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Abstract
Machine learning offers a promising path to annotating the large number of unidentified MS/MS spectra in metabolomics, addressing

the limited coverage of current reference spectral libraries. However, existing methods often struggle with the high dimensionality and

sparsity of MS/MS spectra and metabolite structures. ChemEmbed tackles these challenges by integrating multidimensional, continuous

vector representations of chemical structures with enhanced MS/MS spectra. This enhancement is achieved by merging spectra across

multiple collision energies and incorporating calculated neutral losses from 38 472 distinct compounds, providing richer input for a

convolutional neural network (CNN). ChemEmbed ranks the correct candidate first in over 42% of cases and within the top five in more

than 76% of cases. In external benchmarks such as CASMI 2016 and 2022, ChemEmbed outperforms SIRIUS 6, the current state-of-the-art

in computational metabolomics. We applied ChemEmbed to predict structures in t he Annotated Recurrent Unidentified Spectra (ARUS)

dataset and confirmed 25 previously unidentified compounds. These findings demonstrate ChemEmbed’s potential as a robust, scalable

tool for accelerating metabolite identification in untargeted mass spectrometry workflows.

Keywords metabolite identification; untargeted metabolomics; mass spectrometry; deep learning; m olecular embeddings
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Introduction

The interpretation of tandem mass spectrometry (MS/MS) data is cru-

cial for the identification of metabolites, which in turn i s particularly

relevant for the growing applications of metabolomics in biomedicine,

nutritional and environmental sciences [1].

The predominant strategy for metabolite identification involves

comparing experimental spectra with pre-recorded MS/MS spectra

of known compounds to find matching fragments. However, due to

the limited size, quality, and diversity o f available reference spec-

tral libraries, a significant portion of MS/MS spectra g enerated in

metabolomic experiments remain unidentified [2].

In silico fragmentation tools have emerged as a solution to address

this challenge. These tools c ombine chemical rules to capture known

fragmentation events [3], probabilistic models to assign probabil-

ities to potential fragmentations [3, 4], and/or machine learning
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algorithms to learn the complex relationships between molecular 
structures and their corresponding fragmentation patterns by MS

[5–7]. 
To enable efficient computation and learning by machine learn-

ing algorithms, both experimental MS/MS spectra and the chemical 
structures of metabolites must be converted into numerical formats 
that preserve key i nformation. MS/MS spectra, typically represented 
as lists of m/z values and intensities, are e ncoded into fixed-length

vectors using techniques such as feature hashing [8, 9], binning [7, 
10–12], chemical formula representations [5], and spectral fingerprint-

ing [7]. Chemical structures are typically encoded as molecular fin-

gerprints [13–15], though graph-based representations a re also used 
[16, 17]. 

However, encoding techniques are severely affected by the sparsity 
and high dimensionality of metabolomics data, which can lead to 
many issues including model interpretation, complexity and overfit-

ting. For example, molecular fingerprints are binary or count vec-

tors that represent the presence, absence, or the number of specific 
chemical features within a molecule, such as atom types, functional 
groups, or structural motifs. While the dimensionality of these fin-

gerprints is fixed by the number of features they are designed to 
capture, the vast chemical diversity of metabolites leads to inher-

ent sparsity—most features remain inactive or set to zero for most

compounds.

Encoded m/z values and intensities from MS/MS spectra face a 
similar sparsity issue when represented as fixed-length vectors. Given 
that spectra only contain a few peaks within a broad m/z range, 
most bins are left empty, with only a small number of non-zero bins

corresponding to specific fragment ions.

To overcome these limitations, we propose ChemEmbed, a new 
tool for metabolite identification from MS/MS spectra. Our tool is 
based on two complementary strategies designed to e nrich the rep-

resentations of both chemical structures and MS/MS spectra. First, 
we employ 300-dimensional embeddings generated by Mol2vec [18], 
an unsupervised machine learning approach that captures complex 
structural properties of molecules with greater depth than traditional 
molecular fingerprints. Second, to address the sparsity in spectral 
data, we use merged spectra that combine multiple collision energies 
and calculated neutral losses from reference libraries. This expanded 
spectral representation broadens the range and diversity of binned 
spectra, providing a richer input for a convolutional neural network 
(CNN). The CNN is trained to predict 300-dimensional Mol2vec embed-

dings from these enhanced spectra, and these e mbeddings are then

compared and ranked against a reference database of millions of

Mol2vec embeddings.

We consider a dataset of 38 472 distinct compounds with reference 
MS/MS data, which we split into training, validation, and test sets. 
In the test set, ChemEmbed accurately annotated the top-ranked 
candidate (Tanimoto ≥0.95) in over 42% of cases and identified 
the correct candidate within the top five in more than 76% of 
cases. When challenged with external datasets such as CASMI

2016 and 2022, ChemEmbed consistently outperformed the latest

version of SIRIUS [7], the current state-of-the-art method in com-

putational metabolomics. Furthermore, in a validation experiment 
using the Annotated Recurrent Unidentified Spectra (ARUS) from 
the NIST Mass Spectrometry Data C enter, our tool successfully 
identified 25 previously unannotated compounds, demonstrating 
its broad applicability and superior performance across diverse

datasets.

Methods 
Dataset and data pr eprocessing 

For our spectra-to-molecule CNN model, we used a dataset of 38 472 
unique compounds sourced from the NIST20, MSDIAL, GNPS, and 
Agilent METLIN databases. Initially, the NIST20 dataset provided only 
InChIKey information, so we leveraged the PubChem API to retrieve 
the corresponding SMILES strings. The Agilent METLIN dataset also 
contained missing SMILES and InChIKey data, which we supple-

mented using the RDKit tool to convert available SMILES to molecular 
information, followed by PubChem API queries to obtain the remain-

ing SMILES for specific InChIKeys.

