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ABSTRACT: Process modeling has become a fundamental tool to
guide experimental work. Unfortunately, process models based on
first principles can be expensive to develop and evaluate, and hard
to use, particularly when convergence issues arise. This work
proves that Bayesian symbolic learning can be applied to derive
simple closed-form expressions from rigorous process simulations,
streamlining the process modeling task and making process models
more accessible to experimental groups. Compared to conventional
surrogate models, our approach provides analytical expressions that
are easier to communicate and manipulate algebraically to get
insights into the process. We apply this method to synthetic data
obtained from two basic CO2 capture processes simulated in Aspen
HYSYS, identifying accurate simplified interpretable equations for
key variables dictating the process economic and environmental performance. We then use these expressions to analyze the process
variables’ elasticities and benchmark an emerging CO2 capture process against the business as usual technology.

1. INTRODUCTION
In the current emissions reduction scenario and transition
toward a greener energy system, sustainable technology
development has become key in every industrial sector.
Nonetheless, the diffusion and application of new technologies
is a lengthy process requiring multiple intermediate steps,1,2

from the early conceptualization and planning phase to
laboratory testing, pilot scale, and industrial operation.
Moreover, every step calls for specific experimental and
modeling skills and tools in the quest for more sustainable
technologies.
Standard Process Systems Engineering (PSE) tools and,

more recently, also machine learning (ML) methods are being
used at different stages of such technology development
process to assist in the transition from laboratory to pilot or
industrial scale. Notably, a critical step for scientists at the early
development stage is to compare the performance of a novel
technology relative to the business as usual (BAU).
Information on emerging and established technologies might
not always be readily available, making it necessary to generate
in silico data using modeling tools to ensure meaningful
comparisons. In this context, experimentalists often collaborate
with modeling experts to conduct technoeconomic assess-
ments of competing technologies. These analyses might be
challenging and time-consuming, particularly when process
simulations need to be developed from scratch and/or lead to
convergence issues. In this context, simple closed-form

mathematical expressions describing the performance of
technologies could simplify preliminary technoeconomic and
environmental assessments during the early stages of
technology development, avoiding the need for complex
simulations. In addition to being easier to develop and use
compared to rigorous simulations, such equations could also
be employed for simplifying the optimization of the original
processes, feasibility analyses, and hybrid modeling.
Among the wide range of emerging technologies under

investigation, here we focus on CO2 capture processes. This
technology, which is expected to play a significant role in
meeting the Paris agreement goals,3,4 has been the focus of
intense modeling efforts. Applications of CO2 capture include
flue gas treatment (e.g., pre- or post-combustion),5 process
streams purification (e.g., natural gas sweetening),6 and CO2
removal from the atmosphere (e.g., direct air carbon capture
and storage (DACCS)).7 Among all of the available options for
CO2 capture, post-combustion chemical absorption using
amine-based solvents, historically developed to remove CO2
and hydrogen sulfides from natural gas,8−10 is considered the
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most mature technology. Despite its high technology readiness
level, chemical absorption still leads to significant energy
requirements due to the solvent regeneration step.11

Consequently, novel solvents,12 hybrid configurations,13 and
new strategies aiming at reducing energy consumption are
under investigation.14,15

Peters and co-workers carried out a technoeconomic analysis
to compare chemical absorption with membrane technologies
for a natural gas sweetening process using Aspen HYSYS.16

Two different inlet gases were tested, and the processes were
optimized to reduce capital costs. The results showed that
absorption leads to higher purity in the vented and sold gases
(at the expense of higher capital costs). Other studies have also
used Aspen HYSYS to optimize the CO2 capture cost
considering multiple configurations based on membranes, i.e.,
number of stages and recycle streams.17,18 Hasan and co-
authors19 modeled and optimized a flue gas dehydration and
CO2 capture process based on absorption and membranes.
They concluded that the CO2 composition and gas flow rate
dictate the most suitable technology. Other works modeled
separations of CO2/N2 mixtures based on membranes to
minimize the membrane area and energy consumption.20

Hybrid configurations of membranes and cryogenic processes
were also investigated to improve the energy consumption
compared to monoethanolamine (MEA) absorption for flue
gas mixtures with CO2 content within 12−25%.21 The number
of publications in this area (over 7000 on hybrid CO2 capture
technologies in the last decade, 16% of them about membrane-
based processes22) highlights the scientific community’s great
interest in alternative, more sustainable capture processes.
Standalone cryogenic separation of CO2 from flue gas23 and
hydrate-based gas separation24 have also been studied, showing
promising results in terms of energy consumption.
Traditionally, technoeconomic assessments of these and

other chemical technologies have been based on first-principles
models. Aspen Plus, Aspen HYSYS, and gPROMS are
examples of process simulation packages based on mass and
energy balances, transfer phenomena, and thermodynamic
equations widespread in the modeling and optimization of
chemical processes and energy systems. However, the advent
of ML algorithms has opened new avenues for data-driven
process modeling. Artificial neural networks (ANN), Gaussian
processes, and random forest, among others, are increasingly
being used in process modeling,25−28 mostly to simulate
complex unit operations hard to model based on first
principles. For example, modeling bioreactors following
complex kinetics is challenging and might be simplified using
pure data-driven or hybrid models.29−32 These approaches lead
to mathematical models that often provide good approxima-
tions for time-constrained applications but are hard to interpret
due to the absence of closed analytical expressions. Addition-
ally, the ability to extrapolate is usually limited.
Analytical expressions can be explicitly obtained from data

using symbolic regression, an application of genetic program-
ming where the algorithm is trained to solve high-level
problems combining simple functions.33 Later, the expressions
can be manipulated algebraically, differentiated, and more
easily interpreted to generate valuable insights into the
underlying principles governing the phenomena observed. As
discussed in more detail later in the article, standard symbolic
regression approaches rely on symbolic regression trees, i.e.,
superstructures of mathematical expressions, which can be
coupled with optimization algorithms to find the best possible

models. These representations can be optimized using either
deterministic or stochastic optimizers. Deterministic methods
guarantee convergence to a local solution or even to the global
optimum within an epsilon tolerance.34 In contrast, stochastic
methods need to be run for an infinite time to guarantee global
optimality, yet they tend to lead to lower CPU times to
provide a satisfactory solution.
The pioneering ALAMO algorithm (automated learning of

algebraic models for optimization) emerged in the PSE
literature to address the symbolic regression problem using
mixed-integer linear programming (MILP).35 This work was
enlarged in scope to include a priori physical knowledge36 and
applied to a range of chemical reaction problems.37 The main
limitation of ALAMO stems from the use of a finite number of
basis functions. This assumption constrains the search space
drastically, eventually hindering the algorithm’s ability to
reproduce the data precisely. Cozad and Sahinidis overcame
this shortcoming by formulating an elegant mixed-integer
nonlinear programming (MINLP) model for symbolic
regression that can be solved with deterministic optimization
methods like the nonlinear branch and bound and outer
approximation algorithms.38 Moreover, deterministic global
optimizers (e.g., BARON) can also be applied to this MINLP
to compute rigorous bounds on the minimum error that could
be attained in the best possible regression model in the
symbolic tree.33

