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Abstract

Machine learning offers a promising path to annotating the large number of unidentified MS/MS spectra in metabolomics, addressing
the limited coverage of current reference spectral libraries. However, existing methods often struggle with the high dimensionality and
sparsity of MS/MS spectra and metabolite structures. ChemEmbed tackles these challenges by integrating multidimensional, continuous
vector representations of chemical structures with enhanced MS/MS spectra. This enhancement is achieved by merging spectra across
multiple collision energies and incorporating calculated neutral losses from 38 472 distinct compounds, providing richer input for a
convolutional neural network (CNN). ChemEmbed ranks the correct candidate first in over 42% of cases and within the top five in more
than 76% of cases. In external benchmarks such as CASMI 2016 and 2022, ChemEmbed outperforms SIRIUS 6, the current state-of-the-art
in computational metabolomics. We applied ChemEmbed to predict structures in the Annotated Recurrent Unidentified Spectra (ARUS)
dataset and confirmed 25 previously unidentified compounds. These findings demonstrate ChemEmbed’s potential as a robust, scalable
tool for accelerating metabolite identification in untargeted mass spectrometry workflows.
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Introduction

The interpretation of tandem mass spectrometry (MS/MS) data is cru-
cial for the identification of metabolites, which in turn is particularly
relevant for the growing applications of metabolomics in biomedicine,
nutritional and environmental sciences [1].

The predominant strategy for metabolite identification involves
comparing experimental spectra with pre-recorded MS/MS spectra
of known compounds to find matching fragments. However, due to

the limited size, quality, and diversity of available reference spec-
tral libraries, a significant portion of MS/MS spectra generated in
metabolomic experiments remain unidentified [2].

In silico fragmentation tools have emerged as a solution to address
this challenge. These tools combine chemical rules to capture known
fragmentation events [3], probabilistic models to assign probabil-
ities to potential fragmentations [3, 4], and/or machine learning
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algorithms to learn the complex relationships between molecular
structures and their corresponding fragmentation patterns by MS
[5-71.

To enable efficient computation and learning by machine learn-
ing algorithms, both experimental MS/MS spectra and the chemical
structures of metabolites must be converted into numerical formats
that preserve key information. MS/MS spectra, typically represented
as lists of m/z values and intensities, are encoded into fixed-length
vectors using techniques such as feature hashing [8, 9], binning [7,
10-12], chemical formula representations [5], and spectral fingerprint-
ing [7]. Chemical structures are typically encoded as molecular fin-
gerprints [13-15], though graph-based representations are also used
[16,17].

However, encoding techniques are severely affected by the sparsity
and high dimensionality of metabolomics data, which can lead to
many issues including model interpretation, complexity and overfit-
ting. For example, molecular fingerprints are binary or count vec-
tors that represent the presence, absence, or the number of specific
chemical features within a molecule, such as atom types, functional
groups, or structural motifs. While the dimensionality of these fin-
gerprints is fixed by the number of features they are designed to
capture, the vast chemical diversity of metabolites leads to inher-
ent sparsity—most features remain inactive or set to zero for most
compounds.

Encoded m/z values and intensities from MS/MS spectra face a
similar sparsity issue when represented as fixed-length vectors. Given
that spectra only contain a few peaks within a broad m/z range,
most bins are left empty, with only a small number of non-zero bins
corresponding to specific fragment ions.

To overcome these limitations, we propose ChemEmbed, a new
tool for metabolite identification from MS/MS spectra. Our tool is
based on two complementary strategies designed to enrich the rep-
resentations of both chemical structures and MS/MS spectra. First,
we employ 300-dimensional embeddings generated by Mol2vec [18],
an unsupervised machine learning approach that captures complex
structural properties of molecules with greater depth than traditional
molecular fingerprints. Second, to address the sparsity in spectral
data, we use merged spectra that combine multiple collision energies
and calculated neutral losses from reference libraries. This expanded
spectral representation broadens the range and diversity of binned
spectra, providing a richer input for a convolutional neural network
(CNN). The CNN is trained to predict 300-dimensional Mol2vec embed-
dings from these enhanced spectra, and these embeddings are then
compared and ranked against a reference database of millions of
Mol2vec embeddings.

We consider a dataset of 38 472 distinct compounds with reference
MS/MS data, which we split into training, validation, and test sets.
In the test set, ChemEmbed accurately annotated the top-ranked
candidate (Tanimoto >0.95) in over 42% of cases and identified
the correct candidate within the top five in more than 76% of
cases. When challenged with external datasets such as CASMI
2016 and 2022, ChemEmbed consistently outperformed the latest
version of SIRIUS [7], the current state-of-the-art method in com-
putational metabolomics. Furthermore, in a validation experiment
using the Annotated Recurrent Unidentified Spectra (ARUS) from
the NIST Mass Spectrometry Data Center, our tool successfully
identified 25 previously unannotated compounds, demonstrating
its broad applicability and superior performance across diverse
datasets.

Methods
Dataset and data preprocessing

For our spectra-to-molecule CNN model, we used a dataset of 38 472
unique compounds sourced from the NIST20, MSDIAL, GNPS, and
Agilent METLIN databases. Initially, the NIST20 dataset provided only
InChIKey information, so we leveraged the PubChem API to retrieve
the corresponding SMILES strings. The Agilent METLIN dataset also
contained missing SMILES and InChIKey data, which we supple-
mented using the RDKit tool to convert available SMILES to molecular
information, followed by PubChem API queries to obtain the remain-
ing SMILES for specific InChIKeys.

