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Abstract With the overwhelming online products available in recent years, there
is an increasing need to filter and deliver relevant personalized advice for users.
Recommender systems solve this problem by modelling and predicting individual
preferences for a great variety of items such as movies, books or research articles.
In this chapter, we explore rigorous network-based models that outperform leading
approaches for recommendation. The network models we consider are based on
the explicit assumption that there are groups of individuals and of items, and that
the preferences of an individual for an item are determined only by their group
memberships. The accurate prediction of individual user preferences over items
can be accomplished by different methodologies, such as Monte Carlo sampling
or Expectation-Maximization methods, the latter resulting in a scalable algorithm
which is suitable for large datasets.
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11.1 Introduction

The internet has changed the way business is done and how products are advertised,
sold and distributed [1, 2]. Now we are a click away from an ever increasing array
of products [3]. However, the availability of so many choices puts a stress on the
customer who often has no time to browse over endless online product catalogues.
As an illustration, Netflix has available around 5000 movies only in the United
States, iTunes more than 37 million songs and Amazon up to 32 million books
in different formats; if we were to spend 0.5 seconds per item, it would take us
approximately 40 minutes to browse the whole catalogue in Netflix and over 200 full
days to go through the whole catalogue of songs and books in iTunes and Amazon.
The platforms that have best adapted to this situation are those that efficiently
recommend items that fit personal preferences.

Recommender systems are algorithms precisely designed to predict user’s pref-
erences over a variable amount of items. A popular event that boosted research in
recommender systems was the Netflix contest (2006–2009) [4–6]. Netflix sponsored
a competition to improve the accuracy of their recommendation algorithm at the
time, offering $1,000,000 to the best performing team. This competition captured
the attention of researchers on the topic and improved significantly the state-of-
the-art algorithms and even resulted in the creation of companies (for instance,
Gravity R&D or 4-Tell Inc. [7]) that played a major role in boosting e-commerce.
The increase in the volume of online business coupled to the availability of data on
online purchases of products by users has in recent years enhanced the interest in
recommender systems, both in the private and academic sectors.

Currently, the main strategies for making social recommendations are content-
based approaches, collaborative filtering and hybrid approaches [8]. Content-based
approaches use available metadata on users or items such as demographics, overall
top selling items, past buying habit of users or item reviews to guess user
preferences. On the other hand, collaborative filtering (CF) methods are based on the
plausible expectation that similar users relate to similar objects in a similar manner,
i.e., they purchase similar items and rate the same item similarly. Hybrid methods
aim at combining both approaches.

Importantly, CF approaches are in general more accurate at predicting user
preferences than content-based approaches. Typically datasets available for recom-
mendation are sparse—most users rate just a few items (<10 items) and most of the
items have been rated only by a few users, which makes it hard for content-based
methods to make good predictions. In contrast, CF algorithms have successfully
addressed this problem by exploiting known preferences of like-minded users to
provide item recommendations or predictions.

A major problem recommender systems face is the need to provide recommen-
dations in a reasonably short amount of time. Taking into account that available
datasets comprise millions of user-item ratings (and that is a small fraction of the
data in a real industrial setting), the scalability of the algorithm with the number of
observations is critical. Specifically, if the run-time of an algorithm scales linearly
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in the number of observed ratings R, the time needed to obtain a recommendation if
R = 10,000 is ∝ 105, whereas if an algorithm scales quadratically with R, then the
time needed to obtain a recommendation for R = 10,000 ratings will be ∝ 1010. As
a good rule of thumb, linear (or sub-linear) CF algorithms will be good candidates
to deal with the large and sparse datasets in an industrial set-up.

In this chapter, we focus on collaborative filtering models suitable for large sparse
datasets. Specifically, we show how block model approaches to model a network of
user-item ratings is superior to state-of-the-art approaches such as the Item-Item and
Matrix Factorization approaches [9–12].

This chapter is organized as follows. In Sect. 11.2 we introduce the network
framework for the recommendation problem, fundamental concepts of inference and
the use of Stochastic Block Models to make inference on network data. In Sect. 11.3
we present the network-based approaches for recommender systems, the bipartite
Stochastic Block Model recommender (SBM) and the Mixed-Membership Stochas-
tic Block Model recommender (MMSBM). In Sect. 11.4 we give an overview
of some of the most successful collaborative filtering approaches, one being the
Item-Item model and two Matrix Factorization approaches: the “classical” Matrix
Factorization (MF) and the Mixed-Membership Matrix Factorization(MMMF),
which we use as benchmark algorithms. In Sect. 11.5 we analyse and compare
the predictive power of those algorithms and provide a practical guide to run the
network-based algorithms with real datasets. To conclude, in Sect. 11.6 we provide
overall discussion of the chapter.

11.2 Network Approach to Recommender Systems

Formally, the recommendation problem is the following. We have an observation
RO consisting of a collection of ratings Rij of users (i) to items (j ) (e.g., ratings
of users to movies or books). Ratings are on a fixed discrete scale S, so that
each observed rating rij takes a value within this scale (e.g., in a 5 point scale
S = {1, 2, 3, 4, 5}). This observation is sparse so that out of a group of N users
and M items we only observe a small fraction of the N × M possible ratings. The
goal is then to predict the values of a set of query/unobserved ratings RT. In the
recommender systems literature, the observation RO is called the training set, while
the query set RT is called the test set. This is because recommendation algorithms
use the training dataset to train the algorithm and obtain the model parameters and
the test set to assess the accuracy of the trained algorithm at making predictions
for unobserved ratings. Note that being able to make accurate predictions on
unobserved ratings is the first and necessary step towards being able to make
suggestions of new items to users based on the rating predictions over those items.

