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Probabilistic alignment ofmultiple networks

Teresa Lázaro1, Roger Guimerà 1,2 & Marta Sales-Pardo 1

The network alignment problemappears inmany areas of science and involves
finding the optimal mapping between nodes in two ormore networks, so as to
identify corresponding entities across networks. We propose a probabilistic
approach to the problem of network alignment, as well as the corresponding
inference algorithms. Unlike heuristic approaches, our approach is transpar-
ent in that all model assumptions are explicit; therefore, it is susceptible of
being extended and fine tuned by incorporating contextual information that is
relevant to a given alignment problem. Also in contrast to current approaches,
our method does not yield a single alignment, but rather the whole posterior
distribution over alignments. We show that using the whole posterior leads to
correct matching of nodes, even in situations where the single most plausible
alignment mismatches them. Our approach opens the door to a whole new
family of network alignment algorithms, and to their application to problems
for which existing methods are perhaps inappropriate.

The problem of network alignment (also called graph matching) is
ubiquitous across fields of science. In its basic formulation, the pro-
blem consists in finding the mapping of identities of nodes between
two networks such that the structure of the networks is maximally
preserved. For instance, in chemistry the interest is to elucidate
structural similarity across molecules1; in bioinformatics, it is to
annotate proteins by comparing protein-protein interaction networks
betweenpairs of organisms2–4; in computer vision, to find equivalences
between deformable objects5–8; in neuroscience, to align functional
connectomes with the goal of identifying pathological changes or
inter-species differences2,9,10, and, more recently, to align neuron-to-
neuron brain connectomes so as to identify variability across indivi-
duals and aid neuron annotation11–13. In other areas such as in com-
putational social science, the problem definition has been extended to
findmatching between nodes across networks that are not necessarily
topologically correlated to identify common roles ofwords indifferent
knowledge graphs14,15, and similarly behaving actors across different
social platforms16–18.

With few exceptions, a general assumption behind the network
alignment problem is that networks are alignable, that is, that the
networks share structural or topological similarities that can help in
the alignment process. To quantify such similarities, several structural
metrics, both local and global, have been proposed, and are optimized
in the course of the network alignment process2,6,7,19–23. Perhaps the
most notable and popular approach for global alignment consists in

formulating the problem as a quadratic assignment problem (QAP), an
NP-hard problem for which approaches to obtain good quality align-
ments for thousands of nodes already exist11–13,19,21,23. However, while
powerful, approaches such as QAP and those closely related suffer
from a number of caveats. First, they are heuristic and do not explicitly
lay out the modeling assumptions on which they rest. Second, it is
often hard to incorporate into themcontextually relevant information,
such as known classifications of nodes into groups (although recent
kernel formulations of the QAP problem that allow for the incorpora-
tion of node and edge attributes23). Recently, in computer vision and in
the analysis of protein interaction networks, a new generation of
machine-learning approaches that use node embeddings to solve the
network alignment problem have been proposed6–8,20,24. These
approaches rely on contextual information that can typically be
obtained from images or protein sequence and gene-expression data,
making them unsuitable for situations in which only network topology
and a few node attributes are available. Additionally, a caveat of most
of the aforementioned approaches is that they are designed to align
only pairs of networks.

The latter is an important shortcoming of network alignment
approaches inmanyof the contexts previously outlined, and especially
in biology, in which we typically have different observations we may
want to align. For instance, being able to compare functional con-
nectomes across multiple species can give important clues about how
evolution has shaped brain functionality10. In this sense, the rapidly
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increasing amount of data on physical, neuron-to-neuron
connectomes25–28 will necessitate a new generation of tools to pro-
vide reliable annotation, as well as intra and inter-species comparisons
of connectomes, which hopefully can be linked to differences in
behavior. There are a few approaches that address this shortcoming by
relying on node attributes and a set of know identity mappings across
networks4,17,18, by extendingQAP approaches and building some sort of
consensus between pairwise alignments29,30, and, more recently by
using a kernel formulation of the QAP problem23. Many of these
approaches, however, are also problematic mainly because of the lack
of transparency of their assumptions, which hinders the interpret-
ability of their results, and also because they are either heavily
dependent on non-topological information or not able to incorporate
non-topological information at all.

To cover this gap, we propose a probabilistic approach to the
problem of multiple network alignment when little contextual infor-
mation about the nodes is available, as well as the corresponding
inference algorithms. Our approach assumes the existence of an
underlying network blueprint from which observed networks are
generated by noisily copying edges. This approach allows us to natu-
rally consider multiple networks by recasting the network alignment
problem as a problem of finding the identity assignment of each node
in each observed network to a node in the blueprint. Importantly, our
probabilistic approach enables us to consider an ensemble of align-
ments and their corresponding blueprints as opposed to considering a
single, best alignment (which is the goal of heuristic approaches). This
turns out to be a crucial property of our approach, since the best
alignment typically does not recover the known ground truth even for
small levels of noise in theobservednetworks. By contrast, considering
an ensemble of plausible alignments often leads to recovery of the
known ground truth alignment. Finally, our approach enables us to
easily incorporate information such as group labels of nodes to guide
the alignment sampling process and, at the same time, allows to infer
missing group labels of nodes. This is an important problem in the
annotation of biological networks in which the goal is often not to find
the precise identity of a node, but to identify how this node can be
classified into preexisting, biologically meaningful categories27. Our
results for two real cases in two different domains (neuroscience and
computational social science) show that ours is a general approach
that opens the door to the development of powerful context-
dependent methods for network alignment and network annotation.

Results
Probabilistic formulation of the problem of aligning multiple
networks
Consider K network observations, with N nodes each and adjacency
matrices {Ak; , k = 1,…, K }.We consider networks that are directed and
with binary edges (that is, we just consider the presence or absence of
connection between two nodes). Our hypothesis is that the observed
networks are topologically similar, which allows us to map each node
in a network to another node in each of the other networks. The goal is
then to find the most plausible mapping of nodes across networks.

We follow a probabilistic approach and surmise that there is a
latent underlying blueprint L, such that each network observation has
been generated from that blueprint. Then, the network alignment
problem becomes a problem of finding the blueprint L, and the per-
mutations {π k, k = 1,…,K } thatmapnodes in eachnetwork to nodes in
the blueprint. This formulation naturally allows the simultaneous
alignment of several networks onto a single blueprint (Fig. 1).