After gathering the SMILES information for all datasets, we
removed any spectra with null values. Since stereochemistry was
not considered in this work, we used only the first 14 characters of
the unique InChIKey identifier.

Spectral data preprocessing

To prepare the MS/MS spectra for model training, several prepro-
cessing steps were implemented. Only [M + H]* adducts in positive
ionization and [M-H]~ adducts in negative ionization were used. Peaks
that exceeded the precursor mass by more than 0.5 Da were removed.
To reduce noise, fragments with intensities below 1% of the highest
peak were filtered out, and the remaining intensities were binarized.
Each MS/MS spectrum was encoded as a vector with a bin size of 0.01.
Pareto analysis revealed that 20% of the unique m/z bins accounted
for 83% of the spectral values (Supplementary Fig. 8). Consequently,
we limited the m/z axis to <700, reducing the vector length to 70 000
bins. This adjustment eased computational demands while retaining
80% of the spectral data.

Merged and merged+neutral loss spectral vectors

For each compound, we first discretized the m/z axis into 0.01 Da bins.
Fragment peaks from all available MS/MS spectra (across collision
energies) were mapped to these bins, and we then took the union
across spectra: when the same fragment appeared at multiple collision
energies (i.e. mapped to the same bin), it was counted once. A binary
vector was then generated by assigning a value of 1 to bins containing
a fragment and 0 otherwise. This merged spectral vector provides a
standardized, fixed-length representation of the compound’s MS/MS
spectra.

For the Merged+Neutral Loss representation, neutral losses were
additionally calculated for each fragment as:

Am/z = M/Zprecursor — M/Zfragment-

Both the fragment m/z values and their corresponding neutral
losses were discretized into the same 0.01 Da bins. The two sets
were concatenated and converted into a binary vector following
the same procedure as above. This combined representation cap-
tures both fragment and neutral loss information in a standard-
ized, fixed-length format suitable for downstream machine learning
models.

Convolutional neural networks

We employed a CNN to predict 300-dimensional Mol2vec embeddings
from input MS/MS spectra. The models were trained and tested using

920z Arenugad 0z uo 1senb Aq 9z828+8/+506eqq/L/LZ/2101./qIq/W00 dNO oIS pED.//:SA)Y WO} PAPEOJUMOQ


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbag054#supplementary-data

an NVIDIA Tesla T4 GPU, with experiments conducted within the
PyTorch framework. For development and implementation, we uti-
lized the PyCharm integrated development environment (IDE).

- Individual spectra dataset: This set included 527 236 spectra
(80%) for training, 64 774 spectra (10%) for validation, and 66 843
spectra (10%) for testing. In this configuration, the same compound
can appear multiple times, as MS/MS spectra were acquired under
different collision energies. Each MS/MS spectrum is treated as an
independent input, but all are paired with the same Mol2vec embed-
ding corresponding to the compound’s structure. This setup, therefore,
produces multiple training examples per compound, each linking a
unique spectrum to a shared molecular representation.

- Merged spectra dataset: this set was divided into 30 775 spectra
(80%) for training, 3847 spectra (10%) for validation, and 3850 spectra
(10%) for testing.

Network architecture

Six convolutional layers capture spatial relationships between mass-
to-charge (m/z) values across the spectrum. Six max pooling layers
reduce the dimensionality of the feature space. The first fully con-
nected layer flattens the spatial data, and the final fully connected
layer outputs the 300-dimensional Mol2vec embedding. The input to
the network is a vector of 70 000 bins, representing the m/z values of
the spectra.

Hyperparameters and training
We used the Adam optimizer with a learning rate of 0.0001 for
backpropagation. Early stopping based on validation loss was
implemented to prevent overfitting. The merged spectra network
was trained for 70 epochs, while the individual spectra network
was trained for 15 epochs, both using a mini-batch size of 32. Mean
squared error was used as the cost function.

Activation function and regularization

The Rectified Linear Unit (ReLU) was chosen as the activation function
due to its effectiveness in mitigating the vanishing gradient problem
in deep networks. Dropout regularization was applied to prevent
overfitting. No activation function was applied to the final output
layer, allowing the predicted embeddings to span any value within
the Mol2vec embedding space.

Analysis with SIRIUS 6.0

To validate our tool against SIRIUS+CSI FingerID, we used the
graphical interface of SIRIUS v6.0.0 (June 3, 2024). First, we imported
a custom reference database of 5.52 million entries into the software
using SMILES information to ensure consistency across both tools.
Next, we removed chemical structures from CASMI 2022 that
were part of the SIRIUS 6.0 training set by downloading the InChl
identifiers for positive and negative ion mode from the respective
training structure links: https://csi.bright-giant.com/v3.0/api/fingerid/
trainingstructures?predictor=1 and https://csi.bright-giant.com/v3.0/
api/fingerid/trainingstructures?predictor=2. We then converted these
InChl identifiers to SMILES format using RDKit.

We imported the MS/MS spectra from the CASMI 2022 dataset and
initiated the analysis by selecting the ‘Compute’ option, which opened
a parameter configuration window. For the SIRIUS tool, we configured
the instrument as ORBITRAP, MS2 mass accuracy to 5 ppm, the adduct
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to [M+H]* and [M-H]~ for positive and negative ion mode, respec-
tively, and set the molecular formula generation method to De novo
+ bottom-up. Following this, we enabled CSL:FingerID for property
prediction with default threshold score settings. For the structure
database search, we selected our custom database of 5.52 million
structures and disabled PubChem as a fallback. Upon running the
analysis, SIRIUS returned a list of candidate molecules for each MS/MS
spectrum, which we sorted in ascending order by the CSI:FingerID
score, a key feature used to assess the quality of candidate molecules.

