single bin), this happens because all observed samples of the

10 The source code for the Python implementations can be accessed via
itHub at https://github.com/angelopiga/info-metric-estimation/ and is per-
anently archived on Zenodo: https://zenodo.org/records/10592747 (DOI
0.5281/zenodo.10592747).
9

distribution fall within a single bin, again independently of the precise
𝛽. Importantly, however, in either of these cases the entropy is still
well approximated because, as shown in [15], high and low generative
𝛽 values always lead to high (close to 1) and low (close to 0) values of
the entropy, regardless of the precise 𝛽.

Appendix C. NSB hyperprior for 𝜷

In Fig. C.5, we consider the alternative NSB hyperprior (Eq. (7)),
extracting 𝛽⋆NSB from Eq. (16) and we compare the results, for entropy
stimation, with the NSB method and with our method with the flat
yperprior. The data as the same as in Fig. 2 in the main text. Contrary
o what one may expect, 𝑆NSB differs from our estimate 𝑆(𝛽⋆NSB) in that
he latter generally underestimates entropy for small samples (unless in
he case of faster decaying distribution, where it behaves slightly better
han all other estimators). This happens because the NSB hyperprior (7)
s a monotonically-decreasing distribution that assigns higher probabil-
ties to smaller 𝛽’s, while the Shannon entropy of distributions sampled
rom a symmetric Dirichlet is a monotonically-increasing function of
. However, it is not the same estimating 𝛽⋆ with the NSB hyperprior
nd then plugging it in (17) or directly estimating the Shannon entropy
ith the NSB prior (6); the latter in fact provides better results.

ppendix D. Results for increasing number of categories

In the main text, experiments on synthetic distributions were con-
ucted with a fixed value of 𝐾 = 1000. A pertinent question is to
ssess the efficiency of the estimator(s) for higher values of 𝐾, while
eeping the sample size 𝑁 constant. Figs. D.6 and D.7 illustrate the
caling of the entropy and Kullback–Leibler divergence estimators,
espectively, for 𝐾 = 100,… , 300 000 and 𝑁 = 1000, for the same

synthetic distributions as in Fig. 1.
In terms of entropy estimation, our estimator performs similarly

to NSB in all cases, except for typical distributions with 𝛽 = 1 and
= 10, where it outperforms NSB by diverging from the target values

t larger values of 𝐾. However, the HS estimator consistently performs
he worst.

Regarding Kullback–Leibler divergence, our estimator and the HS
stimator yield similar results in all cases, except for long- and short-tail
istributions, where our estimator performs better.

ppendix E. Analytical moments of the Shannon entropy posterior

In the specific case of 𝑆(𝝆), instead of solving 𝑝 ( |𝐧) =
𝑑𝝆 𝛿 ( −  (𝝆)) 𝑝(𝝆|𝐧) (Eq. (2) in main text) directly, it is possible to

btain closed-form expression for all the moments of the posterior [19,
0,22]. Here we report the first two, the mean

[𝑆|𝐧, 𝛽] = ∫ 𝑑𝝆 𝑆(𝝆|𝛽) 𝑝(𝝆|𝐧) = 𝜓0(𝑁 +𝐾𝛽 + 1)