To the best of our knowledge, the first studies that aimed at
identifying interdependencies of process variables in CO2
capture and storage (CCS) systems were presented by Rao
et al.39 and Zhou et al.40, who applied the response surface and
multiple-regression techniques, respectively. Zhou and co-
workers later applied ANN and neurofuzzy modeling to the
same set of pilot plant data.41 The predictive accuracy of the
models developed by Zhou et al. using the aforementioned
techniques ranges between 70 and 99%.42 The response
surface methodology has been used later in other works to
retrieve technical and technoeconomical equations from CCS
process simulation data.43 Focusing on examples that employ
symbolic regression, a very recent application of ALAMO to
post-combustion CO2 capture using an MEA solvent was
proposed by Danaci and co-authors,44 who provided the
capture costs for a range of input conditions. This work is
based on an accurate model of the system and it explores a
wide spectrum of operating conditions. However, it suffers
from the limitations of the algorithm described above. The
works by Pascual-Gonzaĺez et al.45 and Miro ́ et al.46 also
applied mixed-integer programming (MIP) to address
symbolic regression problems constrained within the limits of
a reduced set of canonical expressions. In addition, the
generation of tree regression models has been investigated,
where the size of a tree can be controlled to balance the
model’s accuracy and complexity.47 Differently, Ferreira and
co-workers applied Kaizen Programming to solve symbolic
regression problems, obtaining multioutput models in a single
run, which were tested experimentally.48 Recently, an MINLP
for symbolic regression successfully recovered the relationship
between shear stress and shear rate for both Newtonian and
non-Newtonian fluids and chemical reactions kinetic laws.49

Ansari and colleagues investigated relationships between
variables in computational fluid dynamics simulations combin-
ing artificial intelligence and symbolic regression using sure-
independence screening and sparsifying operators.50,51 Lastly,
linear sparse regression techniques, such as LASSO or elastic
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nets, can be deployed as an alternative to MI(N)LP
formulations. ALVEN52 is a recent approach part of the SPA
framework53 based on these methods, which was explicitly
designed for modeling manufacturing data. An exhaustive
literature review of ML models in chemical engineering,
comparing strengths and weaknesses of the previous cited
approaches, was given by Dobbelaere et al.54 and Schweidt-
mann et al.,55 while a methodological review of interpretability
in machine learning was presented by Otte.56

Moving to stochastic symbolic regression, some of us
introduced a Bayesian machine scientist (BMS)57 for symbolic
regression in a recent publication. Unlike genetic program-
ming, this approach uses a Markov chain Monte Carlo
(MCMC) algorithm and a principled performance metric, the
description length, to find expressions representing a good
balance between accuracy and model complexity. This
algorithm proved to be more robust than other data-driven
approaches also when data is scarce and noisy.57

Lately, the BMS has been employed to identify energy
consumption and pollution drivers in an automated way in the
work by Vaźquez et al., outperforming the well-established
STIRPAT empirical method.58 Similarly, the relationship
among emissions and economic parameters was previously
assessed using symbolic regression, automatic identification,
and search methods.59,60

Here, we apply this novel ML method based on symbolic
regression to simplify the modeling of a CO2 capture process,
providing explicit equations that represent the interdependen-
cies of variables in the whole system. Most of the existing
models for CO2 capture are based on first principles, and
analytical expressions to streamline the calculations and enable
more straightforward comparisons are missing,43 such as in the
work of Danaci et al.44 and Subraveti et al.61 From a survey of
the literature as reported above, many applications of ML to
PSE tackle very specific problems, often focusing on single
process units or academic examples. Morgan and co-workers
highlighted in their recent review that most of the applications
of artificial intelligence or ML applied to CO2 capture are
about predicting physical properties, such as the components’
miscibility and solubility,62−64 rather than process perform-
ance,65 e.g., CO2 storage efficiency.

66 Among the few studies
that analyze the latter aspect, the majority employs ANN and
similar conventional ML tools.67−69 Bearing this in mind, here,

we apply the BMS to two CCS processes, generating closed-
form expressions to estimate the economic and environmental
performance considering the entire process for a range of feed
conditions. In this first attempt, our results show that the BMS
can be applied to identify simple analytical expressions that
reproduce the process precisely and can easily be used to
facilitate comparisons and carry out further in-depth analyses.
Notably, these equations can be reworked or studied
analytically using the concept of elasticity, borrowed from
economics, to investigate the effect of the operating conditions
on the process’ performance, as shown at the end of this article.
Our simplified equations could assist experimental scientists in
benchmarking emerging CO2 capture technologies, such as
membranes, cryogenic separation, or adsorption,70,71 in their
early development stages. From a broader perspective, this
work opens up new avenues to bridge the gap between
modeling and experimental communities by simplifying the
adoption of modeling tools by experimental groups and
streamlining the modeling calculations. Moreover, our models
can be applied to solve standard PSE problems, especially in
the areas of surrogate-based process optimization, feasibility
analysis, and hybrid modeling, by exploiting their analytical
structure.
This article is structured as follows. In the next section, we

state the problem of interest and introduce the two CCS case
studies. Later, the methods employed to solve it are presented.
Then, the results are analyzed and discussed for both cases.
Lastly, we show two possible applications of the obtained
surrogate models and discuss their use in different PSE areas
before the conclusions and outlook for future works.

2. PROBLEM STATEMENT
Figure 1 outlines the overall methodology adopted here. In
essence, we are interested in generating simple analytical
equations from process simulation data, which experimentalists
could use to evaluate their technologies. We consider a process
simulation model implemented in Aspen HYSYS, which we
run iteratively to generate |K| scenarios for different inlet
conditions. This data shall then be used to build an analytical
expression reproducing the model precisely, as explained later.
Let us consider a set of data points K, corresponding to

experimental observations or generated in silico with a process
model. These points are the basis for constructing the data-

Figure 1. Sketch of the methodology adopted in this work. We first develop a process flowsheet, which is used to obtain data on key process
variables Y linked to the economic and environmental performance using a set of inputs X (pressure (P), temperature (T), composition (xi)).
Then, the data is processed to obtain a dataset used for the BMS algorithm training. Later, the equations derived from the data by the BMS are
validated using an independently generated dataset. The flowsheet encompasses absorption (A), desorption (D), CO2 storage (S), recycle (R), and
makeup (MU) units.
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driven model. We classify the variables in the dataset as
independent or dependent. The former refer to the degrees of
freedom in the experimental setting (or process model), while
the latter are obtained once the former are fixed, by either
solving the process model or running the associated experi-
ment. Let I denote the set of independent variables and J the
set of dependent ones. The following notation is adopted: xki is
the value of independent variable i in the observed point k,
while ykj is the value of the dependent variable j in the same
point. Therefore, the independent data takes the form of a
matrix with dimension |K| × |I|, while the dependent data is
represented by a matrix with dimension |K| × |J|.
The analysis aims to find analytical expressions of the form

given in eq 1 that predict the output data (values of the
dependent variables, ỹkj) from the input data, while minimizing
the approximation error (ekj) and the risk of overfitting.