Formally, we consider a blueprint Lwith binary edges (Lij∈ {0, 1})
from which networks are copied with errors. Each entry Aij in an
observed network is assumed to be independently generated from Lij
with a copying error probability that depends on Lij. Edges in the
blueprint (Lij = 1) are copied with error probability q, whereas non-
edges (Lij = 0) are copied with error probability p (see Supplementary
Material for themodel with uniform copy error probability q = p). This
approach shares some features with the approach in Ref. 22, where the
goal is to align a noisy network copy with the original network (the
blueprint in our case) using a similar probabilistic framework. The
crucial difference lies in that, in our case, the blueprint is unknown, so
that we need to infer it. This difference is precisely what makes our
approach symmetric (the alignment of two networks does not require
that we choose one as reference) and what allows us to align multiple
networks at the same time without the need to choose an arbitrary
blueprint from the set of observed networks.

For simplicity, we consider first the case in which we have a single
observation. Given Lij, q, and p, the probability thatwe observe an edge
(Aij = 1) or a non-edge (Aij = 0) is then:

p ðAij = 1jLij ,q,pÞ=pð1�Lij Þ 1� qð ÞLij ð1Þ

p ðAij =0jLij ,q,pÞ=qLij 1� pð Þð1�Lij Þ: ð2Þ

Fig. 1 | Probabilistic approach to multiple network alignment. a Our data con-
sists of observations of topologically similar networks with unknown node iden-
tities. b Our objective is to align the networks, that is, to find the permutation of
node identities (illustrated as a rearrangement in the plane) in each network, such
that each node ismapped to its counterpart in the other networks, and edges are as
similar as possible across networks. To ease visual tracking, we color in purple a
node that has the same hidden identity in all networks. c Generative model. We
assume there exists an underlyingblueprint fromwhichobservations are generated

by copying edges and non-edges, with copying error probabilities q and p,
respectively. d Our probabilistic approach allows us not only to formulate the
network alignment problem in terms of finding the most plausible alignment, but
also to sample over the space of possible alignments (that is, permutations of node
identities) and corresponding blueprints. This allows us to assign a probability to
each individual nodemapping, and turns out to be critical to recover ground truth
alignments in noisy networks (see text and Fig. 2).
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Since the probability of observing each edge is conditionally
independent on the others, the total likelihood of observing an adja-
cency matrix A given a latent blueprint L, q, and p factorizes. Addi-
tionally, note that the likelihood depends on the unknownmapping of
nodes in the observed network into nodes of the blueprint, which is
given by the permutationπof the nodes in the observed network.With
this, the likelihood is

pðAjL,q,p,πÞ=
Y

ij

pðAijjL, q,p,πÞ=qo10po01 1� qð Þo11 1� pð Þo00 , ð3Þ

where the edge overlaps between the blueprint and the observations
are oXY =

P
δLπðiÞπðjÞ ,X

δAij ,Y
. For example, o01 is the number of entries

that are 0 in L and 1 in A, for mapping π.
Toobtain theposterior distributionover allmodel parameters, we

use Bayes rule

pðL,π,q,pjAÞ= pðAjL, q,p,πÞpðL,q,p,πÞ
pðAÞ , ð4Þ

where p(L, q, p, π) is the prior over model parameters. To obtain our
desired posterior p(L, π∣A), we consider a beta prior over p and q, and
integrate over these variables, which yields (“Methods”)

pðL,πjAÞ /
Γðo11 + βqÞΓ o10 +αq

� �

Γ n1 +αq +βq

� �
Γðo00 +βpÞΓ o01 +αp

� �

Γ n0 +αp +βp

� � , ð5Þ

where n1 =
P

iδLij , 1
, n0 =

P
iδLij , 0

are the number of edges and non-
edges in the latent blueprintL, respectively, and (αq,βq) and (αp,βp) are
the hyper-parameters of the prior distributions for q and p,
respectively (Methods). Note that one expects βq/p > αq/p ≥ 1 so that
priors favor small copy error probabilities, although the effect of the
prior becomes negligible for even modest edge overlaps.

In the case in which our observation comprises K networks, Eq. (5)
generalizes to (“Methods”)

pðL, fπkgjfAkgÞ /
ΓðO11 +βqÞΓ O10 +αq

� �

Γ Kn1 +αq +βq

� �
ΓðO00 + βpÞΓ O01 +αp

� �

Γ Kn0 +αp +βp

� � , ð6Þ

where OXY =
P

ko
k
XY , so that the posterior depends on the overall

overlap of edges and non-edges of all the networks with the blueprint.
Note that because β > α, the (L, {πk}) that maximize the posterior are
the ones that maximize O11 and O00, and minimize O10 and O01. Also
note that for a fixed permutation choice {πk}, the L⋆ thatmaximizes the

posterior is such that L?ij is equal to the majority of all Ak
~πk ðiÞ, ~πk ðjÞ, where

~πkðiÞ is the inverse of πk(i), so that πkð~πkðiÞÞ= i (“Methods”).

Note that, in the limit p→0or, equivalently, βp→∞, our generative
model is equivalent to generating networks from the blueprint by just
sampling on the edges in the blueprint (that is Lij = 1). The limits of
recovery of node identities and group labels of these nodes in terms of
the sampling probability have been extensively studied for correlated
pairs of random graphs31–33 and for correlated pairs of graphs with
group structure34. In this probabilistic framework, the best alignment
corresponds to the blueprint-permutation pair that maximizes the
posterior probability p(L, {πk}∣{Ak}). In the limit p → 0, the posterior
reduces to p(L, {πk}∣{Ak}) ∝ Γ(O11 + βq)Γ(O10 + αq), so that the most
plausible alignment corresponds to the blueprint-permutation pair
that maximizesO11, that is, the total number of edges in the graph that
overlap with the blueprint. Formally, for the alignment of a pair of
networks with binary adjacencymatrices (A, B), if we assume that one
of the two networks is equal to the blueprint as in Ref. 22, then max-
imizing O11 is equivalent to maximizing the product ∑ij Aij Bπ(i)π(j) as in

the Koopmans-Beckmann QAP formulation of the graph matching
problem11, and, in general, to minimizing the Frobenius norm between
two adjacencymatrices with binary entries. When p ≠ 0, our approach
considers the contribution of both aligned edges and aligned non-
edges. Therefore, the most plausible alignment in our case does not
necessarily coincide with that in the Koopmans-Beckmann QAP for-
mulation of the network alignment problem.