After gathering the SMILES information for all datasets, we 
removed any spectra with null values. Since stereochemistry was 
not considered in this work, we used only the first 14 characters of 
the unique InChIKey identifier.

Spectral data pr eprocessing 

To prepare the MS/MS spectra for model training, several prepro-

cessing steps were implemented. Only [M + H]+ adducts in positive 
ionization and [M-H]− adducts in negative ionization were used. Peaks 
that exceeded the precursor mass by more than 0.5 Da were removed. 
To reduce noise, fragments with intensities below 1% of the highest 
peak were filtered out, and the remaining intensities were binarized. 
Each MS/MS spectrum was encoded as a vector with a bin size of 0.01. 
Pareto analysis revealed that 20% of the u nique m/z bins accounted

for 83% of the spectral values (Supplementary Fig. 8). Consequently, 
we limited the m/z axis to ≤700, reducing the vector length to 70 000 
bins. This adjustment eased computational demands while retaining 
80% of the spectral data.

Merged and merged+neutral loss spectral vectors 

For each compound, we first discretized the m/z axis into 0.01 Da bins. 
Fragment peaks from all available MS/MS spectra (across collision 
energies) were mapped to these bins, and we then took the union 
across spectra: when the same fragment appeared at multiple collision 
energies (i.e. mapped to the same bin), it was counted once. A binary 
vector was then generated by assigning a value of 1 to bins containing 
a fragment and 0 otherwise. This merged spectral vector provides a

standardized, fixed-length representation of the compound’s MS/MS

spectra.

For the Merged+Neutral Loss representation, neutral losses were 
additionally calculated for each fragment as:

�m/z = m/zprecursor − m/zfr agment. 

Both the fragment m/z values and their corresponding neutral 
losses were discretized into the same 0.01 Da bins. The two sets 
were concatenated and converted into a binary vector following 
the same procedure as a bove. This combined representation cap-

tures both fragment and neutral loss information in a standard-

ized, fixed-length format suitable for downstream machine learning

models.

Convolutional neural n etworks 

We employed a CNN to predict 300-dimensional Mol2vec embeddings 
from input MS/MS spectra. The models were trained and tested using
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an NVIDIA Tesla T4 GPU, with experiments conducted within the 
PyTorch framework. For development and implementation, we uti-

lized the PyCharm integrated development environment (IDE).

- Individual spectra dataset: This set included 527 236 spectra 
(80%) for training, 64 774 spectra (10%) for validation, and 66 843 
spectra (10%) for testing. In this configuration, the same compound 
can appear multiple times, as MS/MS spectra were acquired under 
different collision energies. Each MS/MS spectrum is treated as an 
independent input, but all are paired with the same Mol2vec embed-

ding corresponding to the compound’s structure. This setup, therefore, 
produces multiple training examples per compound, each linking a

unique spectrum to a shared molecular representation.

- Merged spectra dataset: this set was divided into 30 775 spectra 
(80%) for training, 3847 spectr a (10%) for validation, and 3850 spectr a
(10%) for testing.

Network architectur e 
Six convolutional layers capture spatial relationships between mass-

to-charge (m/z) values across the spectrum. Six max pooling layers 
reduce the dimensionality of the feature space. The first fully con-

nected layer flattens the spatial data, and the final fully connected 
la yer outputs the 300-dimensional Mol2vec embedding. The input to 
the network is a vector of 70 000 bins, representing the m/z values of

the spectra.

Hyperparameters and training 
We used the Adam optimizer with a learning rate of 0.0001 for 
backpropagation. Early stopping based on validation loss was 
implemented to prevent overfitting. The merged spectra network 
was trained for 70 epochs, while the individual spectra network 
was trained for 15 epochs, both using a mini-batch size of 32. Mean

squared error was used as the cost function.

Activation function and r egularization 
The Rectified Linear Unit (ReLU) was chosen as the activation function 
due to its effectiveness in mitigating the vanishing gradient problem 
in deep networks. Dropout regularization was applied to prevent 
overfitting. No a ctivation function was applied to the final output 
layer, allowing the predicted embeddings t o span any value within

the Mol2vec embedding space.

Analysis with SIRIUS 6.0 

To validate our tool against SIRIUS+CSI FingerID, we used the 
graphical interface of SIRIUS v6.0.0 (June 3, 2024). First, we imported 
a custom reference database of 5.52 million entries into the software 
using SMILES information to ensure consistency across both tools. 
Next, we removed chemical structures from CASMI 2022 that 
were part of the SIRIUS 6.0 training set by downloading the InChI 
identifiers for positive and negative ion mode from the respective

training structure links: https://csi.bright-giant.com/v3.0/api/fingerid/ 
trainingstructures?predictor=1 and https://csi.bright-giant.com/v3.0/ 
api/fingerid/trainingstructures?predictor=2. We then converted these 
InChI identifiers t o SMILES format using RDKit.

We imported the MS/MS spectra from the CASMI 2022 dataset and 
initiated the analysis by selecting the ‘Compute’ option, which opened 
a parameter configuration window. For the SIRIUS tool, we configured 
the instrument as ORBITRAP, MS2 mass accuracy to 5 ppm, the adduct

to [M + H]+ and [M-H]− for positive and negative ion mode, respec-

tively, and set the molecular formula generation method to De novo 
+ bottom-up. Following this, we enabled CSI:FingerID for property 
prediction with default threshold score settings. For the structure 
database search, we selected our custom database of 5.52 million 
structures and disabled PubChem as a fallback. Upon running the 
analysis, SIRIUS returned a list of candidate molecules for each MS/MS 
spectrum, which we sorted in ascending order by the CSI:FingerID

score, a key feature used to assess the quality of candidate molecules.