= ··· ··· +| |y f x x x e j J k K( , , , , ) ,kj k ki k I kj1 (1)

= ··· ··· | |y f x x x( , , , , )kj k ki k I1

In eq 1, f(xki) is unknown, meaning that both the structure of
the model and its parameters are to be learned from the data.
Hereafter we refer to f(xkj) as ỹkj. Hence, three problems need
to be solved simultaneously to find the best expressions. The
first one is the features selection problem, i.e., identifying
which independent variables are statistically relevant from the
viewpoint of the dependent variables. The second problem is
finding the model structure, i.e., identifying the best
mathematical formulation to explain the data, which requires
solving the previous task. Lastly, the third task is solving the
parameter estimation problem, i.e., finding the best model
parameters for a given mathematical structure. We next explain
how to tackle these three problems simultaneously using the
BMS.

3. METHODS
3.1. Process Models Used for Data Generation. We

consider the natural gas sweetening and flue gas treatment
processes simulated in Aspen HYSYS V11 with the Acid gas�
chemical solvents fluid package. The synthetic data generated is

based on simulation results at steady state. The Supporting
Information provides more details about the assumptions and
limitations of the model flowsheets.
The first case study represented in Figure 2 refers to the

sweetening of natural gas with CO2 sequestration and storage.
The process model considers a feed of sour natural gas, the
absorption and desorption columns operating with an MEA
aqueous solution, and the CO2 compression stage. The natural
gas (4986 kmol h−1) is assumed to be a binary mixture of CH4
and CO2, 80 and 20% molar fraction (mol), respectively, at 30
bar and 50 °C. For simplicity, the presence of H2S in the feed
stream is neglected. We note that the flowsheet is based on
published studies.16,72 Moreover, sensitivity analyses were
carried out to adjust the operating conditions for our case
study, as explained in the Supporting Information.
The process operation is as follows. First, the natural gas

pressure is decreased from 30 to 17 bar in an expander. Then,
the stream is heated up to the absorber operating condition
(50 °C) and fed to the last stage, where CO2 is recovered. The
sweet natural gas is obtained at the top at 99.6% mol CH4,
meeting the standard required for pipeline injection and
distribution. The CO2-rich liquid stream is sent to the top of
the stripper, where it is regenerated by CO2 desorption with
steam and subsequently recycled. The absorption and stripping
columns operate at 17 and 11 bar, respectively, taking
advantage of the inlet condition of the natural gas at high
pressure. Indeed, in the first tower, a higher than atmospheric
pressure favors the absorption of CO2, while in the second one,
higher pressure is meant to lower the reboiler duty, decreasing
water evaporation, based on Schach et al.73 Both columns are
designed with 12 stages and are packed with plastic material to
avoid corrosion due to the CO2−MEA mixture.74 The stripper
operates without a condenser, while the reboiler energy
consumption is 5.4 MJ/kg CO2 removed for 90% mol CO2
recovery. The lean load in the recycle is 0.053 mole CO2/mole
MEA. The CO2-rich stream extracted at the top of the stripper
is compressed to a supercritical state (110 bar and 38 °C) for
pipeline transportation and injection at a selected storage site
(not considered in this work) with a purity of 99% mol. The
MEA and water makeup maintain the solvent solution in the
recycle at 30% wt MEA at 38 °C.

Figure 2. Natural gas sweetening process flow diagram. The process consists of an absorption stage (blue), desorption (red), CO2 compression
(sand), and recycle with solvent makeup (orange).
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The second case study investigates post-combustion CO2
removal from a typical power plant flue gas. The flowsheet is
based on similar studies70,75−77 and adjusted with sensitivity
analyses, described in the Supporting Information. The flue gas
composition at the inlet can vary significantly depending on
the power plant. This study focuses on flue gas in coal-fired
power plants after the SO2 scrubbing pretreatment.78 The
process flowsheet can be divided into three main stages:
absorption, desorption, and CO2 compression.
The mixture of N2, CO2, O2, and H2O (1000 kmol h−1)

enters the post-combustion plant in Figure 3 at 1 bar and
70 °C. The feed is compressed to 2 bar to overcome the
column pressure drop and cooled to 50 °C. The CO2 lean gas
at the top contains 3% mol CO2. We highlight that an even
lower CO2 concentration can be achieved by increasing the
amount of MEA and consequently the reboiler duty, as
discussed in the Supporting Information. The CO2-rich
solution leaving the bottom of the absorber is sent to the
first stage of the stripper to separate CO2 using steam. The
absorber and stripper columns operate under slight pressure at
2 and 5 bar to favor the absorption process and lower the
reboiler duty, respectively, as done in the previous case study.
The first tower has 17 stages and the second has 14. Both
columns are packed with plastic material due to the corrosivity
of the CO2−MEA mixture. The energy consumption of the
stripper is 2.7 MJ/kg CO2 removed for a CO2 loading of 0.052,
in accordance with the literature.79 The stripper operates
under two design specifications: 90% mol CO2 recovery and
90% mol CO2 purity in the distillate. The CO2-rich stream is
compressed to supercritical conditions, at 110 bar and 38 °C,
prior to being transported and stored underground (not
included in our analysis) with a purity of 99.6% mol CO2. The
recycle stream is a 30% wt MEA aqueous solution at 37 °C
whose concentration is maintained constant with fresh water
and MEA makeup.
In both case studies, we focus on predicting the cooling and

heating utilities [kW], net power required [kW], and amount
of MEA [kg/h] as output variables from the following input
variables: feed pressure [bar], temperature [°C] and
composition, and product composition. We hereafter refer to
the product as the stream leaving at the top of the absorber in

both examples. We note that the product composition in the
absorber is a variable that depends on the amount of MEA in
the recycle stream for a given inlet gas composition.
The values of the input variables to the process are obtained

using Latin hypercube sampling (LHS), which returns the
desired number of randomly distributed points for each
independent variable in given intervals. We carry out the
calculations of the absorber top product purity and amount of
MEA in MATLAB. This approach allows us to simplify the
solution of the flowsheet by reducing the number of loops to
one (the recycle stream) and prevent dependencies between
the variables MEA and product composition, while maintain-
ing the number of degrees of freedom. More precisely, we
define the variable MEA within an interval of interest using
LHS and we run the process models to obtain a range of
compositions of the absorber top product. Later, the
composition is considered as an independent variable for the
surrogate model.
In this regard, it is worth mentioning that, like other ML

tools, the BMS has no physical knowledge about any of the two
processes that are regarded as a black box of which only inputs
and outputs are relevant for building the simplified equations.
The lack of information about physical and chemical laws that
leads to poor interpretability of many black-box models is a
well-known drawback extensively discussed in the litera-
ture,54,55 where the hybrid modeling approach is preferred
instead.80 However, here we claim that our approach, although
it cannot be directly interpreted in terms of chemistry and
physics first principles, offers a mathematical form that links
input and output variables more intuitively than other ML
algorithms previously published. Specifically, we argue that
interpretability is a continuum rather than a binary feature,
with simple, first-principles models at one end and very
complex models with many parameters (such as state-of-the-art
deep-learning models) at the other end. Certainly, the models
derived by the BMS are not directly relatable to first principles,
but they are interpretable in many important regards. For
example, they can be used directly to answer questions: How
does property Y scale when property X tends to 0, or in the
limit of large X? Or why are predictions of Y very large at some
values of X? Or what is the derivative of Y with respect to X? In