This observation also highlights the fact that current structural
pairwise approaches cannot be easily modified to allow for the align-
ment ofmultiple networks, since, in order to do that, wewouldhave to
decidewhich of the networks is the generating blueprint againstwhich
all other networks need to be aligned. Unfortunately, if all copies are
subject to the same copy error, there is no reason to expect that one of
the observations is closer to the blueprint than another a priori. In fact,
even if we had that prior information, pairwise approaches would only
consider independent alignments of each network against the selected
blueprint, so that the information coming from theoverlapbetween all
other pairs of networks other than the blueprint would be lost, and we
would have to resort to adding a method to assess consistency of pair
alignments29,30. Our probabilistic approach naturally circumvents
these issues.

Sampling the space of plausible alignments
By analogy to statistical mechanics, we can associate an “energy”
H= � log pðL, fπkg, fAkgÞ

� �
to each blueprint-permutation pair

(L, {πk}), so that their posterior is written

pðL, fπkgjfAkgÞ= exp �Hð Þ
pðfAkgÞ

, ð7Þ

and the energy H can be obtained directly from Eq. (6). In this inter-
pretation, the best alignment is the blueprint-permutation pair that
minimizesH. Importantly, this equivalence enables us to sample over
the space of alignments (L, {πk}) using Markov chain Monte Carlo35

(“Methods”; see Supplementary Material and Fig. fig:time_size for the
algorithmic complexity of our tool). The sampling of equilibrium
alignments from this space allows us to approach the network
alignment problem in ways other than just finding the single best
alignment.

In particular, by sampling alignments from the posterior dis-
tribution, we can estimate the probability p(πk(ik) = iL∣{Ak}) that node ik
in network Ak is mapped to node iL in the blueprint as the fraction of
sampled permutations in which πk(ik) = iL. Then, we can estimate the
most probable mapping for each node πk,⋆(ik) as the one that max-
imizes p(π(ik) = iL∣{Ak}) (Methods). As we show below, in noisy obser-
vations, themost plausible alignment does not necessarily recover the
ground truth mapping of nodes. This is because for nodes with few
connections, copy error can introduce a degree of ambiguity and
degeneration in themappings of node identities. However,wefind that
the most probable mapping of each individual node recovers the
ground truth for theirmappingmore reliably (Fig. 2). This is, in fact, an
expected result from using a probabilistic approach: averages over the
ensemble of possible alignments are more accurate at predicting
hidden information (in this case, nodemappings to the blueprint) than
single point estimates (that is, the best alignment) (see for instance
Ref. 36 for a discussion in the context of link prediction).

Additionally, MCMC sampling allows us to leverage relevant
information about the nodes. For instance, if we have access to node
attributes such as group labels, we can constrain permutations to
those in which only nodes with the same group labels can be mapped
to the same node in the blueprint (Methods); or if we have information
about the precise identity of some of the nodes (often called ‘anchors’
or ‘seeds’12; see Methods for details), our algorithm can be forced to
only sample permutations that have a fixed mapping for these nodes.
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Validation of the probabilistic approach on synthetic networks
We start by validating our approach on synthetic, but realistic, settings
of increasing difficulty. Because network alignment is particularly
relevant in the context of connectome analysis, we consider the con-
nectome of the nematode C. elegans25,37 as our benchmark, and

perform two initial sets of experiments: (i) the alignment of multiple
identical networks in which node identities have been shuffled; (ii) the
alignment of several noisy copies of the same network.

In the first experiment, we usemultiple copies of the connectome
network provided in ref. 11 (279 neurons), with node identities

Fig. 2 | Alignment of synthetic connectomes.WeconsiderC. elegans connectome
A2 in Ref. 25 as a blueprint to generate noisy synthetic connectomes.
a–d Alignment of 4 synthetic connectomes using group labels (neuron type) of
each node. a EnergyH as a function of time (Methods). Each line corresponds to a
replica running at a different temperature. We sample alignments in the equili-
brium zone (gray) at temperature T = 1 (black line). The blue dashed line shows the
energy of the ground truth alignment. b–d. Alignment of individual nodes for each
synthetic connectome S1, …, S4, ordered by neuron type. Blue nodes are correctly
aligned, i.e., mapped to their ground truth identity (blue); red if misaligned
(“Methods”). b Example of alignment in the transient regime—point b in (a). c.
alignment with minimum energy (ground state)—point c in (a, d). Most probable
mapping for each node sampled from the posterior distribution at equilibrium
(text and Methods). The top panel shows the frequency with which each node (in
each connectome) is assigned to its most probable mapping. e, f Node label

inference. We assume that neuron types are unknown for some nodes in networks
S2, S3, and S4 (total number for each type in parenthesis). We estimate the prob-
ability that a node has label X as the fraction of the sampled alignments in which
that node is assigned that label (text and Methods). Each matrix element (X, Y)
shows the probability that a node with unknown label Y is assigned label X.
e Unlabeled nodes are the same across the synthetic connectomes S2−S4.
f Unlabeled nodes are chosen at random in each of the connectome networks
S2 − S4. See supplementary Figs. S5, S6 for their corresponding alignments.
g–i Accuracy ar recovering the ground truth alignment for K noisy connectome
copies with different fractions of errors, for three alignment methods: Fast QAP
(QAP)38,multi-way (KerGM)23, and our samplingmethod (Sampling).gK = 2;hK = 3;
i K = 4. Points show the mean accuracy for 10 sets of networks; error bars show the
standard error of the mean.
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randomly shuffled in each copy. Because the networks are identical,
the ground state of the energy in Eq. (7) coincides with the ground
truth alignment, that is, with the desired mapping of node identities.
However, the ground state is degenerate because any permutation of
the nodes in the latent blueprint leaves the energy invariant. To break
this symmetry, which greatly complicates the search in the space of
possible alignments, we find that it is more efficient to first align two
networks (chosen at random), and then add the remaining networks
one by one to eventually obtain the desired global alignment of all the
networks (Supplementary Fig. S2). We find that this approach enables
us to perfectly align asmanynetworks asdesired, always converging to
the ground state.