In the final step, we identified the top five candidates from both tools
and compared their performance by evaluating which tool returned a
higher number of correct candidates in the top 5 for each MS/MS spec-
trum. This comparison enabled us to assess the relative accuracy and
effectiveness of the two tools in generating valid candidate molecules.

Molecular fingerprints

Molecular fingerprints, commonly used to represent molecular struc-
tures, encode predefined molecular features, such as specific sub-
structures, into bit vectors. To replace Mol2vec embeddings, we used
all five fingerprint types defined in the SIRIUS CSI framework [19]:
(1) CDK Substructure Fingerprints: Capture 307 molecular properties
using predefined substructure patterns (Chemistry Development Kit,
version 1.5.8); (ii) PubChem (CACTVS) Fingerprints: Represent 881
properties, based on PubChem specifications; (iii) Klekota-Roth Fin-
gerprints: cover 4860 properties, providing detailed structural and
functional group information; (iv) FP3 Fingerprints: represent 55
properties derived from SMARTS patterns (Open Babel, version 2.3.2);
and (v) MACCS Fingerprints: Encode 166 SMARTS-based properties
(Open Babel, version 2.3.2). Fingerprint calculations utilized the Chem-
istry Development Kit (CDK) version 1.5.8 and PyFingerprint (https://
pypi.org/project/pyfingerprint/).

Data preprocessing

The initial combined fingerprint set encompassed 6269 molecular
properties. Constant and redundant features were removed from the
training dataset, reducing the feature set to 4237 properties. These
features were split into training (80%), validation (10%), and testing
(10%) subsets, maintaining the same distribution used for Mol2vec-
based training.

Model development and training

Initial attempts to train the CNN architecture designed for Mol2vec
embeddings with molecular fingerprints failed, as training and vali-
dation losses remained constant. To address this, a DNN comprising
four fully connected layers with ReLU activation functions was imple-
mented. Dropout layers were added for regularization, and binary
cross-entropy served as the loss function to handle the multi-label
classification task. During training, outputs were binarized using a
threshold of 0.50, assigning a label of 1 to predictions >0.50 and 0
otherwise. The DNN demonstrated learning, with steadily decreasing
training and validation losses.

Molecular ranking and evaluation

The trained model was evaluated using the same molecular rank-
ing method as for Mol2vec-based predictions. A dataset of 0.52 mil-
lion molecules was used, substituting the refined molecular finger-
prints for Mol2vec embeddings. Model predictions were compared
to ground-truth embeddings by computing pairwise distances (cosine
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similarity and Euclidean distance), and performance was quantified
using Top-1 and Top-5 accuracy.

We used Top-k accuracy instead of AUROC, F1-score, sensitivity, or
specificity because ChemEmbed formulates metabolite annotation as
a regression task in the embedding space rather than a binary or
multiclass classification problem. In this setting, Top-k metrics are the
most informative, as they quantify how often the correct compound
appears among the top-ranked candidates—closely mirroring stan-
dard metabolomics practice, where candidate lists are generated and
refined with additional orthogonal evidence.

ChemBERTa-2 embeddings

ChemBERTa-2 is a Transformer-based language model for molecules,
developed by DeepChem and trained on ~77 million SMILES strings.
To generate embeddings, we used the Hugging Face transformers
library with the pre-trained checkpoint DeepChem/ChemBERTa-77 M-
MLM. SMILES strings were tokenized with AutoTokenizer and passed
through AutoModel to obtain fixed-length representations. Each
molecule was encoded as a 384-dimensional embedding vector. These
embeddings were then compiled into a reference database comprising
0.52 million molecules with their corresponding ChemBERTa-2
representations (Supplementary File 7). The trained model was
evaluated using the same molecular ranking method as for Mol2vec-
and molecular fingerprints-based predictions.

Exercise training dataset

Serum samples were collected from 46 sedentary but healthy
individuals (35 women and 11 men) before and after a 3-week
exercise training program consisting of nine sessions. The participants
had a mean body mass index (BMI) of 23.8£3.9 kg/m? and a mean
age of 33.1+7.0 years (meanz=+standard deviation). The dataset
includes multiple exercise modalities, namely HIIT, MICT, and SSST.
Samples were analyzed using an Acquity UPLC BEH HILIC column
(2.1 x 150 mm, 1.7 pum; Waters) coupled to a Thermo Scientific™
Orbitrap IDX Tribrid mass spectrometer equipped with a HESI
interface operating in both positive and negative ionization modes. MS
and MS/MS data acquisition were performed as previously described
in Giné et al. [20], except that the normalized collision energy (HCD
cel) was applied in stepped mode at 10, 20, 30, and 40%. Only
features detected in more than 80% of samples were retained for
statistical analysis. Significant differences were assessed using a
paired univariate t-test (P < .05).

