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Abstract. The response of an ecosystem to perturbations is mediated by both antagonistic
and facilitative interactions between species. It is thought that a community’s resilience
depends crucially on the food web—the network of trophic interactions—and on the food
web’s degree of compartmentalization. Despite its ecological importance, compartmentaliza-
tion and the mechanisms that give rise to it remain poorly understood. Here we investigate
several definitions of compartments, propose ways to understand the ecological meaning of
these definitions, and quantify the degree of compartmentalization of empirical food webs. We
find that the compartmentalization observed in empirical food webs can be accounted for
solely by the niche organization of species and their diets. By uncovering connections between
compartmentalization and species’ diet contiguity, our findings help us understand which
perturbations can result in fragmentation of the food web and which can lead to catastrophic
effects. Additionally, we show that the composition of compartments can be used to address
the long-standing question of what determines the ecological niche of a species.

Key words: compartmentalization; compartments; ecological networks; food web patterns; food web
structure; food webs; niche; modularity.

INTRODUCTION

Ecosystems face threats arising from extinctions,

invasive species, and the accumulation of persistent

contaminants (Srinivasan et al. 2007, Ng et al. 2008,

Stouffer et al. 2008). The response of an ecosystem to

these threats is mediated by both antagonistic and

facilitative interactions between species. One important

set of interactions is referred to as the food web (Cohen

et al. 1990, Pimm 2002, Pascual and Dunne 2006), that

is, the network of trophic interactions between species.

Despite the existence of other types of interactions, such

as mutualisms (Bascompte and Jordano 2007), the

topological properties of food webs, including the

distribution of number of prey and predators per species

(Camacho et al. 2002, Dunne et al. 2002, Stouffer et al.

2005), structural motifs (Bascompte and Melián 2005,

Camacho et al. 2007, Stouffer et al. 2007, Kondoh

2008), the contiguity of species diets or intervality

(Cohen 1977, Sugihara 1984, Williams and Martinez

2000, 2008, Cattin et al. 2004, Stouffer et al. 2006,

Allesina et al. 2008), and compartmentalization (May

1972, Pimm 1979, Pimm and Lawton 1980, Yodzis 1982,

Girvan and Newman 2002, Krause et al. 2003, Allesina

and Pascual 2009, Rezende et al. 2009), are thought to

play a central role in the propagation of ecological

perturbations (Pimm 1979).

Among these properties, compartmentalization is

believed to be particularly important. Compartmental-

ization refers to the existence of groups of species that

have a higher probability of interacting with one another

than with other species in the food web (May 1972,

Girvan and Newman 2002, Krause et al. 2003). In the

propagation of ecological perturbations (Teng and

McCann 2004), as in other dynamical processes taking

place on complex networks (Arenas et al. 2006), the

existence of compartments results in a separation of time

scales: if food webs are truly compartmentalized, it is

thought that perturbations will propagate far faster

within compartments than between compartments (May

1972, Melián and Bascompte 2002).

An idea that has been less frequently considered is

that compartmentalization could potentially determine

the effect of perturbations that alter the structure of the
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food web itself. On one hand, perturbations that reduce

food web compartmentalization may make ecosystems
more prone to system-wide catastrophic events by

blurring the boundaries between compartments. On
the other hand, perturbations that increase compart-

mentalization may lead to de facto fragmentation of the
ecosystem. The potential effects of excessive compart-
mentalization are significant enough that Pimm (1979)

concluded that ‘‘species interactions should not be
arranged in tight compartments.’’

It has recently been established that empirical food
webs are more compartmentalized than the random null

hypothesis in which each species preys with equal
probability on every other species (Krause et al. 2003,

Rezende et al. 2009). Allesina and Pascual have also
shown that group-based models provide a very good

description of the observed trophic interactions in real
food webs (Allesina and Pascual 2009). In this context,

two important questions remain to be definitively
answered: (1) What truly constitutes a compartment

within a food web (and what is the relationship between
traditional compartments and the groups defined by

Allesina and Pascual)? And (2) which factors explain the
observed compartmentalization? Here we address both

of these questions and then discuss the type of scenarios
that are likely to change a food web’s compartmental-
ization and thus its resilience to perturbation.