Except for the fact that we consider an arbitrary number of net-
works, as opposed to just two, the previous experiment is the standard
validation test in the literature on network alignment and graph
matching. In the second experiment, we move to a more realistic and
challenging scenario. In particular, we use the adult A2 connectome of
C. elega ns from ref. 25 as a blueprint (224 neurons and 2,186 con-
nections), and generate four noisy synthetic connectomes by swap-
ping 327 edges with non-edges from the original adjacency matrix.

Using a maximum likelihood estimate, this process would be
equivalent to generating connectomes using our copying mechanism
with q ≈ 0.15 and p ≈ 0.007.

Since the four observations are not identical, now the global
ground state may not correspond to that of the ground truth. Addi-
tionally, if due to observational noise there are neurons with few
connections, new degeneracies or quasi-degeneracies may appear.
Therefore, the energy landscape is likely to become rougher in this
realistic scenario. Indeed, we find that, whereas alignment is still pos-
sible and most nodes are correctly matched, the MCMC finds align-
ments with lower energy than the ground truth, indicating that the
exact ground truth has become undiscoverable. (Since in this experi-
ment the synthetic networks are generated by the generative model
underlying our approach, our approach is Bayes optimal and no other
method would, in general, be able to identify the ground truth align-
ment in this case.)

Given the added difficulty of this scenario, we take advantage of
the fact that network datasets often contain useful information about
nodes, such as group labels; in the specific case of connectomes, one
could typically have information about neuron types (depending on
their neuroblast lineage). Therefore, we can restrict our Markov chain
to permutationswhere each neuron ismapped to a neuronof the same
type in the blueprint. This drastically reduces the space of possible
alignment permutations, and allows us to sample the alignment space
more thoroughly and efficiently (Fig. 2). (Alternatively, we can apply
the same successive alignment strategy as before, wherein we start by
aligning two networks add layers successively; Supplementary Fig. S3.)
Our results confirm that there exist multiple alignment permutations
(and the corresponding blueprints) that have energies lower than that
of the ground truth alignment (Fig. 2a, c).

This observation is key for real-world scenarios, and shows that
the ground-state alignment should not be taken as the best estimate
for the identity of individual nodes. Rather, aspreviously discussed, for
individual nodes one should rather use the mapping πk,⋆(ik) that
maximizes the probability p(πk(ik) = iL∣{Ak}) that node ik in networkAk is
mapped to node iL in the blueprint (Methods). As we show in Fig. 2d,
the most probable mapping for each node is more accurate at reco-
vering the ground truth node identities. In fact, we find that some
neurons are easy to align, so that the majority of sampled alignments
have the same node mappings for those neurons; but there are other
neurons, typically with few connections (see Supplementary Fig. S4),
for which there are several possible alignments and only through
averaging can we recover the underlying node identity.

To benchmark the performance of our approach, we compare it
to other methods for network alignment: the Fast QAP11,38 and the

multi-way Kernel Graph Matching (KerGM)23. Fast QAP is a method to
align pairs of networks and offers the possibility to use anchors in the
alignment but does not allow to use node attributes such as group
labels; KerGM can align simultaneously multiple networks and also
incorporate node attributes in the alignment process (seeMethods for
details). For a systematic comparison, we generate sets of K ∈ {2, 3, 4}
noisy copies of the A2 connectome by swapping a fraction σ of the
edges in the network with non-edges, with σ ∈ [0, 0.6]. For K = 2 we
compare our approach without using group labels to the FastQAP and
KerGM, and using group labels against KerGM (Fig. 2g; Supplementary
Table S1). For K = 3, 4, we compare our approach to KerGM, using
group labels as node attributes in both cases (Fig. 2h, i; Supplementary
Table S1; Methods). Our approach outperforms both QAP and KerGM,
since it is able to recover accurate alignments for larger fractions of
errors. Importantly, our approachhas superior accuracy evenwhenwe
reduce the number of sampled alignments with run-times comparable
to those of KerGM (Supplementary Table S1).

Finally, to further showcase thepotential uses of our approach,we
note that, in some real-world scenarios, node group labels are only
known for some of the nodes. For instance, in large neuronal
connectomes27,28,39,40 neuron type is not always straightforward to
establish, and some neurons are left without annotation. In such cases,
our probabilistic approach can be used to infer the labels of unan-
notated nodes. Specifically, for each alignment sampled from the
posterior, each node ik in network k is mapped to a labeled node in the
blueprint iL = πk(ik); and a node ik in network k with unknown group
label g(ik) is automatically assigned the label of the node in the blue-
print to which it is mapped g(ik) = g(iL). Therefore, by sampling align-
ments from the posterior, we can estimate the probability p(g(ik) = g)
that an unannotated node has label g as the fraction of sampled
alignments in which g(ik) = g. To assess the performance of our
approach in this task, we consider the same noisy connectome net-
works as in Fig. 2a–d, and we assume that one of the networks is fully
annotated, but the others have a fraction of unlabeled nodes. In Fig. 2e,
f, we show that our approach is able to recover ground truth annota-
tion for all nodes with unknown labels, both when unlabeled nodes are
randomly chosen in eachobserved connectome, and in theharder case
in which unlabeled neurons are the same across connectomes (Sup-
plementary Figs. S5, S6).

The probabilistic approach correctly aligns real networks
Having validated our method on synthetic networks for which the
underlying assumptions are fulfilled by construction, we now explore
its performance on sets of real networks, for which the assumptions
may not be fulfilled. We consider three real network datasets (see Data
for details): (i) four neural connectomes of the C. elegans nematode
corresponding to four different developmental stages25; (ii) the left
and right hemispheres of the brain of the larva of D. melanogaster26;
(iii) the yearly e-mail communication networks within an academic
institution for four consecutive years41. In each of these cases, wemake
use of whatever information is available from the nodes, and incor-
porate it to to the MCMC sampling to make it more efficient; we
compare our results to those of Fast QAP and KerGM under the same
conditions. In Table 1, we show a summary of the comparison, and in
what follows we discuss each experiment in detail.