In the final step, we identified the top five candidates from both tools 
and compared their performance by evaluating which tool returned a 
higher number of correct candidates in the top 5 for each MS/MS spec-

trum. This comparison enabled us t o assess the relative accuracy and 
effectiveness of the two tools in generating valid candidate molecules.

Molecular fi ngerprints 

Molecular fingerprints, commonly used to represent molecular struc-

tures, encode predefined molecular features, such as specific sub-

structures, into bit vectors. To replace M ol2vec embeddings, we used 
all five fingerprint types defined in the SIRIUS CSI framework [19]: 
(i) CDK Substructure Fingerprints: Capture 307 molecular properties 
using predefined substructure patterns (Chemistry Development Kit, 
version 1.5.8); (ii) PubChem (CACTVS) Fingerprints: Represent 881 
properties, based on PubChem specifications; (iii) Klekota–Roth Fin-

gerprints: cover 4860 properties, providing detailed structural and 
functional group information; (iv) FP3 Fingerprints: represent 55 
properties derived f rom SMARTS patterns (Open Babel, version 2.3.2); 
and (v) MACCS Fingerprints: Encode 166 SMARTS-based properties 
(Open Babel, version 2.3.2). Fingerprint calculations utilized the Chem-

istry Development Kit (CDK) version 1.5.8 and PyFingerprint (https:// 
pypi.org/project/pyfingerprint/). 

Data prepr ocessing 
The initial combined fingerprint set encompassed 6269 molecular 
properties. Constant and redundant features were removed from the 
training dataset, reducing the feature set to 4237 properties. These 
features were split i nto training (80%), validation (10%), and testing 
(10%) subsets, maintaining the same distribution used for Mol2vec-

based training.

Model development a nd training 
Initial attempts to train the CNN architecture designed for Mol2vec 
embeddings with molecular fingerprints failed, as training and vali-

dation losses remained constant. To address this, a DNN comprising 
four fully connected layers with ReLU activation functions was imple-

mented. Dropout layers were added for regularization, and binary 
cross-entropy served as the loss function to handle the multi-label 
classification task. During training, outputs were binarized using a 
threshold of 0.50, assigning a label of 1 to predictions ≥0.50 and 0

otherwise. The DNN demonstrated learning, with steadily decreasing

training and validation losses.

Molecular ranking a nd evaluation 
The trained model was evaluated using the same molecular rank-

ing method as for Mol2vec-based predictions. A dataset of 0.52 mil-

lion molecules was used, substituting the refined molecular finger-

prints for Mol2vec embeddings. Model predictions were compared 
to ground-truth embeddings by computing pairwise distances (cosine
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similarity and Euclidean distance), and performance was quantified 
using Top-1 and Top-5 accur acy.

We used Top-k accuracy instead of AUROC, F1-score, sensitivity, or 
specificity because ChemEmbed formulates metabolite annotation as 
a regression task in the embedding space rather than a binary or 
multiclass classification problem. In this setting, Top-k metrics are the 
most informative, as they quantify how often the correct compound 
appears among the top-ranked candidates—closely mirroring stan-

dard metabolomics pr actice, where candidate lists are generated and

refined with additional orthogonal evidence.

ChemBERTa-2 e mbeddings 

ChemBERTa-2 is a Transformer-based language model for molecules, 
developed by DeepChem and trained on ∼77 million SMILES strings. 
To generate embeddings, we used the Hugging Face transformers 
library with the pre-trained checkpoint DeepChem/ChemBERTa-77 M-

MLM. SMILES strings were tokenized with AutoTokenizer and passed 
through AutoModel to obtain fixed-length representations. Each 
molecule was encoded as a 384-dimensional embedding vector. These 
embeddings w ere then compiled into a reference database comprising 
0.52 million molecules with their corresponding ChemBERTa-2 
representations (Supplementary File 7). The trained model was 
evaluated using the same molecular ranking method as for Mol2vec-

and molecular fingerprints-based predictions.

Exercise training dataset 

Serum samples were collected from 46 sedentary but healthy 
individuals (35 women and 11 men) before and after a 3-week 
exercise training program consisting of nine sessions. The participants 
had a mean body mass index (BMI) of 23.8 ± 3.9 kg/m2 and a mean 
age of 33.1 ± 7.0 years (mean ± standard deviation). The dataset 
includes multiple exercise modalities, namely HIIT, MICT, and SSST. 
Samples were analyzed using an Acquity UPLC BEH HILIC column

(2.1 × 150 mm, 1.7 μm; Waters) coupled to a Thermo Scientific™ 
Orbitrap IDX Tribrid mass spectrometer equipped with a HESI 
interface operating in both positive and negative ionization modes. MS 
and MS/MS data acquisition were performed as previously described 
in Giné et al. [20], except that the normalized collision energy (HCD 
cell) was applied in stepped mode at 10, 20, 30, and 40%. Only 
features detected in more than 80% of samples were retained for 
statistical analysis. Significant differences were assessed u sing a

paired univariate t-test (P < .05).

Results 
Construction of spectral and structur al d atabases

We generated SMILES identifiers for 38 472 unique compounds 
sourced from the NIST20 [21], MSDIAL [22], GNPS [23], and Agilent 
METLIN metabolomics libraries (see Methods) (Supplementary File 1), 
comprising 683 664 MS/MS spectra in positive ionization ([M + H]+) 
and 158 382 MS/MS spectra in negative ionization ([M-H]−), as detailed 
in Supplementary Tables 1 and 2, respectively. Since many compounds 
were annotated across different reference libraries, we calculated 
the overlap by matching t he first 14 characters of their I nChIKey

identifiers (Supplementary Fig. 1). To resolve duplicates, we prioritized 
the libraries in the following order: NIST20 > Agilent ME TLIN > GNPS 
> MSDIAL (Supplementary Table 3 and 4). For example, if a compound 

was found in both NIST20 and Agilent METLIN, we discarded the 
MS/MS spectra from A gilent METLIN, and so on.