Figure 3. Flue gas treatment process flow diagram. The process consists of an absorption stage (blue), desorption (red), CO2 compression (sand),
and recycle with solvent makeup (yellow).
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these important ways, the models proposed in this work are
much closer to first-principles ones than to deep-learning
models. Moreover, the prior used in the calculations could be
modified to consider specific problem-related equations, e.g.,
from the chemical engineering literature. Lastly, we build the
simplified equations from rigorous process simulations, so the
model should ultimately capture the main trends dictated by
the first principles.
The dependent variables we are interested in refer to the

energy consumption of each process, which contributes most
significantly to its economic and environmental performance.
The utilities are calculated by computing the grand composite
curves, assuming full heat integration (minimum utilities
consumption), and that the utility requirements of the optimal
heat exchanger network would approach the thermodynamic
targets. The electricity consumption corresponds to the net
power required to operate pumps and compressors, discount-
ing the energy gained from the expander in the case of natural
gas. The range of the sampling variables is defined based on
the literature, as reported in Table 1. The feed composition in
Table 1 is given for all of the components but one, which is
adjusted such that the sum of the component molar fractions is
equal to one. Note that here we work under the strong
assumption that the inlet conditions vary without any change
in the design of the plant, assumed to be fixed.
In this work, we use a dataset for training and an

independently generated set for validation. First, we generated
1200 and 2500 scenarios in the natural gas and flue gas cases,
respectively, out of which 1174 and 1245 converged in the
simulation. More initial points were run for the flue gas
simulation to account for the increased complexity of the
flowsheet, e.g., two more independent variables (two more
components in the feed) and two design specifications for the
stripper (CO2 mol purity and recovery). Out of the total
points, those that did not satisfy the conditions of 30% wt
MEA solution were discarded. This data was used to generate
the models reported in Section 4. Then, the expressions were
validated with additional points generated for the same ranges
of input variables using LHS. The validation set includes 199
converged points for the natural gas sweetening and 195 for

the flue gas treatment process, as reported in Section 4. We
refer to the Supporting Information for the results of the
training set.
3.2. Mathematical Approach for Symbolic Regres-

sion. Typical symbolic regression methods combine three
main ingredients: (1) a suitable representation of the problem
based on symbolic trees; (2) an appropriate objective function
to drive the search; and (3) an optimization engine to identify
the best expressions. Although the BMS operates in slightly
different terms (it samples models from the Bayesian posterior
distribution and is not based on any MINLP formulation), it
can also be cast into this scheme. The three ingredients are
described in detail next.
Closed-form mathematical expressions can be represented as

trees: the internal nodes are simple mathematical operations
(e.g., sum or exponential), while the leaves are variables and
parameters, as represented in Figure 4.
Concerning the objective function, the BMS uses the

description length (approximated as in eq 2) to select the
best model. The description length is calculated from the
Bayesian Information Criterion (BIC) reported in eq 3, which

Table 1. Independent and Dependent Variables with Their Respective Ranges Explored for the Natural Gas Sweetening and
Flue Gas Treatment Case Studiesa

independent
variables

lower
bound

upper
bound reference dependent variables

lower
bound

upper
bound

design
specification

natural
gas

x1 pressure [bar] 18.0 32.0 18,72 yMinCU minimum cooling
utilities [kW]

64 559.8 99 100.6 CO2 mol recovery
> 90%

x2 temperature
[°C]

35 50 17,18,72 yMinHU minimum heating
utilities [kW]

63 465.7 93 289.2

x3 CO2 mol feed 0.2000 0.3000 81 yNetPower net power
required [kW]

1048.0 3267.4

x4 CH4 mol
product

0.8786 0.9999 for pipeline injection
CH4 > 0.98% mol16,82

yAmountMEA amount of
MEA [kg/h]

380 000.0 550 000.0

flue gas x1 pressure [bar] 1.0 2.8 78,83 yMinCU minimum cooling
utilities [kW]

1737.1 4746.4 CO2 mol recovery
> 90%

x2 temperature
[°C]

35 70 75,77 yMinHU minimum heating
utilities [kW]

1168.6 4527.2 CO2 mol > 90% in
distillate

x3 CO2 mol feed 0.0700 0.1500 78 yNetPower net power
required [kW]

174.9 1484.1

x4 H2O mol feed 0.0500 0.1500 78 yAmountMEA amount of
MEA [kg/h]

12 000.0 17 000.0

x5 O2 mol feed 0.0200 0.1200 78

x6 CO2 mol
product

0.0228 0.1858 calculated

aThe product stream always refers to the stream leaving at the top of the absorber.

Figure 4. Example of a symbolic tree representing the function f(x) =
a + (c − x2) x1.
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considers the number of model parameters, the sample size
and the mean square error of the model (MSE, see eq 4), and
the prior over expressions (POE). Note that the sample size is
only considered for estimating the BIC of each model
explored.

L
BIC

2
log(POE)

(2)

= · | | + | |[ + + ]p K KBIC log( ) log(2 ) log(MSE) 1 (3)

=
| |

y y

K
MSE

( )k k k
2

(4)

In eq 3, p is the number of parameters of the learned model
plus one. In eq 4, yk is the real value observed of a generic
variable i, while ỹk is the value predicted by the BMS for each
point k.
Based on the symbolic tree representation above, an MCMC

algorithm explores the space of all of the possible mathematical
expressions implementing three moves on the trees: (i) node
replacement, (ii) root addition or removal, and (iii) elementary
tree replacement. Each of these moves affects the mathematical
expressions differently, by introducing minor variations or
significant changes in the structure, or causing the trees to
shrink/grow. Alternatively, deterministic optimization methods
could be used to explore the tree, e.g., by capitalizing on the
MINLP formulation of Cozad and Sahinidis33 coupled with a
standard MINLP solution algorithm.38 Finally, the BMS selects
the most plausible model in an MCMC run, namely, the one
with the minimum description length.
The prior used in the description length calculations is the

maximum entropy distribution consistent with a corpus of
4080 closed-form mathematical expressions retrieved from
Wikipedia.
We apply the algorithm available in the online repository

provided by the authors in a similar fashion as Žegklitz and
Posǐḱ84 previously did to compare different ML tools, and we
adjust only the number of MCMC steps. We refer to the
original article57 for further details regarding the BMS
algorithm.
3.3. Mathematical Implementation. The inputs to the