Results
Construction of spectral and structural databases

We generated SMILES identifiers for 38472 unique compounds
sourced from the NIST20 [21], MSDIAL [22], GNPS [23], and Agilent
METLIN metabolomics libraries (see Methods) (Supplementary File 1),
comprising 683 664 MS/MS spectra in positive ionization (M + H]*)
and 158 382 MS/MS spectra in negative ionization ((M-H] "), as detailed
in Supplementary Tables 1 and 2, respectively. Since many compounds
were annotated across different reference libraries, we calculated
the overlap by matching the first 14 characters of their InChIKey
identifiers (Supplementary Fig. 1). To resolve duplicates, we prioritized
the libraries in the following order: NIST20 > Agilent METLIN > GNPS
> MSDIAL (Supplementary Table 3 and 4). For example, if a compound

was found in both NIST20 and Agilent METLIN, we discarded the
MS/MS spectra from Agilent METLIN, and so on.

These spectra were pre-processed and curated to remove back-
ground signals and noise, as described in the Methods section. This
collection formed what we termed the individual spectra dataset,
capturing the diversity and redundancy of compounds fragmented at
multiple collision energies.

Next, we created a second collection of MS/MS spectra by merging
all available spectra across different collision energies for each com-
pound, producing a single consensus MS/MS spectrum per compound
(see Methods). This merging process resulted in 38472 spectra in
positive ionization mode and 14,168 spectra in negative ionization
mode. The merged spectra dataset broadened the range and diver-
sity of encoded bins, providing a more comprehensive view of each
compound’s fragmentation behavior by combining information from
various collision energies (Supplementary Fig. 2).

To further enhance spectral representation, we generated a third
collection of MS/MS spectra by incorporating neutral losses (NL) into
the merged spectra. For both positive and negative ionization modes,
we calculated the mass difference between precursor and fragment
ions, and then binarized their intensities, rather than retaining the
original fragment ion intensities, as done in previous studies [24]. The
resulting neutral loss values were added to each merged spectrum
(see Methods and Supplementary Fig. 2), resulting in an enriched
dataset that combines fragment ions from multiple collision energies
with their corresponding neutral losses, all in binarized format.

Mol2vec embeddings reference database

Mol2vec is an unsupervised deep learning model, trained on 19.9
million compounds from the ZINC [25] and ChEMBL [26] databases,
which converts molecular structures from their SMILES into 300-
dimensional numerical vector embeddings. Since a single InChIKey
can produce multiple redundant SMILES, and our goal was to use
Mol2vec embeddings as labels for training the CNN model, we needed
to confirm that Mol2vec was insensitive to different SMILES rep-
resentations. To verify this, we randomly selected 100 compounds
from our database, generated 10 compatible SMILES for each, and
compared the resulting 300-dimensional embeddings. The Euclidean
distance between the embeddings was nearly zero (data not shown),
confirming that Mol2vec embeddings are consistent across SMILES
versions and can serve as reliable labels for CNN model training.

Following this validation, we generated a comprehensive refer-
ence database of 0.52 million molecules, each with its corresponding
Mol2vec embedding, sourced from COCONUT [27], HMDB [2], NIST20,
GNPS, Agilent METLIN, and MSDIAL. These embeddings serve as the
‘ground truth’ or reference embeddings for subsequent comparisons
in the CNN model (Supplementary File 2).

CNN model for molecular embedding prediction
from MS/MS data

We developed a CNN (Supplementary Fig. 3) that accepts MS/MS spec-
tra as input and generates 300-dimensional embeddings as output.
The CNN’s primary objective is to map the input spectra into a molec-
ular embedding space that replicates the Mol2vec representations.
For each spectrum in the test dataset, the predicted embeddings were
then compared to reference database of 0.52 million molecules, each
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Figure 1 Computational workflow for molecular identification using CNN-generated embeddings. MS/MS spectra are the input to a convolutional
neural network (CNN) trained to generate 300-dimensional embeddings aligned with Mol2vec representations. Predicted embeddings are compared
to a reference database in a multi-step process: (i) precursor mass filtering: Candidate molecules with precursor ion masses outside a=+0.001 Da
error tolerance are excluded; (ii) similarity calculations: Euclidean distance and cosine similarity are computed between the predicted embeddings and
reference Mol2vec embeddings, ranking molecules by similarity; (iii) structural validation: The top-ranked candidates are further evaluated using the
Tanimoto score, ensuring structural alignment between predicted and reference molecules. A Tanimoto score threshold of >0.95 is applied to confirm

molecular identity.

represented by its Mol2vec embedding. To ensure accurate match-
ing between the predicted embeddings and known molecules, we
employed a multi-step filtering and ranking strategy (Fig. 1).

First, we applied a precursor ion mass filter to exclude any pre-
cursor ions outside a mass error tolerance of £0.001 Da, focusing the
comparison on candidate molecules with closely matching mass. Fol-
lowing this, we calculated both the Euclidean distance and cosine sim-
ilarity between the predicted 300-dimensional vector representation
and the 0.52 million reference Mol2vec embeddings. Molecules were
then ranked by their similarity, with Euclidean distance providing a
measure of closeness between two points in the embedding space,
and cosine similarity capturing the directional alignment between the
predicted and reference vectors. Together, they provide a more com-
prehensive assessment of similarity, capturing both spatial proximity
and pattern alignment, enhancing the reliability of the molecular
ranking process.

Finally, to assess the structural similarity between the predicted
and reference molecules, we calculated the Tanimoto score for
the top-ranked molecules based on their Euclidean distance and
cosine similarity. The Tanimoto score ranges from 0 to 1, where 0
indicates no similarity and 1 indicates perfect similarity. In chem-
informatics, thresholds above 0.85 are often regarded as indicative
of significant structural similarity [28-30]. Here, we set a threshold
of 0.95 for the Tanimoto score to determine molecular identity. This
threshold provided an additional layer of validation, ensuring that

the predicted embedding not only closely matched the reference
embedding but also corresponded to a structurally very similar
(e.g. stereoisomers) or identical molecule in terms of their SMILES
representations.