These spectra were pre-processed and curated to remove back-

ground signals and noise, as described in the Methods section. This 
collection formed what we termed the individual spectra dataset, 
capturing the diversity and redundancy of compounds fragmented at

multiple collision energies.

Next, we created a second collection of MS/MS spectra by merging 
all available spectra across different collision energies for each com-

pound, producing a single consensus MS/MS spectrum per compound

(see Methods). This merging process resulted in 38 472 spectra in 
positive ionization mode and 14,168 spectra in negative ionization 
mode. The merged spectra dataset broadened the range and diver-

sity of encoded bins, providing a more comprehensive view of each 
compound’s fragmentation behavior b y combining information from

various collision energies (Supplementary Fig. 2). 
To further enhance spectral representation, we generated a third 

collection of MS/MS spectra by incorporating neutral losses (NL) into 
the merged spectra. For both positive and negative ionization modes, 
we calculated the mass difference between precursor and fragment 
ions, and then binarized their intensities, rather than retaining the 
original fragment ion intensities, as done in previous studies [24]. The 
resulting neutral loss values were added t o each merged s pectrum

(see Methods and Supplementary Fig. 2), resulting in an enriched 
dataset that combines fragment ions from multiple collision energies 
with their corresponding neutral losses, all i n binarized format.

Mol2vec embeddings refer ence database 

Mol2vec is an unsupervised deep learning model, trained on 19.9 
million compounds from the ZINC [25] and ChEMBL [26] databases, 
which converts molecular structures from their SMILES into 300-

dimensional numerical vector embeddings. Since a single InChIKey 
can produce multiple redundant SMILES, and our goal was to use 
Mol2vec embeddings as labels for training the CNN model, we needed 
to confirm that Mol2vec was insensitive to different SMILES rep-

resentations. To verify this, we randomly selected 100 compounds 
from our database, generated 10 compatible SMILES for each, and 
compared the resulting 300-dimensional embeddings. The Euclidean 
distance between the embeddings was nearly zero (data not shown), 
confirming t hat Mol2vec embeddings are consistent across SMILES

versions and can serve as reliable labels for CNN model training.

Following this validation, we generated a comprehensive refer-

ence database of 0.52 million molecules, each with its corresponding 
Mol2vec embedding, sourced from COCONUT [27], HMDB [2], NIST20, 
GNPS, Agilent METLIN, and MSDIAL. These embeddings serve as the 
‘ground truth’ or reference embeddings for subsequent comparisons 
in the CNN model (Supplementary File 2).

CNN model for molecular embedding prediction 
from MS/MS d ata

We developed a CNN (Supplementary Fig. 3) that accepts MS/MS spec-

tra as input and generates 300-dimensional embeddings as output. 
The CNN’s primary objective is to map the input spectra into a molec-

ular embedding space that replicates the Mol2vec representations. 
For each spectrum in the test dataset, the predicted embeddings were 
then compared to reference database of 0.52 million molecules, each
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Figure 1 Computational workflow for molecular identification using CNN-generated embeddings. MS/MS spectra are the input to a convolutional 
neural network (CNN) trained to generate 300-dimensional embeddings aligned with Mol2vec representations. Predicted embeddings are compared 
to a reference database in a multi-step process: (i) precursor mass filtering: Candidate molecules with precursor ion masses outside a ± 0.001 Da 
error tolerance are excluded; (ii) similarity calculations: Euclidean distance and cosine similarity are computed between the predicted embeddings and 
reference Mol2vec embeddings, r anking molecules by similarity; (iii) structural validation: The top-ranked candidates are further evaluated using the 
Tanimoto score, ensuring structural alignment between predicted and reference m olecules. A Tanimoto score threshold of ≥0.95 is applied t o confirm 
molecular i dentity.

represented by its Mol2vec embedding. To ensure accurate match-

ing between the predicted embeddings and known molecules, we 
employed a multi-step filtering and ranking strategy (Fig. 1). 

First, we applied a precursor ion mass filter to exclude any pre-

cursor ions outside a mass error tolerance of ±0.001 Da, focusing the 
comparison on candidate molecules with closely matching mass. Fol-

lowing this, we calculated both the Euclidean distance and cosine sim-

ilarity between the predicted 300-dimensional vector representation 
and the 0.52 million reference Mol2vec embeddings. Molecules were 
then ranked by their similarity, with Euclidean distance providing a 
measure of c loseness between two points in the embedding space, 
and cosine similarity capturing the directional alignment between the 
predicted and reference vectors. Together, they provide a more com-

prehensive assessment o f similarity, capturing both spatial proximity

and pattern alignment, enhancing the reliability of the molecular

ranking process.

Finally, to assess the structural similarity between the predicted 
and reference molecules, we calculated the Tanimoto score for 
the top-ranked molecules based on their Euclidean distance and 
cosine similarity. The Tanimoto score ranges from 0 to 1, where 0 
indicates no similarity and 1 indicates perfect similarity. In chem-

informatics, thresholds above 0.85 are often regarded as indicative

of significant structural similarity [28–30]. Here, we set a threshold 
of 0.95 for the Tanimoto score to determine molecular identity. This 
threshold provided an additional layer of validation, ensuring that 

the predicted embedding not only closely matched the reference 
embedding but also corresponded to a structurally very similar 
(e.g. stereoisomers) or identical molecule in terms of their SMILES

representations.

