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Abstract

Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with
prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries.
To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical
spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than
attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art
in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of
concept, we successfully annotate three previously unidentified compounds frequently found in human samples.
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Introduction

Mass spectrometry (MS) is a powerful analytical tool for studying
small molecules and metabolites in biological systems. The
interpretation of tandem MS (MS/MS) spectra is crucial for
metabolite annotation and identification, driving advancements
in metabolomics across diverse fields such as precision medicine
[1], biomarker discovery [2], nutritional sciences [3], microbiome
research [4], toxicology and environmental testing [5].

However, practical application of MS/MS for metabolite iden-
tification presents significant challenges. Traditional approaches
rely on fragmentation libraries [6] and spectral matching, where
pre-recorded MS/MS spectra of known compounds from pure
standards are compared to experimental spectra to identify
matching fragments [7]. The success of this method is heavily
dependent on the availability of comprehensive and accurate
MS/MS spectral libraries. Unfortunately, current spectral libraries
suffer from limitations in size, quality, and diversity, and they are
difficult to maintain and update [8, 9]. As a result, a substantial
portion of MS/MS spectra generated in metabolomic experiments
remains unidentified through spectral library searching methods.

To address the challenge of metabolite identification, compu-
tational tools generally adopt one of two strategies [10]: (i) com-
putationally processing experimental MS/MS spectra and search-
ing for putative annotations among molecules in databases of
known compounds [11, 12]; or (ii) using the chemical structures
of metabolites to predict their MS/MS spectra [13-18], which are

then compared to experimental spectra for identification. Both
approaches involve machine learning algorithms that convert
experimental MS/MS spectra into feature vectors and encode
chemical structures as fingerprints, embeddings, or graph struc-
tures for learning purposes.

In this study, we focus on the second approach, which aims
to overcome the limitations of empirical MS/MS libraries by
computationally predicting MS/MS spectra, ultimately generating
reliable in silico MS/MS libraries. Existing tools that follow this
approach employ a combination of techniques: rule-based
methods that capture known fragmentation patterns based on
chemical principles [13, 16], probabilistic models that assign
probabilities to potential fragmentation events through statistical
analysis of experimental MS/MS spectra [14, 15], and machine
learning algorithms, ranging from traditional methods to deep
learning [17-19].

Here, we introduce SingleFrag, a novel deep learning tool for
predicting MS/MS spectra (Fig. 1). SingleFrag stands out from
existing machine learning approaches in two significant ways.
First, instead of predicting the entire fragmentation spectrum
of a molecule with a single model, we train a separate model
for each fragment ion. This approach aims to reflect that peaks
(corresponding to fragment ions) in an MS/MS spectrum are not
necessarily correlated. For example, one peak might correspond
to a particular moiety in the molecule, while another peak corre-
sponds to a different moiety with no relation to the first. Using the
same features to predict both peaks simultaneously can reduce
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a Machine learning tool to predict in silico MS/MS spectra of [M+H]+ adducts
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Figure 1. SingleFrag for spectral prediction and annotation. (a), We consider an empirical database of MS/MS spectra, and train three model types to
predict the presence or absence of each of individual fragment ions across spectra. In particular, we build 1,000 models (of each of the three model
types), corresponding to the 1000 most frequent fragment ions. Once all models are trained, we predict the whole spectrum of a given molecule by
predicting each of the 1,000 peaks independently. (b), To annotate unknown empirical spectra, we build a database of in silico predicted spectra for over
1.8 million compounds. Then, for an unknown empirical spectrum that we wish to annotate, we select all candidates from the database with masses
compatible with the unknown spectrum, and rank the candidates according to the similarity between their predicted spectra and the target empirical

spectrum. Figure created in BioRender [25].

prediction accuracy. Therefore, by training individual models for
each fragment, we aim to better capture the molecular and struc-
tural features associated with each specific peak. Of course, one
could argue that some fragments in any given spectrum are surely
related and, therefore, that using a different model for each peak
may be detrimental, to the extent that these correlations are
not exploited. Given these contrasting arguments, the question
of whether predicting individual fragments is beneficial or detri-
mental can only be solved empirically, which is what we do here.