To tackle these questions, we make use of the most

accurate tools in the literature for the identification and
analysis of compartments within complex networks
(Newman and Girvan 2004, Danon et al. 2005, Arenas

et al. 2007, Guimerà et al. 2007, Leicht and Newman
2008). We systematically apply these tools for the first

time to quantify the compartmentalized structure of
food webs and understand the mechanistic origin of

such compartmentalization. We consider three comple-
mentary definitions of compartment, encompassing the

classic concept of compartment (Krause et al. 2003,
Rezende et al. 2009) and the more recent definition of

‘‘group’’ by Allesina and Pascual (2009). Furthermore,
we analyze the mechanisms behind observed compart-

mentalization in ten food webs from a variety of
environments. This analysis enables us to draw general

conclusions regarding the origin of compartmentaliza-
tion in food webs.

We find that the compartmentalization observed in
empirical food webs can be accounted for solely by the

niche organization of species and their diets. In addition,
we show that one can use the composition of real food
webs’ compartments to quantitatively address the long-

standing question of what properties of a species
determine its ecological niche.

METHODS

Compartment identification

The search for compartments in complex networks is
also often referred to as analysis of ‘‘community

structure’’ (Newman and Girvan 2004) owing to origins

in social science literature. Similarly, compartments are

also referred to as ‘‘topological modules’’ in the general

study of complex networks (Danon et al. 2005). A

widely used approach to the identification of compart-

ments in complex networks is to define a quality

function, the modularity, that is high for ‘‘meaningful’’

partitions of a network into compartments and zero for

typical (random) partitions (Newman and Girvan 2004).

Despite some limitations (Fortunato and Barthélemy

2007, Sales-Pardo et al. 2007), modularity maximization

is the most accurate current method for identifying

compartments. Here, we describe in detail the modular-

ity functions we use for the identification of compart-

ments in food webs.

The definition of a modularity function depends on

how the network is represented. Food webs are directed

networks in that trophic interactions occur between

predators and prey that play distinct roles in the

interaction. In a directed representation, the links can

be thought of as arrows going from prey to predator in

the direction of mass flow. As a simplification, however,

one can disregard the direction of the interactions and

create an alternate representation which is referred to as

an undirected network. In a food web, the predators and

prey are still connected but the links are no longer

arrows; given the undirected representation of a food

web it is not possible to determine which species are

predators and which prey.

The modularity MU(P) of a partition P of an

undirected network is defined as the fraction of links

within compartments minus the expected fraction of

such links (Newman and Girvan 2004). The expected

fraction of links within compartments is evaluated

assuming that the probability that nodes i and j are

connected is kikj/2L, where ki is the number of links of

node i and L is the total number of links in the network.

Therefore, the modularity is as follows (Newman and

Girvan 2004):

MUðPÞ ¼
1

2L

X

ij

Aij �
kikj

2L

� �
dmi;mj

ð1Þ

where A is the adjacency matrix of the network (that is,

Aij ¼ 1 if there is a link between i and j and Aij ¼ 0

otherwise), mi is the compartment of node i, and d is

Kronecker’s delta (da,b ¼ 1 if a ¼ b and da,b ¼ 0

otherwise). This modularity function has been recently

used to identify compartments in food webs by Rezende

et al. (2009).

The simplest generalization of Eq. 1 to directed

networks is the following (Arenas et al. 2007, Leicht

and Newman 2008):

MDðPÞ ¼
1

L

X

ij

Aij �
kin

i kout
j

L

" #
dmimj

: ð2Þ

Now, kin
i and kout

j are, respectively, the number of

incoming and outgoing links of node i. Following the
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convention mentioned above, the outgoing links of a

node indicate the predators of the species, the incoming

links its prey, and Aij ¼ 1 if species i preys on species j.