C. elegans connectome at different stages of development. We
consider four connectomes of C. elegans at different stages of
development25: two late larval samples (L2, L3) and two adult samples
(A1, A2). In this dataset, each connectome comprises 224 neurons
and each neuron is associated to one of six different neuron types, so
we can use this information to constrain the search of alignment
permutations. Yet, the alignment of these connectomes is challen-
ging because the density of neuron-to-neuron connections increases
throughout development, so that L2 and L3 connectomes are sparser
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than A1 and A2 connectomes (Supplementary Fig. S4). This implies
that the network observations are not fully consistent with our
assumption that they have been generated from the blueprint with
the same copy error probability. Nonetheless, we find that the most
probable mapping of each neuron (the mapping that maximizes the
probability p(πk(ik) = iL∣{Ak}), obtained by averaging over alignments
sampled in the equilibrium zone) recovers the ground truth identity
for 94% of the neurons (Fig. 3a–b), compared to 56% identities for
KerGM (Table 1). By contrast, as for the synthetic connectomes, the
ground-state alignment is significantly further from the ground truth,
as it misaligns 33.5% of the neurons due to the left-right symmetry in
the data (an issue that is also apparent in the typical alignments
obtained using KerGM; Supplementary Fig. S7). Therefore, in this
case, it is critical to average over the ensemble of alignments in which
different nodes in different connectomes are misaligned, to recover
an alignment closer to the biological ground truth. Importantly, the
advantage of sampling is already apparent even if we substantially
reduce the number of samples and run times (Supplementary Fig. S7;
Table 1).

To further benchmark the performance of our approach, we also
looked at the alignment of two adult connectomes (A1, A2), in which
case we can also compare to Fast QAP. In general, aligning pairs of
networks happens to be a harder problem (because less information is
available about nodes and their connections) but, again, the alignment
obtainedusing our approach is better than those obtainedusing anyof
the other methods (Table 1; Supplementary Fig. S8). However, in
contrast to the alignment of four connectomes, the most probable
mapping does not improve over the ground state (Supplementary
Fig. S8). This is because for only a pair of networks the alignment
landscape is dominated by one deep minimum.

Finally, we investigate the ability of our approach to infer
unknown group labels (that is, neuron types), assuming that A2 is fully
annotated and that L2, L3, and A1 have 15% of the nodes without
annotation (Fig. 3c–e). This is a harder problem, since unannotated
nodes are unconstrained by group label and the number of possible
permutations is, thus, larger. Nonetheless, we find that, again by
sampling from the posterior distribution of alignments, the most
probable mapping of each neuron recovers the ground truth identity
in 92.8% of cases, and that our approach is able to fully recover
unknown labels. Qualitatively, these results are robust to changes in
the selection of the fully annotated connectome and the unannotated
nodes, and to other variations in the experiment (Supplementary
Figs. S9–S11).

Left and right brain hemispheres for the Drosophila melanogaster
larva. Next, we consider the connectome for the full brain of the larva
of the Drosophila melanogaster fly26. Neurons in the fly brain can be
classified into hemispheres that are assumed to be mirror copies of
one another, which is consistent with our hypothesis of an underlying
blueprint. Our goal is thus to use our probabilistic approach to align
the two hemispheres and show that our method is valid to align con-
nectomes comprising over a thousand neurons. For this task, we
constrain the search space of permutations by using two pieces of
information (Data): (i) the neuroblast lineage of each neuron; and (ii) a
set of 292 anchors, that is, pairs of neurons for which the precise
mapping is well established (also called “seeds“ in the literature12). In
Fig. 4, we show that the most probable mapping of each neuron
recovers the ground truthmapping in 79.2%of the cases (or 78.6% ifwe
consider a smaller set of alignments). This is higher than just looking at
the ground state (77.1%), the best alignment we obtained using a see-
ded QAP approach12 (76.9%), and also the mean accuracy obtained
using KerGM (69.5 %) (Table 1 and Supplementary Fig. S12).

Note also that neither anchors nor mismatched neurons are
homogeneously distributed. For example, some groups are hard to
align because the topological overlap between connections of ground
truth pairs and those with other neurons of the same type is often
large, such as for Kenyon cells (KC; neurons in the mushroom body of
the brain) or gustatory external neurons (Supplementary Figs. S13,
S14). For KCneuronsmisalignment betweenneurons is to beexpected,
since these neurons establish many connections following a random
pattern with well defined pre-synaptic and post-synaptic partners, and
therefore they are topologically hard to distinguish42. Nonetheless, this
is not necessarily the case for other neuron types such as gustatory
neurons, for which there are clear topological partners. For some of
thesemisaligned neuron pairs, we have checked that our tool finds the
topologically optimal solution that does not correspond to the biolo-
gical ground truth, suggesting that either the annotation is incorrect or
that there is further biological information the we would need to
incorporate into the tool to be able to recover the biological ground
truth mapping.

E-mail communication networks. As a final case study, we consider a
completely different network representing the emails exchanged
between individuals within an academic institution during four con-
secutive years (2007-2010)41. For each year, we define a directed net-
workwhere the nodes are individuals and links represent the existence
of stable e-mail communication between them during the years we

Table 1 | Comparison of accuracy and run-times for real-world networks

Sampling QAP KerGM

Dataset
(#nets, #nodes)