Second, SingleFrag also differs from existing machine learning
approachesin that, rather than predicting the intensity of peaks in
the spectrum, it focuses on predicting the presence or absence of
each peak. We argue that the presence of a given fragment is more
relevant for molecular structural annotation than its intensity
for several reasons. First, intensity values can be highly variable
due to multiple uncontrolled factors, such as ionization efficiency,
instrument-specific settings, collision energy, and fragmentation
technique. Modeling these values introduces additional noise and
complexity, potentially leading to overfitting and reduced model
generalizability across instruments and datasets. Second, our
goal with SingleFrag is to capture the structural relationships
between molecular substructures and their corresponding frag-
ment ions. Presence/absence modeling aligns better with this
objective, allowing the model to focus on learning the underly-
ing chemistry of fragmentation rather than being confounded

by variable intensity profiles. Third, in practice, spectral simi-
larity metrics such as cosine similarity heavily weight intensity
differences—small deviations in predicted intensities can lead
to lower similarity scores, even if the predicted fragments are
chemically correct. By binarizing spectra and focusing on peak
presence, SingleFrag avoids this pitfall and enables more robust
and interpretable matches. And finally, current public MS/MS
libraries contain limited data on spectra acquired at multiple,
standardized collision energies (with the exception of the NIST
MS/MS library). This scarcity limits the ability of machine learning
models to learn consistent intensity patterns across compounds.
All in all, we argue that this approach allows for more robust and
reliable predictions across different experimental conditions.

We train three SingleFrag models to predict the presence
of individual fragments (Fig. 1a). The first model embeds the
molecule using mol2vec [20] and uses this embedding as input
to a multilayer, feedforward neural network. The second model
employs a graph neural network (GNN) [21-23] that takes as input
the unprocessed molecular graph. The third model integrates
both the mol2vec embedding and the GNN. We intentionally keep
the architecture these models simple, each model comprising
only on the order of 10° parameters, compared to the millions
of parameters of state of the art deep learning algorithms. This
allows us to: (i) train models for many different peaks; (ii) assess
the validity of our assumption with regards to modeling single
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peaks versus whole spectra (had we chosen to implement very
sophisticated deep learning models, the origin of any potential
improved performance of SingleFrag would remain unclear).
Training three different SingleFrag models allows us to evaluate
the variability of models for single peak prediction and, again,
assess the potential benefits of single fragment approaches vis a
vis whole spectrum approaches.

We find that all three SingleFrag models, particularly the first
one, outperform state-of-the-art methods at predicting MS/MS
fragments, including rule-based Competitive Fragmentation
Modeling-ID (CFM-ID [16]) and deep learning models using
transformers (MassFormer [18]) and incorporating the 3D
structure of the molecule (3DMolMS [19]). Encouraged by this
performance, we generate an in silico MS/MS library for nearly
two million molecules and test its ability to identify unknown
metabolites from their spectra (Fig. 1b). For each target spectrum,
we rank candidates from the library based on the similarity
between the target experimental spectrum and SingleFrag’s in
silico predictions for the candidates. We find that the true target
molecule is ranked first in 38% of cases and within the top five
candidates in 72% of cases, demonstrating high accuracy and
reliability. Finally, we apply this annotation method to recurrent
unidentified spectra from the ARUS database [24] of the NIST
MS Data Center, successfully confirming the annotation of three
metabolites by manually analyzing their molecular structures
and fragmentation patterns, thereby validating the effectiveness
of our approach.