An alternative approach for the directed case is to

consider the outgoing (incoming) links of each node,

and then build compartments comprising nodes with

similar outgoing (incoming) links. The modularity

MO(P) of a partition P of a directed network, according

to the outgoing links, is as follows (Guimerà et al. 2007):

MOðPÞ ¼
X

ij

cout
ijX

l

kin
l ðkin

l � 1Þ
�

kout
i kout

j

X

l

kin
l

 !2

2
666664

3
777775
dmimj

ð3Þ

where cout
ij is the number of outgoing links that i and j

have in common. As before, the second term inside the

brackets comes from the random expectation for cout
ij .

The goal of a module identification algorithm is to

find the partition P* that yields the largest modularity

(note that the number NC of compartments is only

constrained to be NC � S, but is otherwise selected by

the optimization algorithm). Due to the large number of

possible partitions of a network and to the rugged

structure of the modularity landscape, it is necessary to

use heuristic algorithms to identify maximum-modular-

ity partitions. We use a spectral algorithm to maximize

modularity Eq. 2 (Leicht and Newman 2008) and

simulated annealing to maximize the modularity Eq. 3

(Guimerà and Amaral 2005, Guimera et al. 2007).

Compartment homogeneity

We quantify the homogeneity of compartments in

three ways which we refer to as trophic-level, sink, and

niche homogeneity. Trophic-level homogeneity mea-

sures the extent to which compartments comprise species

with contiguous trophic levels. To calculate trophic-level

homogeneity within compartments, we start by sorting

species according to their trophic level li, which we

calculate as follows (Levine 1980):

li ¼ 1þ

X

j

Aijlj

X

j

Aij

: ð4Þ

We then count the number B* of boundaries, in that

ordering, between the observed compartments (see

Appendix A: Fig. A1). For example, if we have two

compartments, one compartment comprising the species

with lowest trophic levels and another comprising the

species with the highest trophic levels, then B* ¼ 1. In

general, if compartments are perfectly homogeneous, the

number of boundaries is B* ¼ NC � 1 (where NC is, as

before, the number of compartments). If the compart-

ments are less homogeneous in terms of the trophic

levels of the species they comprise, the number of

boundaries will be larger.

We define trophic-level homogeneity Ht as

Ht ¼
Bh i � B�

rB
ð5Þ

where hBi is the average number of boundaries between

compartments for the ensemble of all possible partitions

of the species (with the same number of compartments

and the same compartment sizes as the observed

partitions), and rB is the standard deviation of the

same quantity. Both of these quantities can be calculated

analytically (see Appendix A for the full derivation).

Niche homogeneity measures to what extent com-

partments correspond to contiguous regions of the niche

space. We define niche homogeneity Hn in the same way

as trophic-level homogeneity, but counting the bound-

aries in the niche space, rather than the trophic-level

space. (In principle, this can only be done with model

networks, for which the niche value of each species is

known; we discuss the issue of empirical proxies for

niche value later.)

Sink homogeneity measures to what extent compart-

ments correspond to sink food webs within the food

web. For each species i, we first find the set Ti of species

that belong to i’s sink food web (which is made up of i’s

prey, the prey of i’s prey, and so on until no new species

are encountered). We then count the number o�i of

species that belong to both Ti and species i’s compart-

ment Ci. We define sink homogeneity Hs as

Hs ¼
XS

i¼1

o�i � oih i
roi

ð6Þ

where hoii is the average number of species that belong

to both Ti and Ci for the ensemble of all partitions of the

species (with the same number of compartments and the

same compartment sizes as the observed partitions), and

roi
is the standard deviation of the same quantity. (As

before, these quantities can be calculated exactly; see

Appendix A for the full derivation.)

Food-web models

We consider two models to generate food webs: the

niche model (Williams and Martinez 2000) and the

generalization of the niche model by Stouffer et al.