Formally, this problem can be mapped into a problem of predicting unobserved
edge values in a network. Specifically, since ratings occur between two different
types of nodes (users and items), we can represent RO as a bipartite network (see
Fig. 11.2a). In this network we have an edge connecting each user with all the
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items she has provided a rating for in the observation. Importantly, within this
representation edges can take a value within the scale of ratings S. The problem
of predicting ratings within the unobserved query set RT then becomes that of
predicting values of unobserved edges within this network.

Here, we focus on estimating the probability that a specific unobserved edge rij
takes value r given the observed data RO, which formally is expressed as p(rij =
r|RO). To do that we use a Bayesian approach to perform inference on network
data. In what follows, we introduce the basic concepts of Bayesian inference and the
Stochastic Block Model, a general class of generative models suitable for network
data.

11.2.1 Inference on Complex Networks Based on Stochastic
Block Models

Let us assume our observed data is RO and we want to know the probability that a
certain variable X (for instance, a rating) takes values x conditioned on the observed
data, that is p(X = x|RO). If we consider an ensemble of generative models M for
our observed data, we can express p(X = x|RO) as

P(X = x|RO) =
∫
M

p(X = x|M) p(M|RO) dM, (11.1)

where p(X = x|M) is the probability of variable X being equal to x given model
M (X is, for example, the rating that user u gives item i), and p(M|RO) is the
plausibility of model M given the observation RO. Using Bayes’ theorem we can
rewrite Eq. (11.1) as,

P(X|RO) =
∫
M p(X|M) p(RO|M) p(M) dM

p(RO)
, (11.2)

where p(RO|M) is the probability that model M gives rise to the observed data
RO, also called likelihood, and p(M) is the prior probability that model M is
the correct one, also called the prior. Importantly, the accuracy of the predictions
depends strongly on the ability of some of the models in the family of models in M

to describe the observed data.
In our case we consider the family of Stochastic Block Models (SBM) [13–15] as

generative models. SBMs are based on the simple assumption that there are groups
of nodes and that nodes within a group have similar connectivity patterns. Within
this class of models, the probability of two nodes being connected only depends
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on the groups to which the nodes belong. Formally, a SBM M = (P, Q) is then
completely determined by the partition P of nodes into groups and the matrix Q
of connection probabilities between pairs of nodes belonging to pairs of groups, so
that Eq. (11.2) can be rewritten as

PSBM(X = x|RO)=
∑

P∈P
∫
[0,1]G p(X = x|P, Q) pSBM(RO|P, Q) p(P, Q) dQ

p(RO)
,

(11.3)
where P is the space of all possible partitions of nodes into groups and G is the total
number of pairs of groups of nodes.

Fig. 11.1 Stochastic Block Models: A stochastic block model is fully specified by a partition of
nodes into groups P and a connection probability matrix Q. Each element Qαβ in the Q matrix
represents the probability that a node in group α connects to a node in group β. (a) An example of a
Q matrix of connection probabilities. We consider three groups of nodes comprising 4 (triangles),
5 (circles) and 6 (squares) nodes. We colour matrix elements according to their value following the
colour bar on the right hand side. (b) A realization of the model in panel (a)

SBMs are suitable models to describe complex networks because they are
versatile enough to capture the large variety of connectivity patterns observed in real
networks (see Fig. 11.1 for an illustration). For instance, many real-world networks
have been found to have a modular or assortative structure in which nodes within
the same group (also called module or community) are more likely to be connected
to nodes within the same group than to nodes in other groups [16–19]. A SBM
with Qαα � Qαβ ∀α, β would generate networks with such structure. Interestingly,
SBMs can also depict other connectivity patterns such as disassortative patterns
in which nodes are more likely to connect to nodes in other groups or patterns
that define distinct topological roles such as hubs and peripheral nodes in core-
periphery structures [18, 20, 21]. Importantly, this family of models can be extended
to directed [22], and weighted networks [23, 24].
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11.3 Modelling Ratings Using Stochastic Block Models

In this section we will consider two network-based models for recommender
systems: the simple bipartite Stochastic Block Model (SBM) [14] and the Mixed-
Membership Bipartite Stochastic Block Model (MMSBM) [15]. In both models,
there are different groups. The difference between these models is that while in the
bipartite SBM each user and item belong solely to one group, in the MMSBM users
(and items) have a certain probability of belonging to each group of users (items).
Importantly, this fact allows us to describe the network of ratings using fewer groups
of users and items and to implement more efficient inference algorithms.

Fig. 11.2 Bipartite SBM for recommendation: (a) Eight users labelled A–H rate movies, labelled
a–h, as indicated by the colours of the links. (b–c) Matrix representation of the ratings; grey
elements represent unobserved ratings. Different partitions of the nodes into groups (indicated
by the dashed lines) provide different explanations for the observed ratings. The partition in
(b) has a high explanatory power because ratings in each pair of user-item groups are very
homogeneous. For example, it seems plausible that user C would rate item a with a 2, given
that all users in the same group as C rate 2 all items in the same group as a. Conversely, the
partition in c has very little explanatory power. The predictions of partition (b) contribute much
more than those of partition (c) to the inference of unobserved ratings. Reprinted from Guimerà
R. et al. Predicting Human Preferences Using the Block Structure of Complex Social Networks.
PLOS ONE 7(9):e44620, under the Creative Commons Attribution (CC BY) license at https://
creativecommons.org/ licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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11.3.1 Predictions Based on the Bipartite SBM Recommender
System

Our inference problem is to estimate the probability p(rui = r|RO) that the
unobserved rating of item i by user u is rui = r , given the observation RO. Hence,
by setting the observable x in Eq. (11.2) to X = rui we obtain,

p(rui = r|RO) =
∫
M

p(rui = r|M) P(RO|M) p(M) dM∫
M′ p(RO|M ′)p(M ′) dM ′ . (11.4)

where p(rui = r|M) is the probability that rui = r if the ratings were actually
generated using model M , and p(RO|M) is the probability of model M generating
the observed ratings RO or likelihood.