Performance of ChemEmbed in a test d ataset

The three collections of MS/MS spectra—individual, merged, and 
merged with neutral losses—were used to train and test three CNN 
models to predict molecular embeddings, with 80% of the spectral 
data used for training, 10% for validation, and 10% for testing

(see Methods). 
Figure 2 A displays the distributions of Euclidean distances and 

cosine similarities between the predicted 300-dimensional embed-

dings and the reference Mol2vec embeddings for the individual spec-

tra dataset in positive ionization. The model trained on this dataset 
showed a mean Euclidean distance of 40 and a mean cosine similarity 
of 0.93. In comparison, the model trained on the merged spectra 
dataset without neutral losses exhibited a significantly lower mean 
Euclidean distance of 24.5 and a higher mean cosine similarity of 
0.96. Incorporating neutral losses provided only a slight improvement, 
reducing the Euclidean distance to 23.1 and increasing the cosine 
similarity to 0.97. These findings demonstrate that as the richness

of spectral information increases—by merging spectra and including

neutral losses—the CNN’s predicted embeddings more closely align

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/27/1/bbag054/8482826 by guest on 20 February 2026



6 | Briefings in Bioinformatics, 2026, V ol. 27, Issue 1

Figure 2 Alignment of CNN-predicted embeddings with reference Mol2vec embeddings. Violin and density plots illustrate the distributions of cosine 
similarities and Euclidean distances between the CNN-predicted 300-dimensional embeddings and the reference Mol2vec embeddings. Results are 
shown for positive ionization (A) and negative ionization (B) datasets. Three model configurations are compared: Trained with individual spectra (I), 
trained with merged spectra (M), and trained with merged spectra incorporating neutral losses (M + NL). Accuracy metrics are repr esented as bars, 
indicating the percentage of correctly identified molecules ranked in the top 1 (dark color) and top 5 (light color) positions for both ionization modes. 
The p lots highlight the performance improvements associated with merging spectra and incorporating neutral l osses.

with the ground truth Mol2vec embeddings. Similar improvements 
were observed in the negative ionization mode (Fig. 2 B). 

This improvement in embedding accuracy directly impacted the 
model’s ability to rank correct compound annotations. When trained 
on the individual spectra dataset, the CNN correctly annotated the top-

ranked candidate (Tanimoto score ≥ 0.95) in over 26% of cases and 
identified the correct compound within the top five ranked candidates 
in over 56% of cases. In contrast, the model trained on the merged 
spectra dataset significantly improved annotation performance, with 
the correct top-ranked candidate identified in over 40% of cases and 
the correct compound found within the top five in over 73% of cases. 
The inclusion of neutral losses further enhanced CNN’s performance, 
with correct top-ranked candidates identified in over 43% of cases and

correct annotations within the top five in over 76% of cases.

Performance in the negative ionization mode showed consistent 
and reproducible behavior, with only a slightly slower ranking per-

formance compared to positive ionization (Fig. 2 B). We attribute this 
difference to the typically lower number of fragment ions in negative 
ionization, which may provide less informative data for the CNN to 
generate accurate molecular embeddings.

As expected, neither the combination of individual mass spectra 
with neutral losses (59.8% for top 5 annotations) nor neutral losses 
alone (69% for top 5 annotations, calculated from merged spectra) 
outperformed the full combination of merged s pectra with neutral

losses (Supplementary Table 5). 
An additional advantage of using merged spectra is that the pro-

cessing time for the test dataset, which included 3850 compounds, was 
substantially reduced with respect to considering individual spectra. 
On a basic laptop CPU (Mac 2020, M1 Core, 16 Gb RAM), the full 

pipeline—covering MS/MS preprocessing, CNN inference, and can-

didate r anking—took less than 20 min for the merged spectra with 
neutral losses. In contrast, processing the individual spectra dataset 
required nearly 6 h, highlighting the efficiency and scalability of the

merged spectra approach.

To further demonstrate the value of combining enhanced MS/MS 
data with multidimensional molecular embeddings, we evaluated 
two alternative approaches for encoding chemical structures: molec-

ular fingerprints and tr ansformer-based embeddings. Specifically, we 
tested (i) molecular fingerprints capturing 4237 chemical properties,

similar to those used in SIRIUS-CSI:FingerID [19], and (ii) ChemBERT a2 
embeddings [31], 384-dimensional vectors derived from SMILES using 
a pre-trained transformer model (see Methods). 

We first retrained our CNN architecture using either fingerprints 
or ChemBERTa2 embeddings, keeping all architectural components 
and hyperparameters identical to the Mol2Vec-based setup to ensure 
fair comparisons. When replacing Mol2Vec with fingerprints, the 
CNN failed to demonstrate meaningful learning. Similarly, while 
ChemBERTa2 embeddings outperformed a random baseline, they 
did not match the performance of the CNN + Mol2Vec model. W e 
explored several alternative CNN configurations—including lower 
learning rates, fewer convolutional layers, and feature reduction— 
but none yielded significant improvements, with only 27% of correct

top-ranked candidates and 60% within the top five using ChemBERTa2

embeddings (see Supplementary Table 6). 
We then evaluated the performance of fingerprints using a fully 

connected deep neural network (DNN) consisting of four dense layers. 
This architecture improved performance compared to the CNN, yield-

ing 39% correct top-ranked predictions and 73% within the top five
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(for positive ionization mode). Next, we tested ChemBERTa2 embed-

dings using DNNs with hyperparameter tuning and early stopping. 
This combination significantly outperformed the CNN + ChemBERTa2 
setup and achieved results comparable to CNN + Mol2Vec, with 44% 
correct top-ranked candidates and 78% within the top five. For com-

pleteness, we also trained DNN models with Mol2Vec embeddings, 
which performed slightly below the ChemBERTa2 + DNN configu-

ration (see Supplementary Table 6). These findings underscore the 
interplay between embedding type and model architecture: Mol2Vec 
embeddings are best suited for convolutional architectures, whereas 
ChemBERTa2 embeddings perform more effectively with deep fully

connected networks.