BMS include the training dataset (as small as 100 points57),
the hyperparameters of the priors (given in ref 57 for a fixed
number of independent variables and model parameters), and
the number of MCMC steps.
The maximum number of parameters in an expression is

fixed to twice the number of independent variables. This
choice controls the size of the regression tree to avoid too large
search spaces, which would lead to large CPU times. The
number of steps has been chosen based on the coefficient of
determination (R2, described later) and description length
obtained throughout the MCMC steps, reported in the
Supporting Information. Notably, the description length
tends to improve as iterations proceed, often reaching a
plateau after a sufficiently large number of steps, which is case-
dependent. Here, we generated the training and validation data
by sampling on process models. Therefore, the amount of data
that can be obtained is in principle infinite, provided that the
flowsheet converges. When dealing with an experimental
setting, fewer points might be available as experiments are
costly and time-consuming, and additional design of experi-
ments tools might be coupled with the BMS.65,85 To highlight
the power of the BMS, we here report the results obtained at a

relatively low number of MCMC steps to keep the computa-
tional time low.
The sampling was performed using MATLAB R2020a

interfacing with Aspen HYSYS v11. Then, the outputs were
processed in Python 3.8 with Numpy and Pandas and used to
determine the values of the four dependent variables that
dictate the operating costs. The BMS was trained using the
Jupyter notebook code available online.57 The algorithm
returns one closed-form mathematical expression for each
dependent variable of interest as a function of the independent
variables and some parameters (multiple regression). Lastly,
additional points were generated in the same interval of the
training variables using LHS to validate the expressions. The
methodology applied is summarized in Figure 5.
We computed some statistical metrics for each output model

to assess the goodness of the model fit in both the training and
validation steps. For regression models, the R2 in eq 5
represents a measure of how well the regression predictions

Figure 5. Outline of the procedure to obtain closed-form
mathematical expressions: from data sampling, through simulation
and data processing, to the application of the BMS and model
validation.
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approximate the real data points on a convenient scale from 0
to 100%. Therefore, an R2 of one indicates that the regression
predictions fit the data perfectly.

=R
y y

y y
1

( )

( )
k k k

k k

2
2

2
(5)

where yk is the real value, ỹk is the value predicted for each
point k, and y̅ is the average value.
Additionally, the mean relative error (MRE) in eq 6

measures the precision of the model. The MRE is calculated
as the absolute value of the relative error between real and
predicted data, normalized by the number of data points.
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The elasticities can be calculated once f(x) is obtained. They
provide insight into the extent to which changes in the various
inputs affect the process performance. Elasticities quantify the
proportionate change in a dependent variable y relative to a
change in an independent variable xi, keeping the other
independent variables (xj≠i) and parameters constant. In eq 7,
we report the generic formula employed to calculate the
elasticity (E).

=E
y
x

x
y (7)

4. RESULTS AND DISCUSSION
4.1. Natural Gas.We run the BMS for the data collected as

described above, obtaining the closed-form mathematical
expressions for the cooling (MinCU) and heating (MinHU)
in eqs 8 and 9, respectively. The parameters (a) are available in
the Supporting Information.
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As seen, the cooling and heating utilities equations only select
two out of the four independent variables reported in Table 1:
the concentration of CO2 in the feed (x3) and the CH4
product purity (x4). Notably, for a fixed input flow, these
variables are strongly connected to the cooling needs in the
CO2 compression stage and heating requirements in the
stripper reboiler, which represent a large percentage of the
overall cooling and heating, respectively. In contrast, the feed
pressure and temperature weakly influence the utilities
consumption in the design reported in Figure 2, which is
fixed in all of the scenarios.
The net electricity consumption (Net power) is calculated as

the duty required by compressors, pumps, and expanders.

= · + · + +
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Net power a x a
6 0 4 4 1

6 1

5 2

2 3 3
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As expected, the expression reported in eq 10 relates Net
power to all of the independent variables: feed pressure (x1)
and temperature (x2), the concentration of CO2 (x3) in the
feed, and the CH4 product purity (x4). The concentrations
influence the duty of the CO2 compressors and pumps for a
fixed input flow, while the feed pressure and temperature
determine how much power can be gained from the expansion.
Lastly, we find that the amount of solvent (Amount of

MEA) required to achieve a specific product purity is
proportional to the amount of CO2 in the feed.

86

= · · · ·

+ · +
· + · + · +i

k
jjjjjjj

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

y

{
zzzzzzz

a a a x

x
a

a x
a a x a a x

x

Amount of MEA

tan( ) ( 2 )

x

a a

0 3 7 3

4

2
4 4

5 5 4 1 6 4

3

2

4

6 0

(11)

Therefore, the amount of MEA in eq 11 is a function of the
CO2 molar fraction in the feed (x3) and the CH4 purity in the
product (x4). Consequently, the expression found by the BMS
does not select the feed pressure and temperature.
The variable selection problem (or features selection

problem) is summarized in Table 2. Notably, the BMS

identifies that the feed pressure and temperature do not
influence three out of the four dependent variables selected,
while the CO2 composition in the feed and the CH4 product
purity are included in all of the expressions generated. All of
the closed-form mathematical expressions referring to the
dependent variables in the natural gas flowsheet include fewer
parameters than the maximum allowed, with the exception of
the simplified equation predicting the MEA consumption.
Equations 8−11 are quite compact and include elementary
operations, such as additions, multiplications, and exponentials.
Trigonometric functions also appear in the case of MinHU and
Amount of MEA.
The data scatter around the regression line is shown in

Figure 6 for each dependent variable (eqs 8−11). The
corresponding values of R2, as well as MRE and MSE, are
reported in Table 3.
The statistics indicate that the model for Net power shows

the best match between the observed and predicted data. This
is shown in Figure 6c, where the data of the validation set lies
very close to the diagonal. Contrarily, MinCU leads to the
highest MRE and a slightly lower R2 value than the other
variables, as shown by the broader distribution of the points on
the diagonal in Figure 6a. The scatter plots of MinHU and