As previously mentioned, we will use the family of Stochastic Block Models
MSBM to describe the observed ratings [13, 21, 25]. In the bipartite SBM users and
items are partitioned into two different and independent sets of groups. Therefore,
Q is a gu × gi rectangular matrix, with gu and gi being the number of user and item
groups, respectively. Additionally, because in our network (ratings) edges can take
|S| different values, we have one such matrix for each value of r . Therefore, the
probability that the rating of user u to item i is equal to rui = r depends exclusively
on the groups σu and σi to which user u and item i, respectively, belong, so that

p(rui = r) = Qr
σuσi

. (11.5)

Because in the recommender system the possible rating values for a given edge are
exclusive, we have the following constraint

∑
r Qr

σuσi
= 1 for each (user, item) pair.

Note that in the bipartite SBM, ratings are considered as independent categories
without assuming that the distance between ratings is linear (that is, that r = 3
is as far from r = 4, as r = 4 is from r = 5). This poses an advantage over other
approaches which assume linearity in the distances between ratings, since users have
been found not to perceive equal differences between adjacent ratings (i.e., r = 4
and r = 5 might be perceived as closer in rating space than r = 3 and r = 4 [26]).

Assuming a flat prior over models p(M) = const., the integral in Eq. (11.4) over
all possible values of Qαβ can be carried out analytically, so that we obtain

pSBM(rui = r|RO) = 1

Z

∑
PU ∈PU ,PI ∈PI

(
nr

σuσi
+ 1

nσuσi
+ |S|

)
e−H(PU ,PI ) (11.6)

where the sum is over all possible partitions of users and items into groups, nr
σuσi

is
the number of ratings with value r observed from users in group σu to items in group
σi , and nσuσi

is the total number of observed ratings from users in group σu to items
in group σi . The H(PU , PI ) is understood as an energy function or Hamiltonian
which weighs the contribution of each partition of users and items (PU , PI ) to the
sum over all pairs of partitions,
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H(PU , PI ) =
∑
α,β

⎡
⎣ln

((
nαβ + |S| − 1

)!) −
|S|∑
s=1

ln
((

ns
αβ

)
!
)⎤
⎦ (11.7)

and Z = ∑
(PU ,PI ) e−H(PU ,PI ) is called the partition function. In order to estimate

the sum over all partitions, [14] estimated pSBM(rui = r|RO) using Metropolis-
Hastings sampling [13, 27]. Note that within this approach, no prior assumptions
are made on the grouping of the users and items, or in the desired shape of the
connection probability matrix, so that the algorithm itself samples/selects those
SBMs which provide the best description of the data.

An advantage of this approach is that we obtain the whole distribution for each
rating PSBM(rui = r|RO). Therefore, one can choose how to make predictions:
using the most likely rating, the mean or the median, among others. In [14], the
authors chose to select the most likely rating

rui = arg max
r

{pSBM(rui = r|RO)}. (11.8)

This probabilistic prediction is in contrast to most recommender systems like matrix
factorization and Item-Item algorithms, where the prediction is expressed as a single
real number.

The bipartite SBM recommender we just described has two main advantages: (1)
it is based on plausible hypotheses about how individuals’ preferences arise, and (2)
it is mathematically rigorous since it is the result of the full Bayesian probabilistic
treatment of the model. However, the correct probabilistic treatment of the model
comes at the cost of producing a slow algorithm. The approach above relies on
Markov chain Monte Carlo sampling over partitions to make rating predictions,
therefore, its computational time does not scale well with the size of the dataset (see
Fig. 11.4b). This fact makes it impractical for datasets with millions of ratings [14].

11.3.2 Predictions Based on Mixed-Membership Stochastic
Block Model

In this section, the Mixed-Membership Bipartite Stochastic Block Model
(MMSBM) approach for recommendation is considered. As previously mentioned,
mixed membership models allow nodes to belong to all possible (latent) groups
with a finite probability [28, 29]. In our case, we consider a bipartite MMSBM in
which we have latent groups for it assumes that each node in the bipartite graph of
users and items belongs to a mixture of groups.