Acc.(%) t(s) Algs. (#runs) Acc.(%) t(s) Algs. Acc.(%) t(s) Algs. Rank

C. elegans 88.4 902 200 (10) 86.4 ± 0.4 5.4 40 39 ± 3 50 40 20

(2, 224) 87.5 222 40 (5) 34 ± 4 62 40 70

C. elegans 94.0 19,297 400 (50) – – – 56 ± 1 286 40 20

(4, 224) 91.6 2088 40 (5) 56 ± 2 302 40 70

D. melanogaster 79.2 20,471 105 (15) 77.2 146 40 59.63 ± 0.05 2615 40 20

(2, 1,235) 78.6 9538 42 (6) 69.48 ± 0.07 3031 40 70

Emails 95.9 5113 300 (20) – – – 67 ± 1 162 40 20

(4, 170) 95.1 142 50 (5) 80 ± 0.5 125 40 70

Emails 96.1 24,379 280 (20) – – – 25 ± 1 1943 40 20

(4, 356) 94.0 1074 50 (5) 59 ± 2 1789 40 70

Weshow results for our approach (Sampling), the FastQAPmethod (QAP) and themulti-way KernelGraphMatchingMethod (KerGM). ThecolumnAlgs. indicates thenumber of alignments obtained
with each method for the reported accuracy (Acc.). For our method, we also report in parenthesis the number of different initializations (#runs)(Methods). The column (t) shows run-times for in
seconds. ForQAP, ifwefindseveral alignmentswith the samescore,we report themeanandstandarddeviationof theaccuracy of thosealignments. ForKerGM,wereport themeanaccuracy against
the ground truth as well as the standard error of the mean for different dimensions of the kernel (Rank = {20, 70}) (Methods). Numbers in bold indicate the best alignment accuracy for each set of
networks.
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consider (Data). In particular, we consider two cases of stable yearly
communication between individuals that result in two networks of 170
nodes (Aij = 1 if i sends at least 25 emails to j in a year) and 356 nodes
(Aij = 1 if i sends at least 12 emails to j in a year), respectively. E-mail
communication between two individuals can vary significantly from
year to year41, which makes this a harder problem and serves as a
benchmark for networks with large copy error.

The data includes the organizational unit to which each individual
is affiliated, so we use this information to constrain the possible
alignment permutations. In Fig. 5, we show that for both networks
most of the alignment permutations we sample have an energy which
is lower than that of the ground truth alignment. As in the case of C.
elegans, we find that sampling over alignments increases significantly
the ability to recover ground truth alignment. Using sampling we

recover the ground truth identity for 95.9% and 96.1% of the nodes for
the 170 and 356-node network, respectively (95.1% and 94% if we use a
reduced sampling strategy), which is substantially higher than looking
at the ground state alignment (92.8% and 89.3%) or using KerGM
(average 80% and 59%) (Table 1 and Supplementary Fig. S15).

Discussion
We have introduced a probabilistic approach to the problem of net-
work alignment. In our approach, we assume that topologically cor-
related network observations are generated from the same underlying
blueprint via a noisy copying mechanism with errors. By contrast to
other approaches, the assumptions of the underlying generative
model are explicit and interpretable, and general enough to be applied
to a wide range of contexts. In particular, it opens the door to

Fig. 3 | Alignment of four real C.elegans connectomes corresponding to dif-
ferent developmental stages. a, b Network alignment using group labels (neuron
types).a Sameas in Fig. 2a,b same as Fig. 2d.In this case the ground truth alignment
(blue dashed line) is provided in ref. 25. Additionally, in (b) stars indicate the
probability with which misaligned neurons are mapped to the ground truth
identity.c–e Network alignment with some nodes with missing group labels. We
assume that, for some nodes chosen at random in networks L2, L3 an A1, we do not

have information about their group label (neuron type), while neurons in A2 are
fully annotated. c, d same as a, b respectively.In the bottom panel of (d) nodes
whose group label is assumed to be unknown are indicated by middle gray rec-
tangles. e Probability matrix for the inferred group labels of the selected nodes, as
in 2e, f. See Supplementary Figs. S9–S11 for results in slightly different experimental
conditions.

Article https://doi.org/10.1038/s41467-025-59077-7

Nature Communications |         (2025) 16:3949 7

www.nature.com/naturecommunications


developingmethods to align time-evolving networks by incorporating
a time-dependent generative mechanism or to align networks with a
different number of nodes by incorporating node copying mechan-
isms into the generative process.

Our approach also allows us to easily incorporate information on
node attributes such as group labels or known identity mappings

across networks to constrain the space of plausible alignments effi-
ciently. Such modifications of the basic underlying model are often
hard to implement in heuristic methods. Also in contrast to the
majority of approaches, our probabilistic approach enables us to
address the problem of the simultaneous alignment of multiple
networks.

Fig. 4 | Alignment of the right and left hemispheres of the brain of the Droso-
phila melanogaster larva. a Same as in Fig. 2a, b same as Fig. 2d. In this case the
ground truth alignment (blue dashed line) is provided in ref. 26. In the top panel of
(b) stars indicate the probability with whichmisaligned neurons aremapped to the

ground truth identity. In the bottom panel apart from the aligned and misaligned
nodes, there are nodes set as anchors (dark blue) as indicated in the dataset (292
out of 1235 in each hemisphere).

Fig. 5 | Alignment of university email networks corresponding to four con-
secutive years41. Multiple network alignment using the information about the
group label (organizational unit) of each node, for different constrained set of
users, (a, b) for 170 users and (c, d) for 356 users in 23 organizational units (see

Data). a, c Same as in Fig. 2a, b, d same as Fig. 2d. In the top panels of (b, d) stars
indicate the probability with which misaligned neurons are mapped to the ground
truth identity.
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Additionally, within our probabilistic framework, one is not
limited to finding a single alignment that optimizes a specific quality
metric. Rather, the method yields the full posterior distribution of
network alignments, which leads to more complete answers to any
question related to or dependent on network alignment. In parti-
cular, averaging over possible alignments and obtaining the most
probable mapping for each individual node enables us to obtain
accurate mappings of node identities, even in situations where the
single most plausible alignment fails to correctly match many of the
nodes. Our results show that our sampling approach provides a
major advantage with respect to recent methods such as KerGM23

that allow for the simultaneous alignment of several networks using
node attributes and other fast, reliable methods for the alignment of
pairs of networks such as Fast QAP38 (Supplementary Table S1 and
Table 1).

The sampling of the alignment space, in principle, comes with
the price of longer computational times than heuristic optimization
approaches. Nonetheless, we find that, with a few exceptions, if we
reduce the number of sampled alignments, the accuracy we obtain is
still superior to that of other methods with run-times that are
comparable to those of KerGM (See Supplementary Table S1 and
Table 1). In harder problems, for which it takes a longer time for our
tool to equilibrate, the improved accuracy justifies a more compu-
tationally costly approach. Future research will likely need to com-
bine our approach with more scalable approaches to easily find the
region in alignment space that has a large contribution to the pos-
terior. All in all, our approach is a qualitative step forward in the
problem of network alignment that opens the possibility to develop
a new generation of powerful algorithms to solve context-
dependent network alignment problems in the biological and
social sciences.