Performance of ChemEmbed in a test dataset

The three collections of MS/MS spectra—individual, merged, and
merged with neutral losses—were used to train and test three CNN
models to predict molecular embeddings, with 80% of the spectral
data used for training, 10% for validation, and 10% for testing
(see Methods).

Figure 2A displays the distributions of Euclidean distances and
cosine similarities between the predicted 300-dimensional embed-
dings and the reference Mol2vec embeddings for the individual spec-
tra dataset in positive ionization. The model trained on this dataset
showed a mean Euclidean distance of 40 and a mean cosine similarity
of 0.93. In comparison, the model trained on the merged spectra
dataset without neutral losses exhibited a significantly lower mean
Euclidean distance of 24.5 and a higher mean cosine similarity of
0.96. Incorporating neutral losses provided only a slight improvement,
reducing the Euclidean distance to 23.1 and increasing the cosine
similarity to 0.97. These findings demonstrate that as the richness
of spectral information increases—by merging spectra and including
neutral losses—the CNN’s predicted embeddings more closely align
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Figure 2 Alignment of CNN-predicted embeddings with reference Mol2vec embeddings. Violin and density plots illustrate the distributions of cosine
similarities and Euclidean distances between the CNN-predicted 300-dimensional embeddings and the reference Mol2vec embeddings. Results are
shown for positive ionization (A) and negative ionization (B) datasets. Three model configurations are compared: Trained with individual spectra (I),
trained with merged spectra (M), and trained with merged spectra incorporating neutral losses (M + NL). Accuracy metrics are represented as bars,
indicating the percentage of correctly identified molecules ranked in the top 1 (dark color) and top 5 (light color) positions for both ionization modes.
The plots highlight the performance improvements associated with merging spectra and incorporating neutral losses.

with the ground truth Mol2vec embeddings. Similar improvements
were observed in the negative ionization mode (Fig. 2B).

This improvement in embedding accuracy directly impacted the
model’s ability to rank correct compound annotations. When trained
on the individual spectra dataset, the CNN correctly annotated the top-
ranked candidate (Tanimoto score > 0.95) in over 26% of cases and
identified the correct compound within the top five ranked candidates
in over 56% of cases. In contrast, the model trained on the merged
spectra dataset significantly improved annotation performance, with
the correct top-ranked candidate identified in over 40% of cases and
the correct compound found within the top five in over 73% of cases.
The inclusion of neutral losses further enhanced CNN’s performance,
with correct top-ranked candidates identified in over 43% of cases and
correct annotations within the top five in over 76% of cases.

Performance in the negative ionization mode showed consistent
and reproducible behavior, with only a slightly slower ranking per-
formance compared to positive ionization (Fig. 2B). We attribute this
difference to the typically lower number of fragment ions in negative
ionization, which may provide less informative data for the CNN to
generate accurate molecular embeddings.

As expected, neither the combination of individual mass spectra
with neutral losses (59.8% for top 5 annotations) nor neutral losses
alone (69% for top 5 annotations, calculated from merged spectra)
outperformed the full combination of merged spectra with neutral
losses (Supplementary Table 5).

An additional advantage of using merged spectra is that the pro-
cessing time for the test dataset, which included 3850 compounds, was
substantially reduced with respect to considering individual spectra.
On a basic laptop CPU (Mac 2020, M1 Core, 16 Gb RAM), the full

pipeline—covering MS/MS preprocessing, CNN inference, and can-
didate ranking—took less than 20 min for the merged spectra with
neutral losses. In contrast, processing the individual spectra dataset
required nearly 6 h, highlighting the efficiency and scalability of the
merged spectra approach.

To further demonstrate the value of combining enhanced MS/MS
data with multidimensional molecular embeddings, we evaluated
two alternative approaches for encoding chemical structures: molec-
ular fingerprints and transformer-based embeddings. Specifically, we
tested (i) molecular fingerprints capturing 4237 chemical properties,
similar to those used in SIRTUS-CSI:FingerID [19], and (ii) ChemBERTa2
embeddings [31], 384-dimensional vectors derived from SMILES using
a pre-trained transformer model (see Methods).

We first retrained our CNN architecture using either fingerprints
or ChemBERTa2 embeddings, keeping all architectural components
and hyperparameters identical to the Mol2Vec-based setup to ensure
fair comparisons. When replacing Mol2Vec with fingerprints, the
CNN failed to demonstrate meaningful learning. Similarly, while
ChemBERTa2 embeddings outperformed a random baseline, they
did not match the performance of the CNN + Mol2Vec model. We
explored several alternative CNN configurations—including lower
learning rates, fewer convolutional layers, and feature reduction—
but none yielded significant improvements, with only 27% of correct
top-ranked candidates and 60% within the top five using ChemBERTa2
embeddings (see Supplementary Table 6).