In the recommendation problem our goal is to estimate the probability p(rui =
r|RO). In order to do so, we need to compute the likelihood of the observed data
given the model parameters. To that end, we define the model parameters as follows.
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Fig. 11.3 Mixed-Membership Stochastic Block Model: We illustrate the parameters of a bipartite
MMSBM for an equal number of latent groups of users and items K = L = 5 obtained for the
MovieLens 100K dataset. In the top row, we show examples of mixed-membership vectors θ and
η for user u and item i, respectively. Each vector component θuk (ηil) is the probability that user
u (item i) belongs to group k (group l). Probabilities are shown in colours following the colour
bar on the right hand side. In this example, user u has a higher probability to belong to group
k = 2, while item i has similar probabilities to belong to any group. In the bottom row, we show
the inferred values for the probability matrices Q. From left to right, the five matrices correspond
to the ratings r = 1, 2, 3, 4, 5. For each one of these matrices, the rows and columns correspond to
user and item groups, respectively. Each matrix element is the probability Qr

k� that a user in group
k gives a rating r to an item in group �. Notice that there is no ordering of the probability matrices
that would make them diagonal

In the bipartite MMSBM, we consider that there are K groups of users and
L groups of items. For each pair of user-item groups k, �, there is a probability
Qr

k� ∀r ∈ S that users in group k give rating r to items in group �. Note that because
in RO each user-item edge has only one rating r the probability matrices Qr

k� are
normalized

∀k, � :
∑
r∈S

Qr
k� = 1 . (11.9)

To model mixed group memberships, each user u has a vector θu ∈ RK , where
θuk denotes the extent to which user u belongs to group k. Similarly, each item i has
a vector ηi ∈ RL (see Fig. 11.3). These vectors are normalized as,

∑
k

θuk = 1, (11.10)

∑
�

ηi� = 1. (11.11)

Given the membership vectors θu and ηi , and the probability matrices Qr
k�, the

probability distribution of each rating rui is a convex combination,

p(rui = r) =
∑
k,�

θukηi�Q
r
k� . (11.12)
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Abbreviating all these parameters as θ , η, Q, the likelihood of the observed
ratings is thus

P(RO|θ, η, Q) =
∏

(u,i)∈RO

∑
k,�

θukηi�Q
rui

k� . (11.13)

In order to perform a full Bayesian approach as for the simple bipartite SBM,
we would have to compute the integral in Eq. (11.2) to obtain p(rui = r|RO).
However, this is unfeasible for the current model. Therefore, in order to estimate
p(rui = r|RO), we make a steepest descent approximation and evaluate the integral
by considering the model parameters θ̂ , η̂ and Q̂ that maximize the likelihood in
Eq. (11.13).

Note that while this approximation should in principle not perform as well as
considering all possible model parameters, our results show that the maximum
likelihood prediction for the bipartite MMSBM produces as accurate predictions as
the full probabilistic treatment of the simple bipartite SBM (Fig. 11.5). Our results
suggest that the introduction of mixed-membership vectors seems to already provide
enough flexibility to the model to capture all the patterns covered by the model aver-
aging in the simple bipartite SBM approach. The maximum likelihood parameters
θ̂ , η̂, Q̂ are inferred using an efficient expectation-maximization algorithm (EM).
We start with a standard variational trick that changes the log of a sum into a sum
of logs, writing

log P(RO|θ, η, Q) =
∑

(u,i)∈RO

log
∑
k�

θukηi�Q
rui

k�

=
∑

(u,i)∈RO

log
∑
k�

ωui(k, �)
θukηi�Q

rui

k�

ωui(k, �)

≥
∑

(u,i)∈RO

∑
k�

ωui(k, �) log
θukηi�Q

rui

k�

ωui(k, �)
. (11.14)

Here ωui(k, �) is the estimated probability that a given ranking rui is due to u and
i belonging to groups k and �, respectively, and the lower bound in the third line is
Jensen’s inequality log x̄ ≥ log x. The equality holds when

ωui(k, �) = θukηi�Q
rui

k�∑
k′�′ θuk′ηi�′Qrui

k′�′
, (11.15)

giving us the update Eq. (11.15) for the expectation step. For the maximization
step, we derive update equations for the parameters θ , η, Q by taking derivatives
of the log-likelihood (11.14). Including Lagrange multipliers for the normalization
constraints (11.11), we obtain



11 Network-Based Models for Social Recommender Systems 501

θuk =
∑

i∈∂u

∑
l ωui(k, �)∑

i∈∂u

∑
k� ωui(k, �)

=
∑

i∈∂u

∑
l ωui(k, �)

du

, (11.16)

where du is the degree of the user u. Similarly,

ηi� =
∑

u∈∂i

∑
k ωui(k, �)∑

u∈∂i

∑
k� ωui(k, �)

=
∑

u∈∂i

∑
k ωui(k, �)

di

, (11.17)

where di is the degree of item i. Finally, including a Lagrange multiplier for (11.9),
we have

Qr
k� =

∑
(u,i)∈RO|rui=r ωui(k, �)∑

(u,i)∈RO ωui(k, �)
. (11.18)

These equations can be solved iteratively with the following EM algorithm. Starting
with an initial estimate of θ , η and Q, we repeat the following steps until the
parameters converge:

1. (Expectation step) use (11.15) to compute ωui(k, �) for (u, i) ∈ RO,
2. (Maximization step) use (11.16)–(11.18) to compute θ , η and Q.

The number of parameters and terms in the sums in Eqs. (11.15)–(11.18) is NK +
ML + |RO|KL. Assuming that K and L are constant, this is O(N + M + |RO|),
and hence linear in the size of the observed ratings (see Fig. 11.4a). As the set
of observed ratings RO is typically very sparse because only a small fraction of
all possible user-item pairs have observed ratings, the expectation-maximization
algorithm is feasible even for very large datasets.

In summary, the MMSBM approach has a double advantage: (i) it uses a model
that is realistic and flexible, and (ii) the algorithm scales with the number of
observed ratings, and is therefore suitable for very large datasets. In addition, it
is consistent for sparse datasets, giving good results with few ratings per user (users
in datasets in Sect. 11.5 rate typically less than 10 items, but they are enough to give
good predictions).