Results

SingleFrag models for in silico prediction of
individual MS/MS fragments

We develop and validate our models using a dataset contain-
ing MS/MS fragmentation spectra for 30,191 compounds sourced
from Human Metabolome Database (HMDB) [26], Agilent METLIN,
MassBankEU and MoNA [27, 28], NIST, and Riken [29] (Methods
section). Collectively, these data bases capture the current state
of accessible metabolomics data. We applied no compound class-
based filtering, so that the dataset’s composition reflects the
underlying distribution of available MS/MS data in public ref-
erence libraries. We randomly allocate spectra from 24,473 of
these compounds to the training set, 3,059 to the validation set,
and 2,659 to the test set. All results reported here correspond
to the test set, which is not used in any way for training or
hyperparameter tuning.

In all cases, we discretize the spectra into bins of size m/z
= 0.01 Da by ceiling the mass of each fragment to two decimal
places. This choice is not based on ex post analysis of algorithm
performance, but rather on a prior analysis of typical instrument
precision. We find (Supplementary Fig. S1) that the measurement
error of m/z is typically of the order of a few thousandths Da
so making bins of order 0.001 Da would result in the same
peak spreading over several bins, thus severely compromising the
ability of the algorithm to learn, because each model would have
access to fewer training examples. Conversely, bins of order 0.1 Da
would almost invariably include several peaks corresponding to
distinct fragments, again compromising the ability of algorithms
to learn, in this case because each model would have to learn
different mechanisms leading to the same peak.

We construct a separate model for each mass bin. Given
our choice of bin size, this approach typically results in
models for individual fragments, hence the name SingleFrag
(however, some bins contain distinct fragments; see Methods

and Supplementary Fig. S1). Building a model for every bin
is computationally very demanding, so we focus on the 1,000
bins where peaks occur most frequently, thereby concentrating
resources on the most informative and data-rich parts of the
MS/MS spectra. Although in principle our approach is not biased
toward larger or smaller fragments, smaller fragments tend to be
more common. Therefore, the bins we consider end up covering
masses m/z in the range [29.04, 269.09], and account for 60% of all
peaks in the spectra in our dataset (Fig. 2a). By restricting spectra
to these 1,000 bins, 94% of the compounds in the dataset still have
3 or more peaks, 90% have 5 or more, and 80% have 10 or more
(Fig. 2b).

Each of the 1,000 models is a binary classifier that takes as
input the molecule and predicts whether a peak exists in the
corresponding mass bin. As discussed earlier, we focus on binary
predictions because the presence of a given fragment is more
relevant and robust for molecular structure annotation than its
intensity, which can vary based on factors such as collision energy
or the mass spectrometer used to obtain the spectrum. To account
for all possible fragments associated with a molecule, we consider
all available empirical MS/MS spectra for a given molecule and
build a single merged discretized spectrum with binary values, so
that m/z bins in which a peak is present in at least one spectrum
are equal to one, and other bins are equal to zero (Methods
section).

We investigate three different SingleFrag models as our peak
binary classifiers (see Methods section for details). First, we use
a multilayer feedforward artificial neural network (ANN). In this
model, molecules are embedded into a 300-dimensional space
using the previously trained mol2vec model [20], and the resulting
embeddings are fed into the neural network. Second, we employ
a GNN that directly uses the molecular graph as input [21-23].
Finally, we combine these approaches into a model that uses both
the GNN and the mol2vec embeddings. Each SingleFrag model
is simple, comprising only a few thousand parameters (com-
pared to millions in whole-spectrum models like MassFormer or
3DMolMS). This makes training a model for a given fragment
very fast, and allows us to train models for the 1,000 fragments
discussed above (for each SingleFrag model type: ANN, GNN, and
combined), with a cost that is comparable to that of training
existing large models for whole-spectrum prediction.

Each SingleFrag model returns a score between 0 and 1 for
each input molecule and m/z bin. To evaluate the model’s per-
formance, we convert these scores into binary predictions for the
presence (1) or absence (0) of a peak. To this end, we calculate
a specific threshold for each m/z bin, so that scores above the
threshold are converted into a 1 and scores below the threshold
are converted into to a 0. We select this threshold so that predic-
tions are well calibrated for the validation set, that is, that the
fraction of molecules predicted to have a specific peak matches
the fraction of molecules with that peak in the training set (see
Methods section for details).