To better understand the source of these performance differences, 
we conducted two complementary analyses: (i) Principal Component 
Analysis (PCA) of 3850 randomly selected embeddings showed 
that Mol2Vec captured substantially more variance i n the first two 
principal components (PC1 = 35.06%, PC2 = 19.12%; total = 54.18%) 
than ChemBERTa2 (PC1 = 13.14%, PC2 = 10.07%; total = 23.21%)

(Supplementary Fig. 4). Visual inspection of the PCA plots suggest 
that Mol2Vec encodes molecules into a low-dimensional, smooth 
latent space. This continuous and spatially coherent structure aligns 
well with CNNs, which exploit local relationships and hierarchical 
patterns. In contrast, ChemBERTa2 produced high-dimensional, more 
fragmented embeddings in which a smaller portion of the variance 
is explained by the first two PCs. This may indicate a more granular 
and distributed representation of chemical space, likely capturing 
subtle differences in local structure and SMILES-specific syntax. (ii) 
SMILES robustness analysis further emphasized these differences 
in embedding behavior. For 10 structurally distinct c ompounds, we 
generated 10 alternative SMILES strings per compound—each repre-

senting the same molecule (Tanimoto similarity = 1)—and compared 
their corresponding embeddings. As previously observed, Mol2Vec 
produced nearly identical embeddings across all SMILES variants 
(cosine similarity ≈ 1.0), demonstrating strong r obustness to SMILES

encoding. In contrast, ChemBERTa2 embeddings exhibited greater

variability in both cosine similarity and Euclidean distance, reflecting

higher sensitivity to input SMILES syntax (Supplementary Fig. 5). 
DNNs, which do not assume spatial locality, might be better equipped 
to work with ChemBERTa2’s fine-grained and potentially more

fragmented representations.

Validation with non-annotated s pectra 

To evaluate the tool with datasets of non-annotated metabolites, we 
used three publicly available resources: the Critical Assessment of 
Small Molecule Identification (CASMI) challenges [32] from 2016 
and 2022, as well as the Annotated R ecurrent Unidentified Spectra 
(ARUS) database [33] from the NIST Mass Spectrometry Data Center. 
To expand the pool of potential candidate structures, we created a 
reference database c ontaining Mol2vec embeddings for 5.52 million 
molecules, which included 5 million random compounds from

PubChem.

The CASMI 2016 challenge dataset contained 208 MS/MS spectra 
from 188 unique structures, with 127 spectra acquired in positive ion 
mode and 81 in negative ion mode. After removing any molecules 
from CASMI 2016 that were present in our CNN training dataset, we 
retained 27 unique structures in positive mode and 30 in negative 
mode. For CASMI 2022, which initially included 177 structures in 
positive ion mode and 108 in negative ion m ode, we applied the same

filtering process. This resulted in 149 unique compounds in positive

mode and 97 in negative mode.

The ARUS dataset contains MS/MS spectra frequently observed in 
human samples, but which remain unannotated. We selected ARUS 
spectr a with putative molecular formulas assigned using the BUDDY

software [34] (see Supplementary File 3). This dataset includes 25 801 
spectra f rom plasma and 68,478 spectra from urine.

For each unknown molecule, we pre-processed its associated s pec-

trum as previously described (see Methods). That is, peaks exceeding 
the precursor mass by more than 0.5 Da were removed, and fragments 
with intensities below 1% of the most intense peak were filtered out. 
The mass differences between precursor and fragment ions were 
calculated, and the resulting neutral loss values were incorporated 
into each spectrum. All intensity values were binarized and each 
spectrum was then encoded as a vector with a bin size of 0.01 Da,

with the m/z axis restricted to ≤700 Da.

ChemEmbed generated a list of candidate annotations for each 
spectrum. These candidates were ranked based on both the Euclidean 
distance and cosine similarity between the predicted 300-dimensional 
embeddings and a reference set of 5.52 million Mol2vec embeddings. 
The top five candidates were selected for further analysis.

In the CASMI 2016 challenge, our model successfully ranked the cor-

rect molecule within the top five c andidates in over 60% of cases, for 
both positive and negative ionization spectra (Supplementary Table 7). 

We then compared the performance of ChemEmbed against the 
latest version of SIRIUS (version 6.0.0) [7]  (s  ee  Methods) using both 
the CASMI 2022 and ARUS datasets. Both tools used the same ref-

erence dataset of 5.52 million molecules as the pool of potential 
candidate structures, matching either molecular fingerprints (SIRIUS) 
or 300-dimensional Mol2vec embeddings (ChemEmbed). To ensure 
a fair comparison, we removed compounds from the CASMI 2022 
dataset that had been included in the training of the latest version

of SIRIUS (see Methods), resulting in 107 unknown compounds for 
both tools in positive ionization mode and 64 in negative ionization 
mode. ChemEmbed ranked the correct compound within the top five 
candidates in 33% of cases for positive ionization spectra and 30% for 
negative ionization spectra. In contrast, SIRIUS achieved success rates 
of 28% for positive ionization and 17% for negative ionization when

considering the top five candidates (Supplementary Table 7). 
Finally, we applied ChemEmbed to process 25 801 MS/MS spectra 

from plasma and 68 478 spectra from urine in the ARUS dataset. 
ChemEmbed generated potential annotations for 23.8% of positive 
ionization spectra (Supplementary File 4) and 19.7% of negative 
ionization spectra (Supplementary File 5), based on criteria of cosine 
similarity scores above 0.95 and Euclidean distances below 25

(Supplementary Table 8). Among these high-confidence matches, 
we identified seven compounds by spectral matching a gainst 
an emerging repository of s ynthesized compounds from UCSD

[35]—four from plasma and three from urine (Supplementary Fig. 6). 
Additionally, to further assess annotation performance, we randomly 
selected 40 spectra for manual review. An expert in analytical 
chemistry e valuated the top five candidates for each spectrum, 
identifying 25 compounds in total (Fig. 3, Supplementary File 6 and 
Supplementary Fig. 7). 