(2006). To generate a food web using the niche model

(Williams and Martinez 2000), one considers S species

and assigns, to each of them, a niche value ni drawn

from a uniform distribution in the interval [0, 1]. Each

predator j then preys on the species in a range rj¼ njx of

the niche axis, where x is drawn from a beta-distribution

p(x)¼ b(1� x)(b�1) and b¼ (S2/2L)� 1, where L is the

total number of trophic interactions in the network. The

center of the range rj is selected uniformly at random in

the interval [rj/2, nj]. All species i whose niche values ni
fall within this range are considered prey of species j.

This implies that, in the niche model, all predators’ diets

are contiguous within the dimension provided by the

niche axis.
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To generate a food web using the generalized niche

model (see Appendix C: Fig. C1; Stouffer et al. 2006),

one also assigns to each species a niche value drawn

from a uniform distribution in the interval [0, 1], as in

the niche model. The generalized niche model, however,
allows for tunable prey contiguity. First, the reduced

range r 0j for predator j is set to r 0j ¼ c3 rj¼ c3 njx, where

c is a fixed parameter in the interval [0, 1]. Because

species are distributed uniformly at random on the

resource axis, a predator j with range rj has on average

rjS prey. The same applies to the reduced range r 0j , and
therefore a predator has Dk ¼ (rj � r 0j )S ¼ (1 � c) rjS

anticipated prey unaccounted for after the range

reduction. To account for this, Dk prey (rounded to

the nearest integer value) are selected randomly from

those species i with niche value ni � nj that are not

already a prey of species j. The parameter c is thus a
measure of prey contiguity: for c ¼ 0, all prey of j are

selected randomly among species with ni � nj and one

recovers the generalized cascade model (Stouffer et al.

2005), whereas for c¼ 1, all prey are contiguous and one

recovers the niche model. Diet contiguity c can be

thought of as the degree to which a unidimensional
niche axis is able to explain the properties of an

empirical food web.

Parameter estimation for model food webs

For each empirical food web, we need to know three

parameter values in order to generate food webs with the
generalized niche model (Stouffer et al. 2006): the

number of species S, the linkage density z, and the diet

contiguity c. The number of species and the linkage

density can be obtained directly from the empirical

network. Therefore, only one parameter is estimated for

each food web.

Estimating the diet contiguity c is involved since in
principle there is no direct way to measure it from a

given food web; rather, c needs to be estimated from the

data (Stouffer et al. 2006). To do this, we use the

following procedure for each food web:

1) Obtain 20 model food webs with each of three

different values of c 2 f0.5, c*, 1.0g, where c* is the best

estimate of c obtained using the procedure proposed by

Stouffer et al. (2006).

2) Estimate the z score for different compartmental-

ization properties (modularity, trophic and sink homo-

geneity, number of compartments, standard deviation of

the compartment sizes, and average size of compart-

ments with more than one species), for the prey and

predator views. Estimate the log-likelihood of each value

of c as the sum of squares of the z scores.

3) Select the value of c with the highest log-likelihood,

generate new model food webs with values of c around

it, and iterate the process until the likelihood does not

improve.

Note that, since this procedure to estimate c is not

exhaustive (exhaustive search is too expensive compu-

tationally given the large number of operations in-

volved), we cannot rule out that there are slightly

different values of c that better explain the data. We list

our best estimates for the parameters in Table 1.

RESULTS

Compartment definition and identification

As noted previously, compartmentalization refers to

the existence of groups of species that have a higher

probability of interacting with each another than with

other species in the food web (May 1972, Girvan and

Newman 2002, Krause et al. 2003). What constitutes an

interaction, however, depends largely on the process

under consideration. One possible interpretation would

be that a group of species interacts strongly if there are

many direct trophic interactions between them. A group

of species can also interact strongly via competition, if

they share a large number of prey, even though there

might not be any direct trophic interactions between the

species in the group.