Figure 2c-e illustrates the performance of each model type
(ANN, GNN, and combined) across different mass bins (see also
Supplementary Fig. S2 for details about each individual ANN
model). We evaluate performance using accuracy and the F1 score
(see Methods section for details). Due to the unbalanced nature
of the target values—where even the most frequent peaks are
relatively rare—accuracy often approaches 1 and does not provide
a clear picture of model performance. In contrast, the F1 score,
which is close to both precision and recall because our models
are well-calibrated, is more informative. Our results show that
the ANN and combined models, with mean F1 scores of 0.411 and
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Figure 2. Prediction of individual fragments. We discretize the m/z axis of each spectrum into bins of width 0.01. (a) The percentage of peaks in the
training set covered by modeling only the x bins with the highest frequency of peaks across molecules (x-axis). The dashed line indicates the coverage
achieved by 1000 models. (b) The percentage of molecules in the training set whose spectra contain 3, 5, and 10 peaks when only the x most frequent
bins are considered. The dashed line indicates the coverage achieved by 1000 models. Based on (a) and (b), we select the 1,000 bins that cover the highest
fraction of peaks and molecules. These bins (a) cover 60% of the peaks in the training set and (b) ensure that 94% of the training spectra have at least
3 peaks, 90% have at least 5 peaks, and 80% have at least 10 peaks. For each of these bins, we train three different SingleFrag models (ANN, GNN, and
combined; see text for details). (c to e) Accuracy and F; score for the each bin and model type: (c) ANN, (d) GNN, and (e) combined. The models on
the x-axis are sorted from highest to lowest frequency of peaks in the training set, with the first model corresponding to the bin that most frequently

contains a peak (at m/z 51.03) in the training set.

0.399 respectively, outperform the GNN model, which has a mean
F1 score of 0.290. The good performance of the ANN model rests
on the fact that molecules with similar mol2vec embedding also
tend to have more similar spectra (Supplementary Fig. S3).

Our results also show that, on average, prediction accuracy
decreases for increasingly rare peaks, which provides a rationale
for limiting the number of peaks considered in our approach.
Other peaks (including those corresponding to larger fragments,
which may be structurally informative for specific complex
molecules) are typically difficult to predict because no machine-
learning algorithm can learn from very few instances.

SingleFrag models yield accurate in silico spectra

Next, we investigate whether SingleFrag models, trained to predict
individual peaks, can accurately predict whole spectra. For this,
we apply all 1,000 bin-specific models to each molecule in the
test set to obtain the corresponding predicted spectrum (Fig. 3).
We perform this analysis for each type of SingleFrag model (ANN,
GNN, and combined; Fig. 3d—f). To evaluate the performance of
the SingleFrag models, we benchmark them against three state-
of-the-art algorithms: (i) CFM-ID [16] (Fig. 3b), the leading rule-
based prediction algorithm, and widely used for in silico fragmen-
tation; (if) 3DMolIMS [19] (Fig. 3a), which takes into account the 3D
structure of molecules in its predictions; and (iii) MassFormer [18]
(Fig. 3c), which uses a graph transformer architecture to model
relationships between atoms in the molecule.

We compare the predicted spectra in terms of precision, recall,
accuracy, and cosine similarity between the predicted and real
spectra in the test set (Fig. 3h—j). These performance metrics vary
considerably across compounds (although we do not observe any
clear dependency of performance on molecular properties such

as molecular size; see Supplementary Fig. S4). Because of this,
and given that our validation naturally provides matched samples
(predictions from different algorithms for each compound), we
report the number of molecules for which each tool has the best
metric. This comparison is restricted to molecules that could
be predicted by all methods, specifically those for which CFM-
ID, 3DMoIMS and MassFormer return valid outputs, accounting
for 2,563 compounds in the test set. As before, we disregard the
intensity of fragment ions and focus solely on whether peaks are
predicted to exist or not.