−
𝐾
∑ 𝑛𝑖 + 𝛽 𝜓0(𝑛𝑖 + 𝛽 + 1),

(E.1)
𝑖=1 𝑁 +𝐾𝛽

https://github.com/angelopiga/info-metric-estimation/
https://zenodo.org/records/10592747
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Fig. C.5. Comparison of Shannon entropy estimation with our method but different hyperpriors for 𝛽. Same data from synthetic distributions ((a) to (f)) as in Figs. 1 and 2. Each
point corresponds to an average over 1000 samples. Main plots: relative errors of entropies 𝛥𝑆rel = (𝑆est − �̂�true)∕�̂�true, where 𝑆est is the estimated entropy with different methods and
�̂�true is the average of the true entropies of the 1000 synthetically generated distributions, measured in nats and divided by log(𝐾) (so the maximum entropy is 1). Black squares:
our estimator with 𝛽⋆ from a flat hyperprior. Cyan pluses: our estimator but with 𝛽⋆ from NSB hyperprior. Insets: roots mean-squared errors (note the logarithmic scale in both
axes). The value of �̂�true in the titles serves as a reference and indicates the average over the entropies of the runs. Standard-errors bars of the main plots are smaller then symbols
and are not shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. D.6. Estimation of Shannon entropy for different system sizes, 𝐾 = 100,… , 300 000, and fixed sample size 𝑁 = 1000, for the synthetic distributions ((a) to (f)) as in Fig. 1. Each
point corresponds to an average over 1000 samples. Main plots: relative errors of entropies 𝛥𝑆rel = (𝑆est − �̂�true)∕�̂�true, where 𝑆est is the estimated entropy with different methods and
�̂�true is the average of the true entropies over all 1000 target distributions, measured in nats and divided by log(𝐾) (so the maximum entropy is 1). Black squares: our estimator
with 𝛽⋆ from a flat hyperprior. Cyan pluses: our estimator but with 𝛽⋆ from NSB hyperprior. Pink upper triangle: NSB estimator. Red crosses: Hausser-Strimmer estimator. The
value of 𝑆true in the titles serves as a reference and indicates the average over the entropies of the runs. Standard-errors bars of the main plots are smaller than symbols and are
not shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. D.7. Estimation of Kullback–Leibler divergence for different system sizes, 𝐾 = 100,… , 300 000, and fixed sample size 𝑁 = 1000, for synthetic distributions ((a) to (f)) as in
Fig. 1. Each point corresponds to an average over 1000 samples. Here, 𝐷𝐾𝐿 is taken between a given distribution and a second one estimated from a sampling of the former:
he target value of 𝐷𝐾𝐿 is, therefore, 𝐷true

𝐾𝐿 = 0. Black squares: our estimator, that is Laplace’s formula with 𝛽⋆f estimated from a flat hyperprior. Red crosses: Hausser-Strimmer
stimator. Purple circles: Laplace’s estimator for a uniform prior with 𝛽 = 1. Standard-errors bars are often smaller then symbols and are not visible. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
nd the second moment

[𝑆2
|𝐧, 𝛽] = ∫ 𝑑𝝆 𝑆(𝝆|𝛽)2 𝑝(𝝆|𝐧)

=
𝐾
∑

𝑖≠𝑗

(𝑛𝑖 + 𝛽) (𝑛𝑗 + 𝛽)
(𝑁 +𝐾𝛽 + 1) (𝑁 +𝐾𝛽)

𝐼𝑖,𝑗

+
𝐾
∑

𝑖=1

(𝑛𝑖 + 𝛽 + 1) (𝑛𝑖 + 𝛽)
(𝑁 +𝐾𝛽 + 1) (𝑁 +𝐾𝛽)

𝐽𝑖,

(E.2)

with

𝐼𝑖,𝑗 =
(

𝜓0(𝑛𝑖 + 𝛽 + 1) − 𝜓0(𝑁 +𝐾𝛽 + 2)
)

⋅
(

𝜓0(𝑛𝑗 + 𝛽 + 1)

− 𝜓0(𝑁 +𝐾𝛽 + 2)
)

−𝜓1(𝑁 +𝐾𝛽 + 2);

𝐽𝑖 =
(

𝜓0(𝑛𝑖 + 𝛽 + 2) − 𝜓0(𝑁 +𝐾𝛽 + 2)
)2

+ 𝜓1(𝑛𝑖 + 𝛽 + 2) − 𝜓1(𝑁 +𝐾𝛽 + 2);
(E.3)

from which the standard deviation is in turn calculated as the square
root of the variance Var(𝑆|𝐧, 𝛽) = E[𝑆2

|𝐧, 𝛽] − E[𝑆|𝐧, 𝛽]2.
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