Methods
Data
C. elegans. We consider the connectomes of C. elegans available for
larval (L) and adult (A) stages of development in ref. 25. This dataset
comprises 8 connectomes in total, for stages L1(4 samples), L2, L3,
L4, A1, A2. Each connectome includes 224 neurons and provides
information about the number of synapses,w, between neurons. The
dataset also includes the mapping of neuron identities across the
connectomes, which we use as the ground truth in our analysis. In
our study, we represent these networks with binary adjacency
matrices, Ak, where each edge indicates the presence or not of a
synaptic connection, thus Ai, j = 1 if wi, j ≥ 1, and Ai, j = 0 if wi, j = 0.
The dataset also includes information about the neuroblast lineage
of each neuron, which divide them into six categories: Sensory
neurons(65 neurons), interneuron (44), motor neuron (42), mod-
ulatory neuron (29), muscle (32), and others (12). Supplementary
Fig. S4 illustrates the in-out degree of connections for neurons in
each of the connectome networks, ordered according their neuro-
blast lineage.

D.melanogaster. We consider the connectome for the entire brain for
the larva of Drosophila melanogaster available in ref. 26 which com-
prises 2,952neurons. This dataset includes the neuron locationswithin
the right and left hemispheres, which are nearly mirror images of each
other. Additionally, it also provides the mapping of neuron identities
between the two hemispheres, which we use as ground truth in our
analysis. We construct two binary connectomes networks with 1,235
neurons each, corresponding to the right and left hemispheres. To
build these connectomes, we only consider the presence or absence of
axon-dendrite connections between neurons within the same hemi-
sphere (thus only including neurons for which their hemisphere
location is known), using binary adjacencymatrices, as in theC.elegans

dataset. This dataset also includes the neuroblast lineage of each
neuron,which divide them into 17 categories (sensory, LN, PN,DN-SEZ,
ascending, pre-DN-VNC, PN-somato,pre-DN-SEZ, DN-VNC, RGN, LHN,
KC, CN, MB-FFN, MB-FBN, MBON, MBIN). Supplementary Fig. S16
illustrates the in-out degree of connections for neurons in each of the
hemispheres, ordered according their neuroblast lineage. For sensory
neurons, we use additional annotation to subdivide them into seven
subgroups (visual, olfactory, thermo-warm, gustatory-external, gusta-
tory-pharyngeal, thermo-cold, gut, respiratory). Finally, we incorpo-
rate information about certain neurons with condently identified
mapping, referred to as anchors or seeds: a set of 292 neurons in each
hemispheres (Supplementary Table S2; obtained from https://l1em.
catmaid.virtualflybrain.org).

E-mail network data. We consider a dataset of e-mails exchanged
among individuals workers within an academic institution over
four consecutive years (2007, 2008, 2009, 2010)41. The number of
users is 1514, 1608, 1878, and 2066, respectively. For each user
pair (i, j), we collect the total number of e-mails wij that i sends to
j. To work with alignable networks, we are interested in constructing
suitable,stable e-mail connections. In particular, we construct
two set of networks with different constraint conditions. The
first, common step is to include only the individuals/users that
are present across all four years (1282 nodes in total) and consider
the communications between them. The second step is to
include only stable communications: we define there exists a stable
communication between users i − j when individual i sends a mini-
mum of emails per year to individual j (or vice-versa). For the first set
of networks, we choose a tighter constraint of sending a minimum
of 25 emails per year(approximately ~ 2 emails/month), while for the
second only 12 emails/year (approximately ~ 1 email/month). Thus,
we construct binary directed networks such where Aij = 1 if wi,j ≥
25, and Ai,j = 0, otherwise. We further constrain our networks to
only those individuals that have communicated each year at least
with 5 other users, resulting in networks with 170 individuals in the
first set, and 356 in the second case. These individuals are dis-
tributed into 23 organizational units, which we use to constrain the
space of plausible alignments. Supplementary Fig. S17 illustrates the
in-out degree of connections for neurons in each of the connectome
networks, ordered according their organizational units.

Generative model details
The likelihood of observing a network with adjacency matrix
A according to our generative model is given by Eq. (3). If we
have k independent network observations with adjacency
matrices {Ak} the likelihood is the product of likelihoods for each
observation

pðfAkgjL,q,p, fπkgÞ=
Y

k
qok10pok01 1� qð Þok11 1� pð Þok00

=qO10pO01 1� qð ÞO11 1� pð ÞO00

ð8Þ

where OXY =
P

ko
k
XY .

To compute p(L, {πk}, q, p∣{Ak}), we use Bayes theorem, and con-
sider a Beta prior for both q and p, with hyper-parameters (αq, βq) and
(αp, βp), respectively:

pðL, fπkg, q,pjfAkgÞ= pðfAkgjL,q,p, fπkgÞpðL,q,p, fπkgÞ
pðfAkgÞ

ð9Þ

=
qO10 +αq�1pO01 +αp�1 1� qð ÞO11 +βq�1 1� pð ÞO00 +βp�1

Bðαq,βqÞBðαp,βpÞ
pðL, fπkgÞ
pðfAkgÞ

: ð10Þ
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Finally, to obtain p(L, {πk}∣{Ak}), we integrate over both p and q to
obtain the following expression for the posterior

pðL, fπkgjfAkgÞ=

pðLÞpðfπkgÞ
pðfAkgÞBðαq,βqÞBðαp,βpÞ

ΓðO11 +βqÞΓ O10 +αq

� �

Γ Kn1 +αq +βq

� �
ΓðO00 +βpÞΓ O01 +αp

� �

Γ Kn0 +αp +βp

� � ,

ð11Þ

where n1 and n0 are the number of edges and non-edges in the latent
blueprint L, respectively.

Monte Carlo simulation and graphical representation
The optimization of the posterior distribution, or equivalently, the
minimization of the proposed energy function, was conducted
employing a Markov Chain Monte Carlo (MCMC) algorithm using
parallel tempering.