Attempts to replicate this analysis using SIRIUS 6.0 were unsuccess-

ful, as the tool either failed to complete the processing of the large 
dataset or caused the server to crash. Consequently, we restricted 
direct comparisons to the 25 manually reviewed compounds. Among 
these, SIRIUS correctly ranked 16 compounds within the top five
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Figure 3 ChemEmbed applied to the ARUS dataset. (A) Stacked bar chart showing the ranking positions of 25 compounds identified in positive ionization 
mode across plasma and urine by ChemEmbed, compared to SIRIUS. (B) Annotated MS/MS spectra for 8-hydroxyquinoline glucuronide (top) and 
Milacemide (bottom) from the ARUS urine spectral dataset, showing tentative fragment ion assignments and inferred neutral losses, calculated as the 
mass differences between the p recursor ion and each observed product i on.

candidates ( Fig. 3), with five compounds ranked higher by SIRIUS 
than by ChemEmbed, highlighting the complementarity of the two 
tools (Supplementary File 6 ). Therefore, when maximum annotation 
coverage is desired, combining both computational approaches may

be beneficial.

Metabolite annotation in response to physical activity

Finally, we analyzed serum samples from a cohort of 46 healthy 
sedentary individuals collected before and after 3 weeks of exercise 
training, using both positive and negative ionization modes. The 
dataset included three exercise modalities—high-intensity interval 
training (HIIT), moder ate-intensity continuous training (MICT), and 
super-slow strength training (SSST)—which were treated collectively 
to identify over all metabolic changes induced by the 3-week training

program.

A paired t-test identified 166 statistically significant features (P < 
.05; 56 in positive mode and 110 in negative mode), which were subse-

quently annotated using both conventional spectral matching against 
common reference databases (NIST23, GNPS, MS-DIAL, and METLIN) 

and ChemEmbed. Spectral matching identified 6 and 11 compounds 
(cosine similarity >0.80) in positive and negative ionization modes, 
respectively, whereas ChemEmbed identified 10 and 44 compounds

(cosine similarity >0.90) (Fig. 4), highlighting ChemEmbed’s ability 
to extend metabolite coverage beyond existing spectral resources. 
Several metabolites, such as the dipeptides Phe-Trp and Phe-Phe, O-

acetylcarnitine, LPE(16:0/0:0), PI(18:0/20:4), an isoform of dihydroxy-

benzoic acid, and phenyllactic acid, were consistently annotated by 
both spectral matching and ChemEmbed (Supplementary File 8). In 
contrast, compounds such as inosine were detected exclusively by 
spectral matching, as ChemEmbed did not annotate sodium-adducted 
species ([M + Na]+), which were not included in its training set.

Discussion 
Despite the growing number of reference MS/MS spectra, public 
and commercial databases still cover l ess than 15% of the known 
small molecule chemical space [36, 37]. Even focusing on genome-

scale metabolic networks—excluding the vast chemical diversity 
introduced by microbiota, environmental exposures, diet, and
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Figure 4 Differentially up- and down-regulated metabolites after 3 weeks of physical activity, analyzed in positive (left) and negative (right) ionization 
modes. The x-axis represents the percentage change relative to baseline (day 0), showing the mean percentage ± standard error (×1.96) corresponding 
to a 95% confidence interval. The y-axis lists the variable identifiers of compounds annotated by spectral matching and/or C hemEmbed (see 
supplementary file 8 for d etails).

contaminants—only ∼40% of eukaryotic metabolic networks can be 
mapped u sing available spectral standards [38]. 

Machine learning tools are helping to bridge this gap, but they 
face challenges in learning meaningful patterns due to the high 

dimensionality and sparsity of MS/MS spectra and metabolite 
structures. A key issue stems from training models on reference 
MS/MS spectra acquired at fixed collision energies, as seen in

databases like METLIN, MassBank, and GNPS. Our study demonstrates
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that training neural networks with individual collision energy spectra 
per molecule underperforms compared to using a single merged 
spectrum. The higher sparsity of individual spectra complicates 
learning and increases the risk of overfitting.

Using merged spectra also addresses the computational complexity 
of fixed-energy inputs. For instance, training one epoch with indi-

vidual spectra took over 95 min, compared to just 5.5 min with 
merged spectra. This efficiency extends to inference: processing 25 
801 MS/MS spectra from plasma and 68 478 from urine in the ARUS 
dataset required less than 1 h and 2 h on a basic laptop CPU, respec-

tively. These results highlight the scalability and practicality of our

approach.

Modern qTOF and Orbitrap instruments now support ever grow-

ing faster scan rates, improved duty cycles, and advanced collision 
energy options, such as full-CE ramps and stepped collision ener-

gies. These advancements provide more comprehensive fragmen-

tation patterns, enhancing metabolite identification accuracy. How-

ever, leveraging such rich spectral information requires careful pre-

processing. ChemEmbed merges data from multiple collision ener-

gies and binarizes the intensities, simplifying the input and reduc-

ing overfitting risks by focusing on the presence of fragment ions 
rather than their intensities. Fragment intensities can vary widely 
due to factors such as fragmentation technique, collision energy, and

instrument-specific differences [39, 40] adding unnecessary complex-

ity and potential noise if treated as m odel inputs.