We then evaluated the performance of fingerprints using a fully
connected deep neural network (DNN) consisting of four dense layers.
This architecture improved performance compared to the CNN, yield-
ing 39% correct top-ranked predictions and 73% within the top five
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(for positive ionization mode). Next, we tested ChemBERTa2 embed-
dings using DNNs with hyperparameter tuning and early stopping.
This combination significantly outperformed the CNN + ChemBERTa2
setup and achieved results comparable to CNN + Mol2Vec, with 44%
correct top-ranked candidates and 78% within the top five. For com-
pleteness, we also trained DNN models with Mol2Vec embeddings,
which performed slightly below the ChemBERTa2+DNN configu-
ration (see Supplementary Table 6). These findings underscore the
interplay between embedding type and model architecture: Mol2Vec
embeddings are best suited for convolutional architectures, whereas
ChemBERTa2 embeddings perform more effectively with deep fully
connected networks.

To better understand the source of these performance differences,
we conducted two complementary analyses: (i) Principal Component
Analysis (PCA) of 3850 randomly selected embeddings showed
that Mol2Vec captured substantially more variance in the first two
principal components (PC1=35.06%, PC2=19.12%; total=54.18%)
than ChemBERTa2 (PC1=13.14%, PC2=10.07%; total=23.21%)
(Supplementary Fig. 4). Visual inspection of the PCA plots suggest
that Mol2Vec encodes molecules into a low-dimensional, smooth
latent space. This continuous and spatially coherent structure aligns
well with CNNs, which exploit local relationships and hierarchical
patterns. In contrast, ChemBERTa2 produced high-dimensional, more
fragmented embeddings in which a smaller portion of the variance
is explained by the first two PCs. This may indicate a more granular
and distributed representation of chemical space, likely capturing
subtle differences in local structure and SMILES-specific syntax. (ii)
SMILES robustness analysis further emphasized these differences
in embedding behavior. For 10 structurally distinct compounds, we
generated 10 alternative SMILES strings per compound—each repre-
senting the same molecule (Tanimoto similarity = 1)—and compared
their corresponding embeddings. As previously observed, Mol2Vec
produced nearly identical embeddings across all SMILES variants
(cosine similarity ~ 1.0), demonstrating strong robustness to SMILES
encoding. In contrast, ChemBERTa2 embeddings exhibited greater
variability in both cosine similarity and Euclidean distance, reflecting
higher sensitivity to input SMILES syntax (Supplementary Fig. 5).
DNNs, which do not assume spatial locality, might be better equipped
to work with ChemBERTa2’s fine-grained and potentially more
fragmented representations.

Validation with non-annotated spectra

To evaluate the tool with datasets of non-annotated metabolites, we
used three publicly available resources: the Critical Assessment of
Small Molecule Identification (CASMI) challenges [32] from 2016
and 2022, as well as the Annotated Recurrent Unidentified Spectra
(ARUS) database [33] from the NIST Mass Spectrometry Data Center.
To expand the pool of potential candidate structures, we created a
reference database containing Mol2vec embeddings for 5.52 million
molecules, which included 5 million random compounds from
PubChem.

The CASMI 2016 challenge dataset contained 208 MS/MS spectra
from 188 unique structures, with 127 spectra acquired in positive ion
mode and 81 in negative ion mode. After removing any molecules
from CASMI 2016 that were present in our CNN training dataset, we
retained 27 unique structures in positive mode and 30 in negative
mode. For CASMI 2022, which initially included 177 structures in
positive ion mode and 108 in negative ion mode, we applied the same
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filtering process. This resulted in 149 unique compounds in positive
mode and 97 in negative mode.

The ARUS dataset contains MS/MS spectra frequently observed in
human samples, but which remain unannotated. We selected ARUS
spectra with putative molecular formulas assigned using the BUDDY
software [34] (see Supplementary File 3). This dataset includes 25 801
spectra from plasma and 68,478 spectra from urine.

For each unknown molecule, we pre-processed its associated spec-
trum as previously described (see Methods). That is, peaks exceeding
the precursor mass by more than 0.5 Da were removed, and fragments
with intensities below 1% of the most intense peak were filtered out.
The mass differences between precursor and fragment ions were
calculated, and the resulting neutral loss values were incorporated
into each spectrum. All intensity values were binarized and each
spectrum was then encoded as a vector with a bin size of 0.01 Da,
with the m/z axis restricted to <700 Da.

ChemEmbed generated a list of candidate annotations for each
spectrum. These candidates were ranked based on both the Euclidean
distance and cosine similarity between the predicted 300-dimensional
embeddings and a reference set of 5.52 million Mol2vec embeddings.
The top five candidates were selected for further analysis.

In the CASMI 2016 challenge, our model successfully ranked the cor-
rect molecule within the top five candidates in over 60% of cases, for
both positive and negative ionization spectra (Supplementary Table 7).

We then compared the performance of ChemEmbed against the
latest version of SIRIUS (version 6.0.0) [7] (see Methods) using both
the CASMI 2022 and ARUS datasets. Both tools used the same ref-
erence dataset of 5.52 million molecules as the pool of potential
candidate structures, matching either molecular fingerprints (SIRIUS)
or 300-dimensional Mol2vec embeddings (ChemEmbed). To ensure
a fair comparison, we removed compounds from the CASMI 2022
dataset that had been included in the training of the latest version
of SIRIUS (see Methods), resulting in 107 unknown compounds for
both tools in positive ionization mode and 64 in negative ionization
mode. ChemEmbed ranked the correct compound within the top five
candidates in 33% of cases for positive ionization spectra and 30% for
negative ionization spectra. In contrast, SIRIUS achieved success rates
of 28% for positive ionization and 17% for negative ionization when
considering the top five candidates (Supplementary Table 7).