Even though predictions are obtained at the provided m/z
resolution for each method (0.01 Da for SingleFrag, 0.2 Da for
3DMoIMS, and 1 Da for MassFormer), and to ensure consistency,
we calculate performance metrics using m/z bins of size 1, thus
matching the lowest precision provided by all methods (Mass-
Former). Additionally, we compare whole spectra, and not only
the 1,000 fragments that SingleFrag has been trained to predict—
all other fragments are predicted not to exist by SingleFrag, and
counted as errors if they actually exist in the empirical spectrum.
Finally, note also that, although no molecule in the test set has
been used in any way for training SingleFrag, some test molecules
could be in the training set of benchmark algorithms.

As shown in Fig. 3h—j, we find that 3DMolIMS performs better
than CFM-ID and MassFormer. 3DMolMS and CFM-ID perform
similarly in terms of precision, but 3DMolIMS tends to have higher
recall, resulting in higher cosine similarities between the pre-
dicted and real spectra. MassFormer performs similarly to, but
always slightly worse than 3DMolMS. However, all three Sin-
gleFrag models achieve better precision than CFM-ID, 3DMolMS
and MassFormer. Since their recall is comparable to 3DMolMS
(better for the combined model, similar for the ANN model,
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metrics vary considerably across molecules and our validation naturally gives matched samples (that is, for each molecule we obtain the spectrum
predicted by each of the algorithms), we plot, for each metric, the number of molecules for which a given model is the best performer. Error bars

represent the standard deviation obtained by boostrapping.

and worse for the GNN model), SingleFrag models produce in
silico spectra with higher accuracy and cosine similarity to the
true spectrum overall. This is particularly noteworthy consider-
ing the factors outlined above and playing against SingleFrag,
namely: (i) ignoring its higher resolution to match the lower
resolution of the benchmarks; (i) not limiting the comparison
to the 1,000 trained m/z bins; and (iii) probably including in
the test set molecules on which the other algorithms (but not
SingleFrag) were trained. The fact that, despite all this, the pre-
dictions of all SingleFrag models are, overall, closer to the true
spectra than those of the benchmarks strongly supports our
hypothesis that modeling individual peaks separately results in
more accurate predictions than using a single model for the entire
spectrum.

A database of in silico spectra of known
molecules enables the annotation of unknown
empirical spectra

Given the success of SingleFrag models, particularly the ANN
model, in predicting whole spectra, we investigate whether
these in silico predicted spectra are accurate enough to annotate
unknown MS/MS empirical spectra of known compounds. These
are compounds that have been described in chemical databases
but whose fragmentation spectra are not available to the
community. To facilitate this annotation process, we have created
a database containing nearly 1.9 million in silico MS/MS spectra
predicted by the ANN SingleFragmodel. To generate these spectra,
we begin with the SMILES representations of nearly 1.9 million
compounds (Methods section). Using these SMILES, we first obtain

their 300-dimensional mol2vec embeddings, and then perform a
forward pass through the SingleFrag ANN model to predict their
spectra.

With the resulting database, we can annotate unknown spectra
through the following steps. Given an unannotated empirical
spectrum, we first estimate either: (i) the molecular mass of the
corresponding compound based on the mass of the precursor ion,
or (ii) its exact molecular formula using a tool such as BUDDY
[30]. Next, we filter the database of 1.9 million compounds/spectra
to find candidate compounds that match the mass or molecular
formula, respectively, of the unknown target compound. Finally,
we rank these candidates by calculating the cosine similarity
between the unannotated empirical spectrum and the in silico
spectrum predicted for each candidate.