11.4 State of the Art: Other Non-Network Based
Collaborative Filtering Approaches

As already mentioned, collaborative filtering algorithms find similarities between
users and items to make predictions, instead of focusing on the content or known
external information regarding users or items other than user-item ratings. There
are different strategies to identify these similarities or patterns in the recommender
system. Two of the most representative approaches are neighbour-based models
such as Item-Item or User-User approaches, and latent factor models such as Matrix
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Factorization, commonly used also as benchmark algorithms to compare against
novel recommendation models. While neighbour-based models are simple and
intuitive, Matrix Factorization techniques are usually more effective because they
allow us to discover the latent features underlying the interactions between users
and items. Neighbour-based models are sometimes considered graph-based models,
given that they use the structure of the bipartite network to compute similarities
between users or between items, and they have also been called model-based
algorithms [10]. In this chapter, we will consider as network-based models only
those using network inference. Within this section, we explain the rationale for some
of the most widely used CF algorithms and analyse some of the main theoretical
differences between them and the network-based models SBM and MMSBM.

Item-Item

Neighbour-based CF models generate recommendations using only information
about rating profiles for different users. There are two approaches, the User-User
approach and the Item-Item approach. In the former, the algorithm finds users with a
rating history similar to the query user (neighbours) and generates recommendations
using this neighbourhood; for the Item-Item, the algorithm finds similar items to the
query item based on their rating history, and generates recommendations using the
query item’s neighbourhood. For rating systems with much more users than items
(as is the case in the datasets we analyse), the Item-Item approach gives better
predictions than the User-User approach and is computationally more efficient,
therefore from now on we will focus on the Item-Item algorithm, taking into account
that the User-User model is computed analogously [10]. Let us assume that we have
a list of users U = {u1, . . . , uN } and items I = {i1, . . . , iM }, which the users have
rated. The Item-Item approach assumes that the rating from user u to an item i

should be similar to the rating she gives to similar items to i. Considering the vector
#»
i ∈ RN of ones for users that have rated item i and zeros otherwise, we can obtain
the similarity between item pairs (i, j) by computing the cosine similarity between
#»
i and

#»
j as,

sim(i, j) = cos(i, j) =
#»
i · #»

j

|| #»
i ||2|| #»

j ||2
, (11.19)

where || · ||2 denotes the Euclidean norm of a vector. For other adjusted versions of
the similarity see [10]. Note that we can only establish similarities between items
that have been rated by the same users.1 According to the similarity measure, we
define the neighbourhood of an item i, ∂i as those k items with highest similarity i.

1For the User-User model the reasoning is equivalent: each user is represented by a vector with all
the items she has rated Vu. The similarity between users would be computed as in Eq. (11.19) as
sim(u, v).
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Hence, the prediction of rui would be the average of the ratings that user u gave to
the items in the neighbourhood of item i as,

rui =
∑

j∈∂i(sim(i, j) · ruj )∑
j∈∂i(|sim(i, j)|) . (11.20)

Note that if in the k-nearest neighbours there is no item rated by u, the algorithm
cannot perform a prediction, which may happen for sparse datasets. Also, the
algorithm assumes a linear psychological scale on the ratings, that is, a rating of 5
is seen as five times better than a rating of 1, but unfortunately this is not necessary
in agreement with people’s perception [26].

Matrix Factorization Approaches

The most widely used methods for recommendations are the Latent feature or
Matrix Factorization methods [11, 30]. Latent feature models assume that there
is a space of latent attributes of users and items that determine user-item ratings.
Therefore, ratings are not independent from one another but set by the specific
position in the latent feature space of users and items. Specifically, MF assumes
that there exists a single latent feature space for both users and items, and that the
rating of user u to item i is proportional to the closeness between the two in this
space. The dimension of the latent space K is much smaller than the number of
users and items, such that the problem is dimensionally reduced. Formally, this is
equivalent to assuming that the matrix of observed ratings RO (with a number of
rows equal to the number of users N , and a number of columns equal to the number
of items M) can be decomposed into

RO = P Q, (11.21)

where P is an N × K matrix associated with the users and Q is a K × M

matrix associated with the items. Each row of the P matrix pu could be seen as a
K-dimensional vector with the feature values of user u that describe her, and each
column of the Q matrix qi is a K-dimensional vector with the values of the features
that describe item i, with K << N and K << M .

The most efficient method until now to factorize the rating matrix, although there
are several methods, is the singular value decomposition (SVD) [30]. This method
finds the two smaller matrices whose product minimizes the difference with the
original ratings matrix (measured as a means squared error). In addition it uses
gradient descent to learn a Matrix Factorization (by taking derivatives of the error
function over the parameters of the model it is trying to infer). The predicted rating
is then

rui =
∑

k

pukqik. (11.22)
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SVD-MF algorithm is computationally very efficient and makes very good pre-
dictions. Also, it has the advantage that it results in intuitive meanings of the
resultant matrices and that the resulting algorithm is scalable (see Fig. 11.4) so it
can potentially handle very large datasets. The main problem with this approach is
that features that describe the users and the items are the same, which imposes severe
constraints on the expressiveness of the model (for instance, two users close in
feature space must like the same type of items and there is little flexibility to account
for the fact that some users might like some items but have different opinions about
other items).

Moreover, as the prediction is (with some corrections) the scalar product of the
users’ and items’ feature vectors, this is equivalent to assuming linearity between
ratings instead of assuming that ratings are independent categories as was assumed
for the bipartite SBM and MMSBM.