With this in mind, we consider here three different

definitions of a compartment in a food web (Methods):

(1) a group of species that are densely connected to each

other (density view); (2) a group of species that share a

large number of prey ( predator view); and (3) a group of

species that share a large number of predators ( prey

view) (Fig. 1).

From a topological perspective, these are the only

three sensible definitions of compartment since they

TABLE 1. Food webs and their properties from the literature.

Food web Reference S z c

Benguela Yodzis (1998) 29 7.0 0.95
Bridge Brook Lake Havens (1992) 25 4.3 0.96
Caribbean Reef Opitz (1996) 50 11.1 0.75
Chesapeake Baird and Ulanowicz (1989) 31 2.2 0.96
Coachella Polis (1991) 29 8.8 0.88
Little Rock Martinez (1991) 92 10.8 0.92
Northeast U.S. Shelf Link (2002) 79 17.7 0.78
Skipwith Warren (1989) 25 7.9 0.52
St. Marks Christian and Luczkovich (1999) 48 4.6 0.82
St. Martin Goldwasser and Roughgarden (1993) 42 4.9 0.87

Notes: Properties are number of species S, linkage density z, and diet contiguity c. Diet contiguity c is estimated as detailed in the
Methods.
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correspond to measures of compartmentalization based

on all links, the incoming links, and the outgoing links

of each species, respectively. The density view is the

appropriate generalization to directed networks (Are-

nas et al. 2007, Leicht and Newman 2008) of algorithms

that have been used before to identify compartments in

food webs disregarding the direction of trophic

interactions (Girvan and Newman 2002, Krause et al.

2003, Rezende et al. 2009). The prey and predator views

result in compartments that are closely related to the

groups defined by Allesina and Pascual (2009) (Fig.

1D, H).

FIG. 1. Compartments in empirical and model food webs. (A–D) Bridge Brook Lake food web. (E–H) Typical generalized
niche model of the Bridge Brook Lake food web. Nodes represent trophic species, and links indicate trophic interactions between
species, with arrows pointing in the direction of mass flow (that is, from prey to predator). Different colors indicate different
compartments according to the density view (A and E), the predator view (B and F), and the prey view (C and G). The three views
yield distinct compartmentalizations. Compartments in the density view contain species that are densely interconnected to each
other. Compartments in the prey (alternatively, predator) view correspond to groups of species with similar predators (prey).
Combining these two views, the adjacency matrix of the food web (whose element in row i and column j represents the trophic
interaction from prey i to predator j ) can be conveniently rearranged so that its block structure becomes apparent (D and H).
Regardless of the view, compartments in the real and model webs have qualitatively similar properties (for example, compartment
size and structure).
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In the density view, the modularity function in Eq. 2

measures the difference between the fraction of interac-

tions within compartments and the expected fraction of

interactions within compartments in a random partition,

taking into account the direction of the trophic

interactions (Leicht and Newman 2008). In the predator

(conversely, prey) view, we consider partitions based

only on the prey (predators) of a species. In the predator

(prey) view, the modularity in Eq. 3 is large when species

in the same compartment share more prey (predators)

than one would expect from chance alone (Guimerà et

al. 2007).

We have analyzed the compartmentalized structure of

10 of the most complete food webs in the literature

(Table 1 and Williams and Martinez [2008]) from each

of these three viewpoints. Not surprisingly, the three

views yield distinct compartmentalizations of a food web

(Fig. 1A–D).

Degree of compartmentalization of empirical food webs

Recent studies have observed correlations between

species characteristics and compartmentalization in food

webs: species within compartments seem to have similar

habitats (Girvan and Newman 2002, Krause et al. 2003)

and seem to be related phylogenetically (Rezende et al.

2009). However, none of these studies has evaluated

quantitatively the extent to which the various factors can

actually explain the observed compartmentalization. In

fact, quantitative investigations of compartmentaliza-

tion have only been able to establish that real food webs

are more compartmentalized than would be expected for

a randomly assembled food web (Krause et al. 2003,

Rezende et al. 2009).