To validate the performance of SingleFrag at the task of
annotating spectra, we use the same test set of molecules as
in previous sections. For each MS/MS spectrum, we generate a
list of candidate molecules with compatible molecular formulas
(Fig. 4a and d) or compatible molecular masses, assuming a
spectrometer precision of either 1ppm (Fig. 4b and e) or 10ppm
(Fig. 4c and f). We evaluate the annotation performance by
tracking the position of the true molecule in the candidate ranking
for each test molecule. In Fig. 4a-c, we show the frequency with
which the true molecule is ranked first (Top 1, indicating perfect
annotation), among the top five candidates (Top 5), and among the
top ten candidates (Top 10). We measure this performance under
four experimental conditions: using low (0-14 eV), medium (15-
39 eV), or high (=40 eV) collision energy spectra as the unknown
empirical query (800, 1057, and 542 spectra, respectively, from the
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Figure 4. Annotation of unknown empirical MS/MS spectra. We evaluate the ability of SingleFrag to annotate empirical MS/MS spectra of known
compounds, meaning compounds that are described in databases but whose reference fragmentation spectra are not available. For each molecule
in the test set, we identify putative annotations by selecting compatible candidates from a reference database containing nearly 1.9 million known
molecules. Compatibility is established based on: (a, and d) exact molecular formula (simulating a scenario where the exact formula of the test molecule
is determined with a tool such as BUDDY [30]); (b and e) exact mass, with a window of 1 ppm; or (c and f) exact mass, with a window of £10 ppm. We
then rank candidate annotations by computing the cosine similarity between the empirical spectrum of the test molecule and the predicted SingleFrag
ANN spectrum of each compatible candidate. For each test molecule and experimental condition (exact formula, 1 ppm, and 10 ppm), we consider
separately empirical spectra with different collision energies: (i) low collision energy (<15 eV); (ii) medium collision energy (>15 eV and <40 eV); (iii)
high collision energy (>40 eV). Additionally, we consider merged spectra processed as in the training of SingleFrag, by merging spectra for all collision
energies available for each test molecule. (a-c) We plot the frequency with which the true molecule (Tanimoto coefficient [31] T = 1) is ranked as the
top candidate (perfect annotation), and among the top 5 and top 10 candidates (plausible annotations). (d-f) For each experimental condition, we plot
the probability of the top candidate being the true molecule (Tanimoto coefficient [31] T = 1) as a function of the score gap A cos between the top and

the second ranked candidates. Generally, larger gaps provide more confidence in the top annotation.

NIST20 and Agilent METLIN Metabolomics databases; Methods
section), and using merged query spectra where peaks at all
available collision energies are combined into a single spectrum
(see Methods section for details).

We obtain the best results when we use as much information as
possible, that is, when the exact molecular formula of the target
molecule is assumed to be known from a tool such as BUDDY
[30], and multiple spectra (at different collision energies) for the
molecule are merged (Fig. 4a). Under these conditions, the true
molecule is ranked first in 37.6% of cases, among the top five
candidates in 71.9% of cases, and among the top ten candidates
in 82.7% of cases. Performance decreases only slightly when indi-
vidual high-energy spectra are used (36.6% ranked first, 69.0% top
five, 81.2% top ten). Performance decreases more noticeably when
medium-energy spectra (32.2% ranked first, 66.5% top five, 79.9%
top ten) and low-energy spectra are used (29.9% ranked first,
59.3% top five, 72.6% top ten). This happens because SingleFrag
focuses on the 1,000 bins where peaks occur most frequently,
covering masses in the low mass range between m/z 29.04 and
269.09. These bins are more likely to be present in high-energy
spectra, which typically produce extensive fragmentation, espe-
cially in the low mass range. By contrast, low-energy spectra tend
to be less fragmented, dominated by a few large, rare fragments or
the molecular ion itself, for which SingleFrag is likely to not make
predictions.

