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Onemodel to rule them all in network science?
Roger Guimeràa,b,1

If you have ever used a social network platform, you
know that you are regularly prompted about people
you may know in the network. Sometimes these
recommendations are striking—we get a suggestion
for a person we have met only once, or an old acquain-
tance that we have not seen in years. How could any-
one (let alone a computer) possibly guess? Predicting
acquaintances in a social network is just one example
of the general problem of link prediction (1–5), which
consists of predicting connections (links) in a network
(6) from the observation of other connections (Fig. 1).
Besides social networking, the problem of link predic-
tion occurs in many contexts, from recommender sys-
tems, where customers are recommended (linked to)
items based on their previous ratings or purchases (7),
to the prediction of unknown harmful (or perhaps syn-
ergistic) interactions between drugs (8).

Besides its practical importance, link prediction is
also relevant from a fundamental point of view—just
as our ability to predict astronomical phenomena re-
flects our understanding of gravitation and the physi-
cal and chemical processes of celestial bodies, our
ability to predict links reflects our understanding of
the processes responsible for the structure of complex
networks. Indeed, if we knew exactly the mechanisms
that generated a given network, and could translate
those mechanisms into a fully specified (deterministic
or, more likely, probabilistic) generative model with
precise parameter values, then we would be able to
make optimal link predictions for that network. In the
real world, things are more complicated because we
never have such exact models, but in general it is still
true that more plausible models tend to make better
predictions of links (9).

Despite the fact that hundreds of link prediction
algorithms have been proposed in recent years, no
large-scale systematic comparison existed to this day.
In PNAS, Ghasemian et al. (10) consider 203 link pre-
diction models and apply them to 550 real-world so-
cial, biological, economic, technological, information,
and transportation networks. They find wide disparities

in performance; models often perform well in some
groups of networks but poorly in others, and no model
is superior for all networks. Also, some groups of net-
works (biological and technological) are considerably
harder to predict than others (social). Finally, and per-
haps most importantly, Ghasemian et al. show that an
ensemble method known as model stacking (11), in
which all 203 models are combined (or “stacked”),
can predict links in most networks more accurately
than any of the 203 models on their own (Fig. 1).

Free Lunches in Link Prediction
Ghasemian et al. (10) frame their contribution in terms
of the so-called no-free-lunch (NFL) theorems (12, 13).
Generally speaking, NFL theorems state that, for
certain classes of mathematical problems, no single
model or algorithm performs better (or worse) than
any other when applied to all possible problems in
the class; if a model is better than another at solving
one particular problem, then it must be worse at others.
In network science, an NFL theorem has been proved
for the problem of identifying natural groups (or commu-
nities or modules) of nodes in the network (13). According
to the theorem, all algorithms perform identically when
applied to all possible networks and all possible group-
ings of nodes in each network. So Ghasemian et al.
(10) hypothesize that link prediction may be of the NFL
class and, therefore, argue that no algorithm may be
consistently better at predicting links across all networks.

With this rationale they use model stacking (11),
that is, a metamodel that works by combining all other
models; if each model is good at some link prediction
problems and bad at others, then such a metamodel
may be able to get the best of each one and be good
in all cases. Indeed, they find that model stacking
performs better than all individual models in most
networks considered. And here is the paradox—the
stackedmodel is, after all, another model, so this looks
exactly like a free lunch. In this regard, the results of
Ghasemian et al. (10) highlight the theoretical value of
NFL theorems, as well as their limitations from a
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practical point of view. Theoretically, they compel us to think
about ensembles of models, each model having its own virtues
and limitations. In practice, we are rarely (if ever) interested in
solving all problems of a given class, and some models are more
appropriate than others because they are good at solving the
interesting problems and bad at solving the uninteresting ones.
So, in practice, there are free lunches. In the particular case of link
prediction, we are not interested in predicting links in any network, but
only real-world networks. And real-world networks have some general
properties that make some specific models more appropriate than
others, which network science has been uncovering in the last 20 y—
broad degree distributions or the related properties of group
structure and “small worldiness,” to name the most prominent ones.

By bringing forth this apparent paradox of NFL theorems, the
article by Ghasemian et al. (10) invites us to think more deeply
about two keys aspects of network science (and, in a way, science
more broadly): ensemble methods and model expressiveness.