Table 2. Summary of the Features Selection Problem for the
Natural Gas Sweetening Processa

independent/
dependent variables

feed
pressure
[bar]

feed
temperature

[°C]
CO2

mol feed
CH4 mol
product

MinCU 0 0 1 1
MinHU 0 0 1 1
Net power 1 1 1 1
Amount of MEA 0 0 1 1

aThe dependent variables are listed per row, while the independent
ones are reported in the columns with a one if selected and zero
otherwise.
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Amount of MEA show a predicted vs observed data pattern
lying in between the previous two. The variable Amount of
MEA is depicted in Figure 6d. As seen, the data is distributed
close to the regression line in the lower interval of values
explored. However, it tends to scatter close to the upper bound
of the variable.
It is also worth recalling that the utilities and power variables

are processed data, i.e., they are not direct outputs of the
simulation. Nevertheless, overall, the BMS is able to recover

highly accurate models and identify the independent variables
that physically influence the process the most, even when these
have been processed.
4.2. Flue Gas. We repeat the analysis for the same outputs

in the flue gas process, modifying the prior to consider six
independent variables.
The minimum cooling (MinCU) utilities of the flue gas

treatment process are found by the BMS to be a function of
five independent variables reported in Table 1: feed pressure
(x1) and temperature (x2), CO2 (x3) and O2 (x5) molar
concentrations in the feed, and CO2 molar concentration in
the product (x6).
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Figure 6. Given vs predicted values correlation for the four output variables in the validation dataset: (a) cooling and (b) heating utilities, (c) net
power, and (d) amount of MEA for the natural gas sweetening process.

Table 3. Coefficient of Determination (R2), Mean Relative
Error (MRE), and Mean Square Error (MSE) Statistics for
Each Output Variable in the Validation Dataset of the
Natural Gas Sweetening Process

case study variable R2 MRE MSE

natural gas MinCU 0.9818 0.0103 1.50E+06
MinHU 0.9921 0.0051 5.21E+05
Net power 0.9986 0.0072 3.15E+02
Amount of MEA 0.9922 0.0050 1.94E+07
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In particular, feed pressure and temperature determine the
amount of cooling necessary to reach the absorber operating
conditions after the compression, while the CO2 concentration
in the feed and the remaining CO2 in the product affect the
cooling in the compression stage. The coolers in the CO2

compression stage consume most of the total utilities reported
in eq 12. For a fixed inlet flue gas stream, a change in the water
concentration mainly affects the heating and the recycle
streams, while the utility requirements of the coolers are
negligible compared to the compression stage. Therefore, eq
12 omits water concentration (x4). The expression obtained
for MinCU is rather simple, as it only considers additions,
multiplications, and exponentials.
On the contrary, the total heating utility (MinHU) is a

function of all six independent variables (eq 13).
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The water content (x4) in the feed stream is linked to the
steam consumed by the reboiler of the stripper that regenerates
the solvent. The amount of steam also depends on the CO2

(x3) and O2 (x5) feed concentrations and on the CO2

concentration in the clean flue gas (x6). We note that this
expression is less compact than the previous ones and contains
a trigonometric function. However, it can be simplified as
follows. Parameter a6 is quite large (5.6e+3), so the cos()
function can be considered a constant that becomes zero for
any value of x5 (molar fraction between 0 and 1).
The net electricity consumption (Net power) in the flue gas

treatment process accounts for the energy consumed by pumps
and compressors.
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In eq 14, Net power is expressed as a function of the feed
pressure (x1) and temperature (x2), the CO2 (x3) and O2

molar concentrations in the feed (x5), and the CO2 molar
concentration in the product (x6). As in eq 12, the
concentration of water in the feed is omitted. The compressors
contribute much more to the total energy consumed than the
pumps, and the flow rate of CO2 mainly determines the
compression duty.
Lastly, the closed-form expression of the amount of MEA

(Amount of MEA) includes all of the concentrations in the
feed and the product (eq 15) because the stream composition
dictates the amount of solvent needed.
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Once again, feed pressure and temperature are not linked to
the amount of MEA required. The abs() function can be
simplified because all of the independent variables and
parameters a1 and a5 are positive (see the Supporting
Information). Conversely, a4 is negative but x3

a4 is positive.
Thus, the ratio of abs() functions can be calculated as the ratio
of the arguments.
As observed, the simplified equation for the amount of MEA

includes 10 parameters (out of the 12 allowed). A summary of
the selection of the independent variable for each dependent
one is reported in Table 4. At first glance, the expressions

reported in eqs 12−15 seem more complex than in the
previous case. However, the building blocks in the formulas are
still very simple additions, multiplications, and some
trigonometric and exponential functions. Although the second
case considers two more independent variables and one more
design specification, we can still obtain equations that fit the
data with an R2 value greater than 0.94 for three of the four
variables, two above 0.99, as reported in Table 5. Even in the

case of minimum cooling utilities, the MRE remains below 8%.
We note that our ultimate goal is to predict the economic and
environmental performance, so estimating the cooling utilities
with less accuracy is not an issue as their contribution to the
overall performance is low.
The scatter plots in Figure 7 represent the goodness of fit for

the four output variables in eqs 12−15 considering the data in
the validation set. Once again, Net power is the variable that
shows the best model performance (R2 of 99.95%) and for
which the data lies precisely on the regression line in Figure 7c,

Table 4. Summary of the Features Selection Problem for the
Flue Gas Treatment Processa

independent/
dependent
variables

feed
pressure
[bar]

feed
temperature

CO2
mol
feed

H2O
mol
feed

O2
mol
feed

CO2
mol

product

MinCU 1 1 1 0 1 1
MinHU 1 1 1 1 1 1
Net power 1 1 1 0 1 1
Amount of
MEA

0 0 1 1 1 1

aThe dependent variables are listed per row, while the independent
ones are reported in the columns with a one if selected and zero
otherwise.

Table 5. Coefficient of Determination (R2), Mean Relative
Error (MRE), and Mean Square Error (MSE) Statistics for
Each Output Variable in the Validation Dataset of the Flue
Gas Treatment Process

case study variable R2 MRE MSE

flue gas MinCU 0.4506 0.0744 1.22E+05
MinHU 0.9405 0.0381 1.72E+04
Net power 0.9995 0.0090 5.74E+01
Amount of MEA 0.9965 0.0046 7.22+03
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while MinCU leads to the worst fit (R2 of 45.06%) for the
MCMC steps selected. The relationship between predicted
and real values for MinCU shown in Figure 7a indicates that
the model reproduces very well the data in the range 2500−
3500, where it accumulates. However, some points are far from
the regression line. We note that a low R2 value doen not
always imply that the model is unacceptable. If, for example,
the variability of the data is low, the MRE will likely be low
(indeed, here is around 7%), and the model will still provide
reliable predictions.
On the contrary, the model for MinHU improves compared

to MinCU, while it still shows some data variability across the
regression line. Finally, the data fit of Amount of MEA shows
that the data is more aggregated along the diagonal,
approaching the goodness of fit of Net power. The R2, MRE,
and MSE values of the dependent variables are reported in
Table 5.
The residual plots for each output variable of the two case

studies can be found in the Supporting Information, where the

training results and the corresponding R2, MRE, and MSE
values are also given.
Additionally, the same dataset used to train the BMS was

used to train an ANN with Bayesian regularization for both
cases. The results are reported in the Supporting Information.
ANN models lead to an R2 above 99%, both in the training and
validation dataset. However, the obtained models are not easily
interpretable and hard to employ in further analyses such as
those presented in the following sections.