Our results also highlight the critical interplay between molecu-

lar embeddings and machine learning architectures. Although both 
Mol2Vec and ChemBERTa2 encode chemically meaningful informa-

tion, their latent structures differ in ways that directly affect perfor-

mance. Mol2Vec produces smooth, low-dimensional spaces that are 
highly invariant to SMILES syntax, properties that align well with 
convolutional architectures designed to exploit local continuity and 
hierarchical patterns. In contrast, ChemBERTa2 embeddings, trained 
on a much larger corpus (77 M versus 19.9 M molecules for Mol2Vec), 
are more sensitive to SMILES representation and distribute infor-

mation across higher-dimensional, fragmented spaces. These char ac-

teristics make them less compatible with CNNs but better suited to 
fully connected DNNs, which can leverage fine-grained, distributed 
representations without assuming spatial coherence. Future work 
should extend this analysis to other embedding strategies, such as 
gr aph neural networks (GNNs) and alternative Transformer-based

models, to systematically investigate how molecular representations

and neural architectures jointly shape performance in metabolite

identification tasks.

Similarly, the poor performance of fingerprints with CNNs can be 
explained by the mismatch between the representation and the induc-

tive biases of the architecture. Fingerprints are sparse and binary vec-

tors in which each bit encodes the presence of a predefined substruc-

ture, but the bit positions are arbitrary and lack intrinsic ordering. As 
a result, adjacent features do not carry related chemical information, 
making convolutional filters ineffective since they are designed to 
exploit local continuity and hierarchical structure. In contrast, fully 
connected DNNs do not a ssume spatial locality and instead evaluate 
each feature independently, which is more consistent with the dis-

crete, unordered nature of fingerprints. Nevertheless, their perfor-

mance remained inferior to Mol2Vec or ChemBERTa2 embeddings, 
likely because handcrafted fingerprints provide a limited and lossy

representation of molecular structure compared to the continuous,

chemically contextualized latent spaces produced by learned embed-

dings.

Finally, both the limited availability of reference spectr a [41] and 
the quality of MS/MS data in both public (community-contributed) and 
commercial libraries remain critical factors for improving computa-

tional annotation. At an early stage, we considered incorporating low-

resolution spectral data (e.g. from triple quadrupole instruments) to 
increase coverage. However, these datasets were ultimately excluded 
because our spectral binning strategy relies on a fixed bin width 
of 0.01 Da. This resolution was chosen to enhance specificity while 
keeping computational costs manageable. Low-resolution spectra are 
incompatible with this approach, as t heir broader peak widths would

be distributed across multiple bins, leading to information loss and

reduced discriminative power.

ChemEmbed is currently limited to annotating MS/MS spectra of 
compounds whose structures are present in the embedding space. 
However, expanding the reference database indiscriminately does 
not necessarily improve performance. In the ARUS dataset, we tested 
the effect of adding ∼5 million randomly selected molecules from 
PubChem to broaden chemical coverage. Although this substantially 
increased the database size, it also introduced many compounds 
of limited biological relevance (e.g. purely synthetic or drug-

like molecules) along with large numbers of isomeric variants— 
predominantly stereoisomers and tautomers that will not likely be 
distinguished by MS/MS alone. When test spectra were compared 
against this expanded 5.5 million–compound database rather than 
the original 0.52 million Mol2Vec embeddings, ranking performance 
declined (Top-1: 43% → 26%; Top-5: 76% → 55%): top candidate 
positions became dominated by isomeric forms, adding noise rather 
than biologically meaningful alternatives. These findings suggest 
that, in metabolomics applications, using a smaller, context-specific 
reference library enriched in chemically and biologically relevant 
molecules may be more effective than expanding the search space 
with large, unspecific databases. For example, HMDB and ChEBI 
are well suited for biomedical studies, COCONUT and LOTUS for

natural products in plants or microbial metabolites, and the NORMAN

database for environmental contaminants. Such targeted libraries

should reduce chemical redundancy and improve the precision and

interpretability of metabolite annotation results.

Moreover, ChemEmbed currently provides structural predic-

tions without associated confidence estimates. Addressing this 
limitation, along with the challenges outlined above, points to 
several promising directions for future development. These include 
integrating confidence measures to improve the reliability and

interpretability of predictions [42], strategically expanding chemical 
space to incorporate newly discovered metabolites [43, 44], and 
programmatically generating plausible structural variants—such 
as structural isoforms or common phase I/II metabolic derivatives 
of biologically relevant molecules—with precomputed Mol2Vec

embeddings.

In summary, ChemEmbed aligns with the capabilities of modern 
mass spectrometry instrumentation by balancing performance met-

rics like accuracy, computational cost, and scalability. Unlike many 
prior tools, it addresses real-world usability, making it a robust solu-

tion for metabolite identification in high-throughput biomedical appli-

cations and re-annotating large-scale clinical datasets to uncover pre-

viously unrecognized metabolites associated with disease, diet, or

microbiome-related pathways.
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Key Points 

• ChemEmbed is a machine learning tool that improves the identifi-

cation of unknown small molecules from mass spectrometry data. 
• It combines merged MS/MS spectra from multiple collision ener-

gies with predicted neutral l osses from over 38 000 compounds t o 
enhance CNN input. 

• ChemEmbed ranks the correct molecule first in 42% of cases and 
in the top five in over 76%. 

• It outperforms SIRIUS 6 on CASMI 2016/2022 benchmarks and the 
ARUS dataset. 

• Scalable to large datasets, ChemEmbed accelerates accurate 
metabolite identification in medicine, nutrition, and environmental 
research. 
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