Ensemble Methods
With regard to the first issue, Ghasemian et al. (10) convincingly
argue for the need to combine different models because of their
error diversity, that is, because each model makes certain errors
and, conversely, is able to correctly capture certain unique fea-
tures. By combining models we can get the best of each. But, no
less important and perhaps more fundamental, ensemble meth-
ods are necessary because in (network) science we are seldom
certain about the exact process that generated whatever empiri-
cal observations we may have, and this uncertainty must be taken
into consideration using probability theory (14). In particular,
given a set M= M1,M2, . . .f g of candidate models that could
potentially explain a certain dataset D, each model Mi has a
probability pðMijDÞ of being the true generating model given the
data. Given this posterior distribution over models, and assuming
that the true generating model is one of the models in M, the

consistent estimate f * of a given property f ðMÞ (for example, the
existence of a link in a network in the link prediction problem) is

f * =
X

i
f ðMiÞpðMijDÞ. [1]

This is sometimes referred to as Bayesian model averaging (15),
although it is nothing more than the direct application of the
laws of probability. When we consider only one model for esti-
mating f * (typically themost plausiblemodel, arg maxMpðMjDÞ), we
are making an approximation to the consistent estimator, and
this approximationwill bepoor unless onemodel is overwhelmingly
more plausible than all others. Although model stacking and
Bayesian model averaging are not the same, they can be inter-
preted under unifying frameworks, along with other ensemble
methods. Bayesian model averaging provides the consistent
estimation provided that the true generating model is consid-
ered [if not, more models should be added to the ensemble to
have increasingly plausible theories (14)], but model stacking
may be more useful to solve specific problems in practice.
Given their success, understanding ensemble methods and
their connections better is one important problem ahead of us.

Model Expressiveness
Ghasemian et al. (10) also shed light on the second issue, namely
model expressiveness in network science. Model expressiveness
is the ability of a model to represent distinct relevant situations; in
network science, a model is expressive to the extent that it can
represent many different features of real-world networks (for ex-
ample, broad connectivity distributions, connectivity correlations,
network motifs, or group structure). The proposed model stacking
is explicitly built to be very expressive by incorporating the ex-
pressiveness of each of the 203 constituent models, but not all
constituent models are equally expressive. Indeed, given a net-
work and the stacked model, a very interesting question is, Which
constituent model contributes most to the description of the
network? It is not difficult to see how answering this question
could illuminate the mechanisms responsible for the structure of
the network and how the process of mechanism discovery could
be set on solid grounds by extending this scheme—adding new
models to the stacked model, checking how they improve pre-
dictive power, and iterating the process.

In this sense, the work of Ghasemian et al. (10) is also seminal
as a large-scale comparison of the predictive ability of hundreds of
models on hundredsof networks. And the results are telling—stochastic
block models (3, 16–18) and, in particular, the degree-corrected

Fig. 1. In the problem of link prediction, we are asked to identify
which unobserved links in a network are more likely to exist. Nodes
could represent individuals or drugs, and links could represent,
respectively, friendship relationships in a social network or harmful
drug–drug interactions. In this example, links AB and CD exist but
have not been observed, so we aim to predict them. Model 1 pays
attention only to the connectivity of nodes, and it captures that many
nodes are connected to A, so it correctly predicts the AB link.
However, since there is nothing especial about the connectivity of C
and D, it misses the CD link. Conversely, model 2 pays attention only
to group structure, so it realizes that all nodes in the group at Right
are connected to each other, and it predicts the CD link. However,
since in the group at Left many pairs of nodes are not connected to
each other, it misses link AB. Model stacking, in which models 1 and
2 are combined, may be able to predict both links.
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stochastic block model (19) are, on average, the most explanatory
individual models for biological, economic, technological, infor-
mation, and transportation networks, that is, for all types of net-
works except social networks (figure 1 in ref. 10). Considering,
again, the NFL theorems, the general goodness of stochastic block
models is remarkable and suggests that they are, themselves, ex-
tremely expressive models. In fact, Bayesian model averaging over
the whole family of stochastic block models (3, 9, 20) is almost as
predictive of links as the whole stacked model including 203 di-
verse constituent models (figure 3 in ref. 10)—except, of course,
that when the Bayesian model averaging of the stochastic block
models is added to the stack, the stacked model comes out ahead
by a fair amount again. So stochastic block models are very ex-
pressive, but can still benefit for features that are present in other

existingmodels. Can we find ways to incorporate such features into
mathematically tractable model families?

In very remarkable ways, then, and besides link prediction,
Ghasemian et al. (10) contribute significantly to a program for
solid progress in network modeling and for understanding the
generative mechanisms of complex networks. In a way, it seems,
progress in network science is about finding free lunches—model
families that can express the features of real-world networks, that
we can explore systematically, and that we can refine as new
patterns are uncovered to improve their predictive performance.
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