Here, we take a more systematic approach and

proceed by investigating empirical compartmentaliza-

tion vis-à-vis that of two of the simplest models known

to generate realistic food webs (rather than purely

random networks): the niche model of Williams and

Martinez (2000) and its generalization by Stouffer et al.

(2006). By understanding the cause of compartmental-

ization in the models, we gain insights into the causes of

compartmentalization in real food webs.

We present here the results for the generalized niche

model while those for the niche model are shown in

Appendix E. Specifically, we compare modularity values

for the real food webs to those obtained from the

generalized niche model, for each of the three views. As

we show in Fig. 2A–C, the modularity of empirical food

webs is within the 99% expectation interval of the

models in 28 out of 30 cases, regardless of the

compartment definition we use. In the two remaining

cases, the modularity of the empirical food web is only

slightly below the model predictions. Thus, real food

webs are never more compartmentalized than one would

expect from the generalized niche model.

Beyond modularity, we have also measured a variety

of other properties of the compartments (Appendix D:

Fig. D1): the number of compartments, the standard

deviation of the number of species per compartment,

and the mean size of compartments containing more

than one species. For all of these properties and, again,

for each definition of compartment, almost all the points

(88 out of 90) fall within the 99% expectation intervals.

In general, the original niche model performs worse

than the generalized niche model (see Appendix E). This

is largely due to its tendency to overestimate the

modularity of empirical networks.

Trophic structure of empirical and model compartments

In the previous section we have shown that the degree

of compartmentalization of empirical food webs is never

larger than expected from the generalized niche model.

Moreover, we have shown that other properties of real

compartments (the number of compartments, the typical

compartment size, and the standard deviation of the size

of compartments) are also compatible with the predic-

tions of the generalized niche model.

Ecologically, however, a far more important consid-

eration is whether the trophic structure of real compart-

ments is also the same as that of model compartments.

To investigate this question, we examine two measures

of compartment homogeneity (see Methods for details):

trophic-level homogeneity and sink homogeneity. Trophic

homogeneity measures to what extent species in the

same compartment occupy similar trophic levels. Sink

homogeneity measures to what extent species in the

same compartment belong to the same set of sink food

webs.

In Fig. 2D–I, we show the homogeneity of compart-

ments identified in our model networks using the three

compartment identification approaches. For all views,

mean trophic-level homogeneity is typically higher than

expected from chance alone, suggesting that trophic

level is a strong driver of compartmentalization. Mean

sink homogeneity, by contrast, is significantly positive

only in the density view, and random or even negative

for the predator and prey views (since compartments in

these two views cut across food chains).

Importantly, Fig. 2 also shows that, like for the

number of compartments and their sizes, the generalized

niche model accounts for the trophic structure of the

compartments: in only two cases out of 60 is the

observed homogeneity smaller than expected from the

model. As before, the original niche model tends to less

accurately explain the trophic structure of empirical

compartments (see Appendix E).

Empirical compartmentalization and niche space

The previous sections suggest that the compartmen-

talization observed in real food webs can be accounted

for by some mechanism that is already encoded in the

generalized niche model. This result is counterintuitive

because the generalized niche model does not incorpo-

rate attributes—such as habitat fragmentation or

phylogenetics—that would explicitly give rise to com-
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partments. Conceptually, the only relevant property of a

species in the model is its niche value: other than the

niche value of each species, the only parameters of the

model are global parameters such as the number of

species, the average number of prey (or predators) per

species, and the diet contiguity. Therefore, compart-

ments in generalized niche model food webs seem to

arise from the underlying niche structure of the food

web.

This conjecture has two important implications,

which we investigate using the generalized niche model.