As an extension to the “classical” MF, we also consider a mixed-membership
implementation of MF, the Mixed-Membership Matrix Factorization (MMMF) [12].
The MMMF model combines Matrix Factorization with a mixed membership
context bias. In MMMF, users and items are endowed with both latent factor vectors
(pu and qi) and discrete topic distribution parameters (θU

uk ∈ KU and θM
ij ∈ KM ).

Together with the user and item topics, MMMF models also introduce the affinity
of user u to item topic k as ck

u and the affinity of item i to user topic j as d
j
i . The

topic distribution parameters and the affinity of users and items to the topics jointly
specify a context bias β

jk
ui . Therefore, a user generates a rating for an item by adding

the contextual bias to the MF inner product with some Gaussian noise,

rui ∼ N(pu · qi + β
jk
ui , σ 2). (11.23)

In [12] authors consider two different MMMF models that differ in how the
contextual bias is built. The Topic-Indexed Bias Model (TIB) assumes that the
contextual bias decomposes into a latent user bias and a latent item bias so that

β
jk
ui = ∑KM

k=1 c
t(t)
u θ

M(y)
ik + ∑KU

j=1 d
j (t)
i θ

U(t)
uj . The Topic-Indexed factor Model (TIF)

assumes that the joint contextual bias is an inner product of topic-indexed factor

vectors, so that β
jk
ui = ∑KM

k=1
∑KU

j=1 θ
M(y)
ik θ

U(t)
uj c

k(t)
u · d

j (t)
i . They use a Gibbs

sampling MCMC procedure to draw samples of topic and parameter variables. Then,
the posterior mean prediction for each user-item pair under these MMMF models is,

1

T

T∑
t=1

(
p(t)

u · q
(t)
i + β

jk
ui

)
. (11.24)

The results shown in Sect. 11.5 are for the MMMF-TIF model since it outperforms
the MMMF-TIB in all the datasets. Note that analogously to the MF, MMMF also
assumes linearity between ratings values.
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11.4.1 Advantages of Network-Based Models

There are a number of advantages to using the network-based models we have
presented (the bipartite SBM and the MMSBM) compared to previous work on
collaborative filtering.

First, unlike Matrix Factorization approaches such as [11] or their probabilistic
counterparts [31–33], the ratings rui ∈ {1, 2, 3, 4, 5} are not treated as integers.
As has been established in the literature, giving a movie a rating of 5 instead of 1
does not mean the user likes it five times more [26]. Indeed, the results in Sect. 11.5
suggest that it is better to think of different ratings simply as different labels on the
links of the network.

Second, network-based methods yield a distribution over the possible ratings
directly, rather than a distribution over integers or reals that must be somehow
mapped to the space of possible ratings [31–33]. The network-based models we
have presented considered the observed ratings as a bipartite network with metadata
(or labels) on the links. An alternative approach would be to consider a multi-layer
representation of the data as in [34].
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Fig. 11.4 Scalability: (a) Scalability of the MMSBM algorithm. Each point represents the average
time per iteration in seconds for each of the datasets we use in the study (100K MovieLens, 10M
MovieLens, Yahoo! Songs, W-M dating agency, M-W dating agency and Amazon books) versus
the number of parameters computed at each iteration K ∗L∗(|RO|+|S|)+K ∗N +L∗M where N

is the number of users, M is the number of items and |RO| is the number of observed ratings, |S| is
the number of different ratings values for each recommender systems and K and L are the number
of groups for users and items, respectively (K = L = 10 for all the datasets; see Table 11.1 for
remaining parameters for each dataset). The continuous line is the linear fit of the real data, which
shows that the computational times per iteration scales linearly with the size of the corpus for the
whole range. (b) Scaling of the different benchmark algorithms we consider in our analysis with
the total number of observed ratings. The vertical axis is normalized by the computational time
of the smallest dataset—100K MovieLens. MF, MMMF and MMSBM algorithms scale linearly
with the total number of observed edges, while the Item-Item algorithm does not. Note that for
the bipartite SBM we could only get results for the two smallest datasets, so we cannot establish a
linear relationship in this case
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Third, the bipartite SBM and the MMSBM do not assume that the matrices Q
have any particular structure. In particular, they do not assume either that groups
of individuals correspond to groups of items or that individuals prefer items that
belong to their own group (which mathematically would result in diagonal Q
matrices). Thus, the SBMs and the resulting algorithms can learn arbitrary couplings
between groups of individuals and groups of items, and do so independently for each
possible rating, thus overcoming the limitation of expressivity of MF factorization
approaches that consider a diagonal Q matrix. Importantly, the MMMF does not
circumvent this issue despite considering arbitrary couplings between users/items
and topics. In fact, MMMF rating predictions are the sum of a MF term and a
correction that uses mixed group memberships that are unrelated to the feature
vectors [12]. While this is an improvement over MF, it does not fundamentally
remove the limiting assumption that each group of users has a corresponding group
of items that they prefer. Indeed, our numerical results show that the performance
of MMMF is fairly close to that of MF in the datasets we considered.

Finally, all the network-based models presented here do not assume that indi-
viduals only see movies (say) that they like, and they do not treat missing links
as zeroes or low ratings as is typically done in MF algorithms that need a full
matrix to decompose. There are other physics-inspired methods that exploit the
structure of the bipartite user-item network and use classical physics processes to
make recommendations such as random walks [35] or heat diffusion [36]. However,
all these approaches are used for link prediction, that is, they only try to predict
which item would be collected by a user [37].