5. ANALYTICAL APPLICATION OF THE EXPRESSIONS
5.1. Analysis of the Elasticities. The BMS has the

advantage over other ML algorithms of providing closed-form
mathematical expressions. In turn, these can be manipulated
analytically, differentiated, or used in optimization frameworks
to investigate the performance of the processes further or
compare different alternatives. In this regard, we claim that our
models are more interpretable than conventional black-box
tools and can be used to answer questions about the influence
of each variable on the process as explained in Section 1.

Figure 7. Given vs predicted values correlation for the four output variables in the validation dataset: (a) cooling and (b) heating utilities, (c) net
power and (d) amount of MEA for the flue gas treatment process.
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Hence, in this section, we take a step forward to study the
strength of the link between the independent variables selected
to predict the minimum heating utilities (MinHU) and the
value of this output variable. The choice of this variable is
motivated by the high energy requirements of the absorption
process, which can be ascribed almost entirely to the
regeneration of the solvent (reboiler duty), ultimately dictating
the economic and environmental performance. To carry out
the calculations, we use eq 7 for each point of the training set,
where y is the dependent variable chosen (MinHU) and x each
independent variable y. We calculate the elasticities as
described above for each x in all of the points k and then
plot the distribution of these values. From a practical
viewpoint, the elasticities provide insight into the relationships
between independent and dependent variables. Although the
analysis of the elasticities is still possible using other ML tools,
the BMS allows for a more in-depth study of the change in a
dependent variable as a result of an increment of an
independent one. For example, it is possible to calculate the
elasticity using ANNs, but the result would be a numerical
value and not an expression that can be manipulated further.
In Figure 8, we provide the histogram of the elasticities for

the dependent variable MinHU in the natural gas sweetening
process. Recall that the expression of this independent variable
only includes two independent variables out of four: the CO2
concentration in the feed (x3) and the CH4 product purity (x4)
(see eq 9). The mean of the CO2 feed concentration elasticity
is above 1 (subplot a), representing a positive elastic
relationship: for a x% increase in the independent variable,
the dependent variable increases by y%, where y > x, denoting
a strong response in the output to changes in the input. The
CH4 product purity (subplot b) is also positive elastic.
However, the high value of the mean (620) is not
representative of the majority of the points (median = 4.23).
This behavior is due to the instability of the derivative whose
value skyrockets for x4 above 0.999, which, however, does not
influence the accuracy of the model itself. On the contrary, this
provides an interesting insight into the physical model by
implying that for purities above 0.999, unattainable from a
practical standpoint, the energy consumption required for an
increment of the purity would be prohibitive.
Next, we analyze the elasticities of the minimum heating

utilities of the flue gas process (eq 13). We recall that the
dependent variable chosen is a function of all six independent
variables whose histograms of elasticities are shown in Figure

9. The feed pressure (subplot a) shows a mean elasticity
between 0 and 1, implying that the relationship is positive
inelastic. An increase in the feed pressure (x1) leads to higher
heating utilities due to the lower compression ratio in K-100.
On the contrary, the elasticity of the feed temperature (subplot
b) lies from −1 to 0, denoting a negative inelastic response. As
expected, for an increase in the feed temperature (x2), the
minimum heating utilities decrease. The mean elasticity of the
CO2 feed concentration (x3) is positive elastic (subplot c), as
its mean value is greater than 1. As said before, the reboiler
duty, which is the most significant contribution to the total
heating utilities, depends on the initial amount of CO2. On the
contrary, the concentration of water (subplot d) in the feed
shows a negative inelastic relationship with a mean value
between 0 and −1. It is worth noting that the mean elasticity of
water is −0.02, which shows that the influence of this variable
is almost negligible for the dependent variable considered. We
recall that water is not chosen in the simplified equation of the
minimum cooling (eq 12). Increasing O2 (subplot e) increases,
in turn, the energy consumption since the mean elasticity of x4
is between 0 and 1�positive inelastic. Finally, the elasticity of
the CO2 concentration (x6) in the product stream at the top of
the absorber (subplot f) is smaller than −1, therefore,
indicating a negative elastic response; i.e., an increase in the
CO2 concentration of the product stream lowers the heating
requirements.
Hence, the analysis of elasticities clearly shows that the CO2

concentration in the feed is the variable influencing the heating
needs the most, as expected. Moreover, the effect of the water
concentration is negligible, despite appearing in the simplified
equation.
5.2. Emerging Technologies Assessment. We next

illustrate how the simplified equations could be used to
benchmark emerging technologies. To this end, let us consider
an alternative CO2 capture technology still under development,
namely, the cryogenic CO2 separation from flue gas based on
the Stirling cooler system developed by Song and co-authors.23

We shall compare the performance of the latter against that of
the BAU using the expressions in eqs 8−15.
The authors provide the feed specifications and the cooling

and electricity needs of the compressors, with and without heat
integration. We analyze the case without heat integration for
simplicity and determine the CO2 concentration (mol) in the
clean gas from the mass balance provided. The CO2
concentration in the clean gas of the process developed by

Figure 8. Elasticities of the natural gas dependent variables for MinHU in the training dataset. (a) E1 is the elasticity corresponding to the
independent variable x3 CO2 concentration in the feed (mean = 1.0544) and (b) E2 to x4 CH4 product (mean = 620.6721).
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Song is 0.005 mol, which is below our lower bound 0.023
(Table 1) and, thus, falls outside the limits of our training set.
We then calculate the minimum cooling [kW] required and
the net electricity consumption [kW] using eqs 12 and 15 for
both concentrations.
Moreover, since the input flow used by Song et al. is

noticeably higher than in the case we explored here, we take
the energy consumption per mass flow rate of the clean gas
[kJ/kg]. In our process (Figure 3), the product is almost
constant in all of the scenarios analyzed. Nonetheless, we make
predictions taking the maximum and minimum flow rate
obtained from the sampling (which only differ by 13%, see
Table S2 in the Supporting Information). The results are

reported in Table 6 as the ratio between our dependent
variables (subscript BAU) and the values of the Stirling process
(subscript cry).
Using the BMS models reported above, we conclude that the

new process reduces energy consumption for the specific
conditions analyzed, mainly owing to the lack of heating
required. We note that our analysis here is just a simple
example of an additional application of the BMS, and the
conclusions we draw are based on the available data and
assumptions made. We also point out that the extrapolation
performed using the equations for the CO2 molar concen-
tration outside of the trained bounds leads to a relative error of
8.5 and 5% for the cooling and electricity ratios given in Table