First, if compartments arise from the niche structure

underpinning the food web, compartmentalization

should increase with increasing diet contiguity c (see

FIG. 2. Degree of compartmentalization and trophic structure of compartments for empirical and generalized niche model food
webs. Compartments are defined according to (A, D, G) the density view, (B, E, H) the predator view, and (C, F, I) the prey view.
(A–C) Modularity; (D–F) trophic homogeneity; (G–I) sink homogeneity. Symbols indicate empirical values. Shaded boxes with
error bars indicate model values, with the shaded box indicating the 99% confidence interval for the mean and the error bars
indicating the 99% confidence interval for the values (see Appendix B for details on how we estimate the confidence intervals).
Despite the different food webs having very distinct values of modularity, empirical modularities are never larger than predicted by
the generalized niche model (A–C). Trophic homogeneity is highest in compartments derived from the predator view (D–F), and
sink homogeneity is highest in compartments derived from the density view (G–I). Empirically observed values are within the 99%
confidence interval for 58 out of 60 cases, indicating that the trophic structure of empirical compartments is compatible with the
predictions of the generalized niche model.
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Methods) because the niche values of species become

more relevant when diets are continuous. The increased

explanatory power of niche values is due to the fact that

large contiguity of diets in the model induces strong

correlations because two species with similar niche

values are also expected to have similar predators

(and, to a lesser extent, prey). Indeed, we observe that,

regardless of the compartment definition, increasing diet

contiguity in the generalized niche model results in

greater compartmentalization (Fig. 3 and Appendix F).

The original niche model’s overestimation of compart-

mentalization appears to stem from this fact as diet

contiguity in this model is maximal.

Second, if compartments arise from the niche

structure, then one would expect the niche to be a

strong driver for compartmentalization and compart-

ments to have a strong ‘‘niche signal.’’ To investigate

this, we examine a niche homogeneity that quantifies to

what extent species in the same compartment have

similar niche values (see Methods for details). In Fig. 4,

we show that compartments in all views are typically

homogeneous in terms of the niches of the species they

comprise, in agreement with our expectation.

DISCUSSION

Our study is in agreement with previous studies in

showing that empirical food webs are significantly more

compartmentalized than purely structureless networks

(Krause et al. 2003, Rezende et al. 2009). We extend

these studies by considering alternative definitions of

compartment (all sensible definitions from a network

perspective, including ‘‘regular’’ compartmentalization

as well as the groups introduced by Allesina and Pascual

(2009)) and by relating the observed compartmentaliza-

tion to species attributes across multiple food webs from

a variety of environments.

FIG. 3. Modularity as a function of diet contiguity for
generalized niche models of the Caribbean Reef food web.
Error bars indicate the standard deviation of the modularity.
Increasing diet contiguity results in greater compartmentaliza-
tion regardless of the definition of compartment. We obtain
qualitatively similar results for all food webs studied (see
Appendix F: Fig. F1).

FIG. 4. Niche homogeneity of compartments in the generalized niche model: trophic level and mass as empirical proxies of
niche value. (A) Density view; (B) predator view; (C) prey view. Shaded boxes with error bars indicate model values, with the
shaded box indicating the 99% confidence interval for the mean and the error bars indicating the 99% confidence interval for the
values. Confidence intervals are calculated using the z score (see Appendix B for details). Niche homogeneity is highest in
compartments derived from the prey view but has positive means in all views, which indicates that niche is a strong driver for
compartmentalization. Black diamonds indicate the empirical trophic homogeneity, and white circles indicate the empirical mass
homogeneity in mass-resolved food webs. Note that trophic homogeneity in the empirical webs consistently lies outside the range of
niche homogeneity predicted by the model, suggesting that trophic level is a poor proxy for niche value. Though the data are limited
for the food webs we consider, mass appears to be a far better proxy.
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Furthermore, by relating our empirical results to

those for model food webs, we are able to (1)

demonstrate that the generalized niche model generates

food webs with compartmentalization compatible with

what is observed empirically and (2) identify mecha-

nisms that are sufficient to quantitatively explain all the

compartmentalization observed in real food webs.