11.5 Results

We show the performance of the network-based and the Item-Item and MF
algorithms for six datasets: the MovieLens 100K and 10M datasets with 100,000
and 10,000,000 ratings, respectively (https://movielens.org), Yahoo! songs (R3—
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r), Amazon books [38,
39] (http://jmcauley.ucsd.edu/data/amazon/), and the dataset from LibimSeTi.cz
dating agency [40] (http://www.occamslab.com/petricek/data/), which is split into
two datasets, one consisting of males rating females and vice versa. These datasets
are diverse in the types of items considered, the sizes |S| of the sets of possible
ratings and the density of observed ratings (see Table 11.1).

To check the predictive power of the different algorithms we show the results
for a fivefold cross validation in each of the six datasets. That is, we divide each
dataset into five equal parts and we make the five possible combinations of using
one part as the test set and the other four as the training set. We measure the
predictability in terms of accuracy, that is, the number of ratings predicted correctly,
and the mean absolute error (MAE). Figure 11.5 shows the performance for the two
network-based models, the simple bipartite SBM (using the approach in [14]) and
the Mixed-Membership Stochastic Block Model (MMSBM) (using the approach

https://movielens.org
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://jmcauley.ucsd.edu/data/amazon/
http://www.occamslab.com/petricek/data/
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Table 11.1 Dataset characteristics

Dataset Ratings scale S #Users #Items #Ratings

MovieLens 100K {1, 2, 3, 4, 5} 943 1682 100,000

MovieLens 10M {0.5, 1, 1.5, . . . , 5} 71,567 65,133 10,000,000

Yahoo! Songs {1, 2, 3, 4, 5} 15,400 1000 311,700

M-W dating agency {1, 2, . . . , 10} 220,970 135,359 4,852,455

W-M dating agency {1, 2, . . . , 10} 135,359 220,970 10,804,040

Amazon book {1, 2, 3, 4, 5} 73,091 539,145 4,505,893

The total number of possible ratings is different for each dataset; ratings are in a scale from 1 to 5
in all datasets for the two dating agency datasets, which have a rating scale from 1 to 10. Ratings
are integers except for the MovieLens 10M dataset which allows half-integer values. Note that, in
the latter case we expect a smaller MAE than if only integer values were allowed. All datasets have
millions of ratings except for MovieLens 100K and Yahoo! Songs

in [15]). Moreover, we show the comparison of the network-based approaches with
three benchmark algorithms (see Sect. 11.4): the Item-Item algorithm [10], which
predicts rui based on the observed ratings of user u for items that are the most
similar to i, a “classical” Matrix Factorization (MF) [11] and Mixed-Membership
Matrix Factorization (MMMF) [12]; as well as a baseline naive algorithm that
assigns to each test rating rui the average of the observed ratings for item i, that
is rui = 1

di

∑
u′∈∂i

ru′i .
The results for the MMSBM are for K = L = 10, i.e., that is 10 groups

of users and 10 groups of items (recall that there is any correspondence between
these groups). The performance for larger choices of K and L does not improve
significantly [15]. Since iterating the EM equation of Eqs. (11.15)–(11.18) can lead
to different solutions depending on the initial conditions, the results correspond to
an average of the predicted probability distribution of ratings over 500 independent
runs. There is a freely available implementation of the MMSMB in gitHub by
Bill Jeffries (https://github.com/billjeffries/mixMemRec). The code is written in
Spark’s recommender library and can process large datasets. Notice however that
the current implementation gives the results for a single run, therefore one should
expect accuracies to be lower if a single run is considered.

The bipartite SBM does not require a pre-specification of model parameters since
they are sampled by the algorithm. You can find a freely available implementation
of the code (http://seeslab.info/downloads/network-c-libraries-rgraph/inrgraph-2.2.
1/recommender/). For the Item-Item algorithm implemented in Lenskit, we set k =
50; for the Matrix Factorization we also used the Lenskit implementation with k =
50 features, a learning rate of 0.002 and an initialization of 0.1 for every user-feature
and item-feature value as suggested in [26]. Finally, for MMMF we use the Matlab
implementation provided by the authors (https://code.google.com/archive/p/m3f/).

https://github.com/billjeffries/mixMemRec
http://seeslab.info/downloads/network-c-libraries-rgraph/inrgraph-2.2.1/recommender/
http://seeslab.info/downloads/network-c-libraries-rgraph/inrgraph-2.2.1/recommender/
https://code.google.com/archive/p/m3f/
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Another thing to take into account is that the network-based models, both the
bipartite SBM and the MMSBM, are probabilistic models. That means that for
each rating a user gives an item we have a probability distribution of ratings that
results from the average of the probabilities for all the sampling set. Therefore, we
can choose how to make predictions from the probability distribution of ratings:
the mode (that is the rating with the highest probability), the mean or the median.
As stated earlier, we measure the performance in terms of accuracy and the mean
absolute error (MAE), which gives us an idea how far predictions are from the real
values. For the network-based model, the best estimator for the accuracy is the most
likely rating from the probability distribution of ratings, while for the MAE the best
estimator is the median. In contrast, the predictions of the MF, MMMF and Item-
Item models are a single real per rating.