Finally, we applied ChemEmbed to process 25 801 MS/MS spectra
from plasma and 68 478 spectra from urine in the ARUS dataset.
ChemEmbed generated potential annotations for 23.8% of positive
ionization spectra (Supplementary File 4) and 19.7% of negative
ionization spectra (Supplementary File 5), based on criteria of cosine
similarity scores above 0.95 and Euclidean distances below 25
(Supplementary Table 8). Among these high-confidence matches,
we identified seven compounds by spectral matching against
an emerging repository of synthesized compounds from UCSD
[35]—four from plasma and three from urine (Supplementary Fig. 6).
Additionally, to further assess annotation performance, we randomly
selected 40 spectra for manual review. An expert in analytical
chemistry evaluated the top five candidates for each spectrum,
identifying 25 compounds in total (Fig. 3, Supplementary File 6 and
Supplementary Fig. 7).

Attempts to replicate this analysis using SIRIUS 6.0 were unsuccess-
ful, as the tool either failed to complete the processing of the large
dataset or caused the server to crash. Consequently, we restricted
direct comparisons to the 25 manually reviewed compounds. Among
these, SIRIUS correctly ranked 16 compounds within the top five
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Figure 3 ChemEmbed applied to the ARUS dataset. (A) Stacked bar chart showing the ranking positions of 25 compounds identified in positive ionization
mode across plasma and urine by ChemEmbed, compared to SIRIUS. (B) Annotated MS/MS spectra for 8-hydroxyquinoline glucuronide (top) and
Milacemide (bottom) from the ARUS urine spectral dataset, showing tentative fragment ion assignments and inferred neutral losses, calculated as the
mass differences between the precursor ion and each observed product ion.

candidates (Fig. 3), with five compounds ranked higher by SIRIUS
than by ChemEmbed, highlighting the complementarity of the two
tools (Supplementary File 6). Therefore, when maximum annotation
coverage is desired, combining both computational approaches may
be beneficial.

Metabolite annotation in response to physical activity

Finally, we analyzed serum samples from a cohort of 46 healthy
sedentary individuals collected before and after 3 weeks of exercise
training, using both positive and negative ionization modes. The
dataset included three exercise modalities—high-intensity interval
training (HIIT), moderate-intensity continuous training (MICT), and
super-slow strength training (SSST)—which were treated collectively
to identify overall metabolic changes induced by the 3-week training
program.

A paired t-test identified 166 statistically significant features (P <
.05; 56 in positive mode and 110 in negative mode), which were subse-
quently annotated using both conventional spectral matching against
common reference databases (NIST23, GNPS, MS-DIAL, and METLIN)

and ChemEmbed. Spectral matching identified 6 and 11 compounds
(cosine similarity >0.80) in positive and negative ionization modes,
respectively, whereas ChemEmbed identified 10 and 44 compounds
(cosine similarity >0.90) (Fig. 4), highlighting ChemEmbed’s ability
to extend metabolite coverage beyond existing spectral resources.
Several metabolites, such as the dipeptides Phe-Trp and Phe-Phe, O-
acetylcarnitine, LPE(16:0/0:0), P1(18:0/20:4), an isoform of dihydroxy-
benzoic acid, and phenyllactic acid, were consistently annotated by
both spectral matching and ChemEmbed (Supplementary File 8). In
contrast, compounds such as inosine were detected exclusively by
spectral matching, as ChemEmbed did not annotate sodium-adducted
species ([M + Na]*), which were not included in its training set.

Discussion

Despite the growing number of reference MS/MS spectra, public
and commercial databases still cover less than 15% of the known
small molecule chemical space [36, 37]. Even focusing on genome-
scale metabolic networks—excluding the vast chemical diversity
introduced by microbiota, environmental exposures, diet, and
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contaminants—only ~40% of eukaryotic metabolic networks can be dimensionality and sparsity of MS/MS spectra and metabolite
mapped using available spectral standards [38]. structures. A key issue stems from training models on reference

Machine learning tools are helping to bridge this gap, but they MS/MS spectra acquired at fixed collision energies, as seen in
face challenges in learning meaningful patterns due to the high databases like METLIN, MassBank, and GNPS. Our study demonstrates
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that training neural networks with individual collision energy spectra
per molecule underperforms compared to using a single merged
spectrum. The higher sparsity of individual spectra complicates
learning and increases the risk of overfitting.

Using merged spectra also addresses the computational complexity
of fixed-energy inputs. For instance, training one epoch with indi-
vidual spectra took over 95 min, compared to just 5.5 min with
merged spectra. This efficiency extends to inference: processing 25
801 MS/MS spectra from plasma and 68 478 from urine in the ARUS
dataset required less than 1 h and 2 h on a basic laptop CPU, respec-
tively. These results highlight the scalability and practicality of our
approach.

Modern qTOF and Orbitrap instruments now support ever grow-
ing faster scan rates, improved duty cycles, and advanced collision
energy options, such as full-CE ramps and stepped collision ener-
gies. These advancements provide more comprehensive fragmen-
tation patterns, enhancing metabolite identification accuracy. How-
ever, leveraging such rich spectral information requires careful pre-
processing. ChemEmbed merges data from multiple collision ener-
gies and binarizes the intensities, simplifying the input and reduc-
ing overfitting risks by focusing on the presence of fragment ions
rather than their intensities. Fragment intensities can vary widely
due to factors such as fragmentation technique, collision energy, and
instrument-specific differences [39, 40] adding unnecessary complex-
ity and potential noise if treated as model inputs.