Compartmentalization in the generalized niche model

is an emergent phenomenon, arising as a consequence of

species’ diet contiguity.

This conclusion has practical, theoretical, and meth-

odological implications. First, it clarifies that compart-

mentalization can be explained solely by niche-value

ranking of species. This implies that compartmentaliza-

tion does not need to be explicitly introduced in our

efforts to model either ecosystem structure or ecosystem

dynamics. In this regard, our results need to be analyzed

vis-à-vis the work by Allesina and Pascual (2009), which

argues that group-based models are more appropriate

than niche-based models like the generalized niche

model and calls for explicitly incorporating groups in

our efforts to model food-web structure. While recog-

nizing that we need more work to properly address the

apparent contradiction between these results, we note

that:

1) As we have shown using the prey and predator

views, the relevant predator and prey groups (and

therefore, presumably, those defined by Allesina and

Pascual 2009) have uniform niche values, so niche has

substantial explanatory power, in any case.

2) Our approach suggests that, if anything, the

modularity of the generalized niche model (and defi-

nitely that of the original niche model) is slightly larger

than that of some real food webs. In fact, group-based

models might be a better fit to some real food webs

precisely because, in those cases, the niche model is too

compartmentalized; ultimately, the group-based model

would provide the best fit to a totally random network,

for example.

3) Model selection using likelihood approaches and

information criteria is a powerful method but is not

exempt of problems. In particular, the Akaike informa-

tion criterion used by Allesina and Pascual (2009) is

known to overestimate the optimal number of param-

eters of models and thus could be biased towards

favoring group-based models over niche-based models.

From a theoretical perspective our results may help us

see ecological perturbations in a new light. On the one

hand, we find that compartmentalization increases with

diet contiguity (Fig. 3) and increased compartmentali-

zation may increase ecosystem stability by containing

certain perturbations and preventing them from becom-

ing system-wide (May 1972, Melián and Bascompte

2002). According to current knowledge, the invasion of

a generalist predator, for example, would be assumed to

reduce compartmentalization whereas the extinction of a

generalist predator would be assumed to have the

opposite effect. We demonstrate here, however, that

how that predator’s diet conforms to the community’s

niche space may be equally as important. Thus,

perturbations that reduce diet contiguity may have

cascading effects and may be more likely to be

catastrophic. On the other hand, perturbations that

increase diet contiguity may directly lead to food-web

fragmentation. Interestingly, by rephrasing the issue in

terms of diet contiguity, as opposed compartmentaliza-

tion, we move from a feature that must be measured at

the community scale to one that can be assessed on a

species-specific basis.

It is important to recognize that without a true

empirical analogue to niche value our results can only

provide indirect evidence for the origin of food-web

compartmentalization in real ecosystems. In this sense,

our results are complementary to the empirical results

reported for the Caribbean food web (Rezende et al.

2009). We note, also, that our approach can be used to

quantitatively test the suitability of potential proxies for

niche value; since compartments are homogeneous in

terms of the niches of the species they contain (Fig. 4),

the analysis of the composition of real compartments

can help us answer quantitatively the long-standing

question of what determines the ecological niche of a

species.

Indeed, if we have reason to believe that any given

empirical property X serves as a good proxy for niche

value, then the homogeneity of X in empirical networks

should be consistent with the niche homogeneity of

model-generated food webs. In Fig. 4, we use this

approach to investigate whether trophic level or species’

mass are good proxies. We find that trophic-level

homogeneity in the empirical webs lies consistently

outside the range of niche homogeneity predicted by the

model (particularly in the predator and prey views) and

trophic level thus appears to be a poor proxy for niche

value. Data on species’ masses are limited for the food

webs we consider, but those data that are available

suggest that mass is a considerably better proxy. These

results are in agreement with others in the literature

(Jennings et al. 2002, Woodward et al. 2005), and our

analysis provides a novel way to quantitatively test any

potential proxy for niche value.
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