In Fig. 11.5 we find that in most cases the network-based approaches, the bipartite
SBM and MMSBM, outperform the Item-Item algorithm, MF and MMMF. Indeed,
when considering the accuracy the MMSBM is significantly better than MF and
MMMF for all the datasets we tested, and better than the item-item algorithm in five
out of six datasets, the only exception being the Amazon Books dataset. In terms
of the mean absolute error (MAE), the MMSBM is the most accurate in four out of
the six datasets (item-item, MF and MMMF produce smaller MAE in the Amazon
Books and MovieLens 10M datasets). Note that the Amazon dataset is different
from the others in that users only rate items after buying them, and knowing a priori
the average rating of the item given by previous buyers, which might bias their
choices.

Interestingly, the MMSBM approach produces results that are almost identical to
those of the bipartite SBM [14] for the two examples for which inference with the
bipartite SBM is feasible. In particular, the MMSBM achieves the same accuracy
with K = L = 10 in the mixed-membership model as the bipartite SBM with
sampling models with 50 groups on average. This suggests that many of the groups
observed in [14] are in fact mixtures of larger groups, and that the additional
expressiveness of the MMSBM allows us to succeed with a lower-dimensional
model.

Given that in general Matrix Factorization approaches outperform the Item-Item
model, and that the MMSBM and the bipartite SMB give similar results, we quantify
the improvement of the MMSBM over the classical MF (with very similar results to
the MMMF). To do so, we compute the relative improvements in the accuracy (%)
as

(accMMSBM) − (accMF)

(accMF)
∗ 100, (11.25)

with improvements of 5% in the MovieLens 100K dataset, 45% in the MovieLens
10M, 41% in the Yahoo songs, 42% in the M-F LibimSeti agency, 27% in the F-
M LibimSeti agency and finally a 3% improvement in the Amazon dataset. For
the Amazon dataset, the relative improvement of the Item-Item over the MMSBM
is of 13%.
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11.6 Discussion

We have shown that network-based approaches, based on inference using the block
structure of social networks, give predictions of human preferences that are in most
of the cases significantly and considerably more accurate than leading collaborative
filtering recommendation algorithms.

In the case of the simple bipartite SBM, it is worth noting that the gain in
accuracy comes at the expense of computational cost as a result of the Monte Carlo
sampling of the user and item partition space. Although the algorithm is able to give
predictions on datasets in the order of ∼1000 of users and items and ∼100,000 of
ratings, handling even one order of magnitude is challenging. Instead, the MMSBM
inference using expectation-maximization method results in a scalable algorithm
able to handle datasets with millions of ratings.

In any case, network-based recommender systems not only provide better
predictions, but also have some desirable features: they are analytically tractable
allowing for a mathematically rigorous approach, they are based on plausible social
models, and they provide interpretable results.

With respect to mathematical rigour, the Bayesian approach used by the bipartite
SBM [14] is the complete and correct probabilistic treatment of the observa-
tions. However, the results of the MMSBM suggest that introducing the mixed-
membership of users and items is already equivalent to sampling over different sets
of simple bipartite SBMs [15].

Importantly in both cases, we obtain an estimate of the whole probability
distribution for each rating. From this, we can choose how to make predictions
using the most likely rating, the mean or the median among others. In contrast,
recommender systems like those based on Matrix Factorization or Item-Item give
predictions that are a single number, the most likely rating (or a real number that
should be rounded to the closer value in the ratings set), that may even be outside
the rating range (for example, rui = 1.1 when S ∈ {0, 1}). Additionally, these
algorithms assume that ratings are linearly spaced in the mind of users (that is, that
the difference between r = 1 and r = 2 is the same as between r = 4 and r = 5),
which does not seem to be in accordance with people’s perception [26].

Finally, network-based approaches are based on models that were originally
defined and are widely used to explain how social agents establish relationships,
and are therefore in a better position to illuminate which social and psychological
factors determine human preferences. As an interesting by-product of this, we note
that it is possible to use them to infer demographic properties from ratings alone,
a subject that is of much current interest for commercial purposes such as Social
Marketing [41, 42].

The future of network-based recommender systems is likely to involve the
introduction of contextual information about users and/or items into the inference
process. The network-based models we have discussed in this chapter have the
advantage that metadata can mathematically be introduced in the form of a priori
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Fig. 11.5 Algorithm comparison: From top to bottom, the datasets are MovieLens 100K, Movie-
Lens 10M, Yahoo Songs, men rating women (M-W) in the LibimSeTi dataset, women rating men
(W-M) in the LibimSeTi dataset and Amazon books. The left column displays the accuracy of the
algorithms in each dataset, i.e., the fraction of ratings that are exactly predicted by each algorithm.
The right column displays the mean absolute error (MAE) in the predicted vs. actual rating, treated
as an integer or half-integer. In all cases, the bars are the average of a fivefold cross-validation and
the error bars correspond to the standard error of the mean. The bipartite SBM algorithm does not
scale to the larger datasets, hence it was evaluated only on the MovieLens 100K and Yahoo Songs
datasets. Importantly, bipartite SMB algorithm achieves similar accuracy to the MMSBM on the
datasets it can handle. The MMSBM model and algorithm achieves the best (highest) accuracy in
five out of six datasets, and the best (lowest) MAE in four out of six datasets

probabilities for model parameters and specifically for group membership vectors.
The intuition behind this idea is simple: we expect users (items) with similar
associated metadata to have similar membership vectors. With this type of approach,
network-based models will be better suited to industrially relevant problems such as
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the problem that arises when a new product is introduced into the market. The use
of relevant metadata can be informative about the most plausible group membership
vectors for each item and therefore help in identifying the range of users who could
potentially be interested in that product.
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