MCMC movements. We propose identity swaps between pairs of
nodeswithin a specific network, i.e., we select a network k, choose a pair
of nodes (i, j), and propose the swap πk

newðiÞ=πk
oldðjÞ, πk

newðjÞ=πk
oldðiÞ,

accepting the change based on Metropolis acceptance.
When nodes have group labels, identity swaps are only allowed

between nodes with the same group label. For nodes with an unknown
group label, weproceed as follows: at each step, these unlabeled nodes
are temporarily assigned to a group based on the node in the blueprint
to which they aremapped (that always have a group label since one of
the networks is fully labeled). In this case, two types of swaps are
allowed: (i) swaps between pair of nodeswithin the same group (where
the unlabeled nodes participate within their current group); and (ii)
swaps among only unlabeled nodes. Additionally, we introduce an
extra movement when aligning four networks (where three of the
networks have some nodes unlabeled and one is fully labeled): we
propose a collective swap between a group of three unlabeled nodes
(from three different networks) that are mapped to the same node in
the blueprint, and another group of three unlabeled nodes mapped to
a different node in the blueprint.

Parallel tempering. Monte Carlo Parallel Tempering algorithms43

enhance sampling efficiency by simultaneously running several repli-
cas of the system at different temperatures.

In this study, we use 17 replicas with energies fHig at different
inverse temperatures {βi}. After every four Monte Carlo steps (where 1
MCS represents an attempt to swap each node in each network) across
all the replicas,weproposean exchangebetween apair replicas (1, 2) at
adjacency temperatures. The acceptance probability for this exchange
is then:

acc12 = min 1, exp � β1 � β2

� � H2 �H1

� ��� �
: ð12Þ

To guarantee a sustained acceptance for these exchanges, we set the
following schedule for {βi}:

βsi
=β

αsi
0 , where α 2 ½�40,0�, β0 = 1:03 ð13Þ

This broad range is chosen to avoid convergence issues in the
presence of multiple minima due to increased noise.

Sampling. Monte Carlo methods allow us to sample the space of
alignment permutations, providing probabilistic insights. After an
initial thermalization stage, during which the system reaches equili-
brium (indicated by a gray zone in each plot), we begin storing align-
ments (L, {πk}) of the replica at T = 1 every 50 MCMC steps, except for
the case of the four real C.elegans connectomes and e-mail networks;
for these, we sample every 400 and 500 MCMC steps, respectively, to

ensure uncorrelated alignments. In our analysis, the most efficient
sampling of the alignment landscape comes from performing several
runs, that is by performing different initializations of the alignment
algorithm. For the results presented in the main text, the number of
runs used for synthetic and real-world networks is reported in Sup-
plementary Table S1 and Table 1, respectively.

Initial configuration. We start the algorithm by sorting the nodes in
each network by degree, with the additional constraint of the group
labels. Nodes are initially matched based on this degree ranking,
except for the alignment of identical network identical copies,
where we initialize the algorithm with a random permutation, as
degree-based ranking alone would nearly produce a perfect
alignment.

Once the initial permutation is established, the blueprint is
defined as the majority configuration of all Ak matrices under this

permutation. That is, L?ij = θð 1
K

P
kA

k
~πk ðiÞ, ~πk ðjÞ

� �
� 0:5Þ, where θ is the step

function. For an even number of networks K, if there is nomajority, we
set L?ij =0 because in sparse networks this is the most likely value.

However, performance remains unaffected if we set L?ij = 1.

Most probable mapping for each node. Our probabilistic approach
and corresponding MCMC algorithm allows us to sample from the
energy landscape permutations and their associated blueprints,
enabling us to estimate the probability p(π(ik) = iL) that node ik in
network Ak is mapped to node iL in the blueprint. This probability is
calculated as the fraction of sampled alignment permutations inwhich
πk(ik) = iL. We then identify the most probable mapping for each node
as the one that maximizes p(π(ik) = iL).

Comparison of multiple network alignments with the ground truth.
In all cases studied in the paper, the ground truth is known, enabling
us to assess the performance of our method by comparing our
results against it. For network pair alignments, the comparison and
its graphical representation are straightforward: if two nodes, that
are paired according to the ground truth, are mapped to the same
node in the blueprint, then both nodes are correctly mapped
(represented in blue in visualizations). Nonetheless, comparing
alignments across more than two networks is more complex. In our
approach, we handle this as follows: for each ({πk}, L) tuple, we assign
a label to each node iL in the blueprint based on themost frequent id
among the nodes mapped to iL, i.e., nodes for which πk(i) = iL. For
instance, if π(a)1 = π(a)2 = π(m)3 = π(a)4 = iL, we assign label a to node
iL. If there is not amajority consensus among the nodes ids, we assign
label NaN to node iL. Using this labeling, we assess each alignment
({πk}, L) by checking whether each node in each network is correctly
mapped or not, comparing node id to the label of its corresponding
node in the blueprint. For an ensemble of alignments fðfπkg,LÞig, we
determined the most probable alignment of node i as the label of the
blueprint node to which it is most frequently mapped.

Comparison with other tools
Fast QAP. We use the implementation provided in the Graspy Python
package38. For the synthetic copies, we use the unseeded version. For
the alignment of the right and left hemispheres of theD. melanogaster
larva, we use the seeded version also provided in the Graspy package.

KerGM. We use the multi-way kernel method in https://github.com/
fxdupe/graphmatchingtools23. This method offers the possibility to
simultaneously align multiple networks using node and edge attri-
butes. In our analysis, the only group attributes we use are group
labels, which can be represented as a 1-dimensional attribute in the
KerGM formalism (i.e., all nodes with the same group label have the
same node attribute), so we set the parameter dim = 1. The othermain
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parameter is the rank, that is, the dimension of the Kernel space. In our
analysis, we show the results for two values of this parameter rank= 20
–which is the default value in the analysis of random graph alignment
in23, and rank = 70–which we find works better for real networks. The
other parameters, such as the number of iterations, had little effect on
the accuracy of the alignment, so we used the default value niter = 100.
Note that the KerGM implementation produces multi-network align-
ments without assigning a cost function, therefore as in ref. 23, for
each network we report the mean accuracy and the standard error of
the mean of a set on nruns = 40 different alignments obtained for
different random initial conditions.

For the case of the alignment of the left and right hemispheres of
the larval brain of D. melanogaster, we use both group labels and
anchors (i.e., known mapping of pairs of neurons). To do this, we use
different node attributes for each pair of anchor nodes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from
published references:11,25,26,41.

Code availability
Code is available at https://github.com/teelasa/Connectome_alignment.
git. https://doi.org/10.5281/zenodo.1494604944
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