Our results also highlight the critical interplay between molecu-
lar embeddings and machine learning architectures. Although both
Mol2Vec and ChemBERTa2 encode chemically meaningful informa-
tion, their latent structures differ in ways that directly affect perfor-
mance. Mol2Vec produces smooth, low-dimensional spaces that are
highly invariant to SMILES syntax, properties that align well with
convolutional architectures designed to exploit local continuity and
hierarchical patterns. In contrast, ChemBERTa2 embeddings, trained
on a much larger corpus (77 M versus 19.9 M molecules for Mol2Vec),
are more sensitive to SMILES representation and distribute infor-
mation across higher-dimensional, fragmented spaces. These charac-
teristics make them less compatible with CNNs but better suited to
fully connected DNNs, which can leverage fine-grained, distributed
representations without assuming spatial coherence. Future work
should extend this analysis to other embedding strategies, such as
graph neural networks (GNNs) and alternative Transformer-based
models, to systematically investigate how molecular representations
and neural architectures jointly shape performance in metabolite
identification tasks.

Similarly, the poor performance of fingerprints with CNNs can be
explained by the mismatch between the representation and the induc-
tive biases of the architecture. Fingerprints are sparse and binary vec-
tors in which each bit encodes the presence of a predefined substruc-
ture, but the bit positions are arbitrary and lack intrinsic ordering. As
a result, adjacent features do not carry related chemical information,
making convolutional filters ineffective since they are designed to
exploit local continuity and hierarchical structure. In contrast, fully
connected DNNs do not assume spatial locality and instead evaluate
each feature independently, which is more consistent with the dis-
crete, unordered nature of fingerprints. Nevertheless, their perfor-
mance remained inferior to Mol2Vec or ChemBERTa2 embeddings,
likely because handcrafted fingerprints provide a limited and lossy
representation of molecular structure compared to the continuous,

chemically contextualized latent spaces produced by learned embed-
dings.

Finally, both the limited availability of reference spectra [41] and
the quality of MS/MS data in both public (community-contributed) and
commercial libraries remain critical factors for improving computa-
tional annotation. At an early stage, we considered incorporating low-
resolution spectral data (e.g. from triple quadrupole instruments) to
increase coverage. However, these datasets were ultimately excluded
because our spectral binning strategy relies on a fixed bin width
of 0.01 Da. This resolution was chosen to enhance specificity while
keeping computational costs manageable. Low-resolution spectra are
incompatible with this approach, as their broader peak widths would
be distributed across multiple bins, leading to information loss and
reduced discriminative power.

ChemEmbed is currently limited to annotating MS/MS spectra of
compounds whose structures are present in the embedding space.
However, expanding the reference database indiscriminately does
not necessarily improve performance. In the ARUS dataset, we tested
the effect of adding ~5 million randomly selected molecules from
PubChem to broaden chemical coverage. Although this substantially
increased the database size, it also introduced many compounds
of limited biological relevance (e.g. purely synthetic or drug-
like molecules) along with large numbers of isomeric variants—
predominantly stereoisomers and tautomers that will not likely be
distinguished by MS/MS alone. When test spectra were compared
against this expanded 5.5 million-compound database rather than
the original 0.52 million Mol2Vec embeddings, ranking performance
declined (Top-1: 43% — 26%; Top-5: 76% — 55%): top candidate
positions became dominated by isomeric forms, adding noise rather
than biologically meaningful alternatives. These findings suggest
that, in metabolomics applications, using a smaller, context-specific
reference library enriched in chemically and biologically relevant
molecules may be more effective than expanding the search space
with large, unspecific databases. For example, HMDB and ChEBI
are well suited for biomedical studies, COCONUT and LOTUS for
natural products in plants or microbial metabolites, and the NORMAN
database for environmental contaminants. Such targeted libraries
should reduce chemical redundancy and improve the precision and
interpretability of metabolite annotation results.

Moreover, ChemEmbed currently provides structural predic-
tions without associated confidence estimates. Addressing this
limitation, along with the challenges outlined above, points to
several promising directions for future development. These include
integrating confidence measures to improve the reliability and
interpretability of predictions [42], strategically expanding chemical
space to incorporate newly discovered metabolites [43, 44], and
programmatically generating plausible structural variants—such
as structural isoforms or common phase I/Il metabolic derivatives
of biologically relevant molecules—with precomputed Mol2Vec
embeddings.

In summary, ChemEmbed aligns with the capabilities of modern
mass spectrometry instrumentation by balancing performance met-
rics like accuracy, computational cost, and scalability. Unlike many
prior tools, it addresses real-world usability, making it a robust solu-
tion for metabolite identification in high-throughput biomedical appli-
cations and re-annotating large-scale clinical datasets to uncover pre-
viously unrecognized metabolites associated with disease, diet, or
microbiome-related pathways.
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Key Points

® ChemEmbed is a machine learning tool that improves the identifi-
cation of unknown small molecules from mass spectrometry data.

® It combines merged MS/MS spectra from multiple collision ener-
gies with predicted neutral losses from over 38 000 compounds to
enhance CNN input.

® ChemEmbed ranks the correct molecule first in 42% of cases and
in the top five in over 76%.

® Itoutperforms SIRIUS 6 on CASMI 2016/2022 benchmarks and the
ARUS dataset.

® Scalable to large datasets, ChemEmbed accelerates accurate
metabolite identification in medicine, nutrition, and environmental
research.
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