Figure 9. Elasticities of the flue gas dependent variables for MinHU in the training dataset. (a) E1 refers to the independent variable x1 pressure
(mean = 0.4475), (b) E2 to x2 temperature (mean = −0.3632), (c) E3 to x3 CO2 mol concentration in the feed (mean = 3.1495), (d) E4 to x4
water concentration in the feed (mean = −0.0202), (e) E5 to x5 O2 concentration in the feed (mean = 0.1921), and (f) E6 to x6 CO2 concentration
in the product (mean = −2.3001).
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6, respectively. Lastly, we note that the simplified equation
retrieved by the BMS for the cooling duty is the one affected
by the poorest performance in predicting the data (R2 of 45%).
5.3. Potential Applications of the Bayesian Machine

Scientist to Process Systems Engineering Problems.
The models developed in this work aim to support
experimentalists and guide their research in the quest for
more sustainable technologies. For example, experimental
groups could quickly benchmark their CO2 separation
technologies against standard MEA-based capture processes
using simplified analytical methods without the need to carry
out detailed simulations. This would allow them to identify
critical hotspots concerning energy consumption or purity
specifications. Moreover, the streamlined equations obtained
with the BMS could find multiple applications in PSE, mostly
in the areas of surrogate-based process optimization, flexibility
analysis, and hybrid model building, as discussed next.
Surrogate-based optimization has recently emerged to

overcome the challenges of simulation-based optimization,
which attempts to optimize detailed process simulations. In the
latter, functions with an algebraic form or derivative
information might be absent or too costly and noisy to
evaluate.35 Stochastic algorithms, such as genetic algorithms,
can be employed in these cases, requiring numerous samplings
and iterations;87 alternatively, derivative-free algorithms can
also be used.35 Here, process flowsheet optimization is treated
as a black-box problem because process simulators commonly
present intractable gradients.88 In this context, the BMS could
provide analytical surrogates that could be solved with state-of-
the-art solvers using standard modeling systems. This would
also enable the application of standard deterministic global
optimization algorithms, which cannot be easily applied when
dealing with ANNs and Gaussian processes (despite some
recent work on tailored deterministic global optimization
algorithms for the said surrogates89,90).
This approach could find applications in refrigeration

cycles,87 natural gas liquefaction,91 supply chain inventory
control,92 carbon capture,93 process synthesis,94 pharmaceut-
ical processes,95 semibatch bioprocesses,27 and biorefineries,96

to mention a few in chemical engineering and beyond. On the
other hand, the applications are not limited to technology
benchmarking, as discussed below.
Our approach could also be used in the context of surrogate-

based feasibility and flexibility analyses. The former addresses
the question of whether a system can remain feasible within a
given region of parameter values. In contrast, the latter
computes the maximum deviation from the nominal conditions
such that the system would still remain feasible. Seminal works
by Grossmann and co-workers proposed solution strategies97

and a two-level optimization framework98 to tackle these
problems, which cannot be directly applied to black-box
problems that are not explicitly differentiable. Hence, analytical
surrogates could enable the use of such algorithms based on
bilevel optimization in a range of problems. Examples of

applications include, but are not limited to, models with black-
box constraints, computationally expensive models, and
nonconvex feasible regions, particularly in pharmaceutical
applications,99 planning, scheduling and control,100,101 or
chromatographic systems.102

Surrogate models can be further combined with an algebraic
objective, and material and energy balances to formulate
algebraic optimization problems under the framework of
hybrid modeling.35 Hybrid models fill the gap linked to the
lack of exact knowledge on the process, allowing the user to
specify part of the model through a data-driven component,
thus requiring less data than pure black-box models, which is
particularly relevant in bioprocesses applications.103 In this
context, our approach could be used to build analytical hybrid
models, where mechanistic equations would be combined with
an analytical surrogate, leading to fully analytical formulations
easier to handle. Moreover, it could also be used in tandem
with deterministic global optimization algorithms for gray box
model optimizations, as presented by Boukouvala and
Floudas.104 Specifically, the BMS could help to approximate
black-box constraints, enabling the straightforward application
of deterministic global optimization methods to hybrid models.
In particular, applications of ANNs coupled with black-box

optimization, which could benefit from analytical surrogates as
those developed here, include process synthesis, flexibility
analysis, and dynamic optimization, as reviewed by Tsay.105

Overall, our approach has the advantage of providing an
explicit mathematical form, which can be manipulated
algebraically, differentiated, and integrated, alone or together
with mechanistic equations, e.g., mass and energy balances in
gray box models. Moreover, while interpretability is not a
binary value, the results obtained from the BMS are more
interpretable than those obtained from ANNs or Gaussian
processes.

6. CONCLUSIONS
In this article, we explored the application of machine learning
to simplify the benchmarking of emerging technologies with a
focus on carbon capture. We applied a Bayesian machine
scientist algorithm to streamline the modeling of two basic
processes for carbon dioxide removal, generating simple
closed-form mathematical expressions of key variables dictating
the economic and environmental performance of the whole
system considered.
We found that it is possible to build highly accurate

simplified process model equations in an automatic manner in
relatively low computational time, which can then be used to
compare alternative technologies and perform further numer-
ical analyses. The statistics of the goodness of fit, namely, the
R-squared, mean relative error, and mean square error, indicate
that the best predictions correspond to the net power
requirement, while the minimum cooling utilities are harder
to predict. Nonetheless, the Bayesian machine scientist is able
to find precise expressions even for those variables that are not

Table 6. Comparison of Cooling and Electricity Requirements for the Process by Song et al.23 (cry) and Our BAU (BAU)a

case I: without heat integration

MinCUBAU/MinCUcry Net powerBAU/Net powercry

prod low prod high prod low prod high

CO2 mol in ref work
23 (0.5%) 2.19 1.91 1.17 1.02

aThe values are calculated as the ratio of the energy requirement of the processes: BAU/cryogenic per absorber top product mass flow rate.
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directly an output of the simulations, such as process utilities
and the net power consumption. It can also identify critical
process variables that influence the dependent variables the
most. Moreover, the number of steps for the Markov chain
Monte Carlo algorithm can be increased further to identify
even better expressions.
An analysis of the elasticities was carried out to provide

insights into how the process variables affect the technology
performance. The streamlined process equations were then
used to benchmark an emerging technology using literature
data with the standard amine capture process, finding that it
could outperform the latter under the conditions and
assumptions considered.
Overall, this study proved that advanced machine learning

methods could be applied to automatically derive simplified
process equations that can accurately predict the behavior of
technologies in carbon capture applications and beyond. These
simplified equations, in turn, can be used to analyze the
influence of the independent variables on the overall
performance and enable a direct comparison of emerging
technologies without the need to run a process simulation in
each comparative assessment sought.
This study represents a first proof of concept based on

simple case studies, and future work should further explore
how to control the shape and complexity of these expressions
and include more specific a priori knowledge. Moreover, these
simplified equations could also be applied to experimental and
plant data and used for optimization purposes, i.e., in process
design, which could open new opportunities for developing
machine learning-based optimization algorithms based on
explicit symbolic equations.
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