Significantly, in all cases, the reliability of annotations can
be considerably increased by examining the relative position of
the candidates in the ranked list (Fig. 4d-f). As mentioned, we
score candidates based on the cosine similarity between the
target empirical spectrum and the in silico predicted spectrum
for each candidate. However, the difference between the scores
of the first and second candidates is particularly informative
about the reliability of the top candidate. When the two scores
are very close, the top candidate is the true metabolite in 20%—
30% of cases (Fig. 4d-f), consistent with the overall figures in
Fig. 4a—c. However, when there is a large gap between the cosine
similarities of the first and second candidates, the top candidate
is much more likely to be the true molecule. Specifically, when the
difference in cosine similarity scores (A cos) between the top and
second ranked candidates exceeds 0.2, the top candidate is the
correct molecule in the majority of cases. (This is specially true for
merged spectra and at high collision energies; at low energies, the
small number of instances with gaps larger than 0.4 sometimes
obscures this signal.)

In less clear situations, when candidate lists have smaller gaps
between top candidates, SingleFrag is still useful in annotating,
because smaller gaps are often related to top candidates being
structurally similar to each other. For example, when the gap is
Acos < 0.1, the top two candidates have an average Tanimoto
similarity ranging from T = 0.39 in the worse case, when using
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low-energy spectra and a 10ppm window for candidates, to T =
0.52 when using merged spectra and the exact molecular formula
for candidates. These values are significantly larger than the
null expectation T = 0.17 £ 0.10 for the Tanimoto coefficient of
randomly selected pairs of molecules in our dataset. Thus, even
when the top candidate does not coincide with the ground-truth
molecule, it provides structural cues about its structure.

Annotation of recurrent unidentified spectra
from the ARUS database

Building on the validation results from the previous section, we
demonstrate that our approach effectively annotates unknown
spectra. We focus on spectra from the Annotated Recurrent
Unidentified Spectra (ARUS) database [24], maintained by the
NIST MS Data Center. This database includes spectra that
frequently appear in real samples but remain unannotated.

We used a dataset of ARUS spectra with putative molecular
formulas assigned using BUDDY [30]. The dataset includes spec-
tra from two sources: plasma (25,801 spectra) and urine (68,478
spectra). For each unknown molecule, we discretized and bina-
rized its associated spectrum as previously described. We then
generated a list of candidate annotations for each spectrum using
a filtering window of 1 ppm. To be as exhaustive as possible in
the annotation of these unidentified spectra, we enlarged the in
silico database with all compounds available for download from
PubChem, resulting in an extended database of over 96 million
predicted spectra. We ranked the candidate annotations using
the similarity between the target empirical spectrum and the
SingleFrag in silico prediction for each candidate’s spectrum and
kept the ten candidates whose in silico spectra were more similar
to the query spectrum.

From hundreds of potential annotations, and given that
validating annotations manually is very costly, we selected
three particularly promising ones. This selection was based
on two criteria: (i) the molecular formula matched BUDDY’s
prediction, with a low estimated false discovery rate in BUDDY;
and (ii) there was a significant gap between the first and second
candidates in SingleFrag’s ranking. We confirmed the annotation
for these three compounds—glucuronyl-2-hydroxyhippurate, 8-
hydroxyquinoline glucuronide, and a truxilline isomer—through
the manual elucidation of their fragment ions from their
molecular structures by an expert chemist (Fig. 5). These three
compounds are of particular interest due to their putative origin.
Isomeric truxillines, a group of minor alkaloids consistently found
in illicit cocaine samples, suggests possible exposure through
drug use or environmental contamination related to cocaine
production. 8-hydroxyquinoline glucuronide, a metabolite of 8-
hydroxyquinoline, could indicate pharmaceutical use or exposure
to quinoline compounds. Glucuronyl-2-hydroxyhippurate, a
conjugate of hippuric acid, may reflect dietary intake or
endogenous metabolic processes involving aromatic acids.

Discussion

SingleFrag is a novel in silico fragmentation tool for metabolites
and small molecules. Unlike existing machine learning tools,
SingleFrag focuses on predicting the presence or absence of indi-
vidual fragments rather than attempting to predict whole spectra,
including all peaks and their intensities. Although it can be argued
that some peaks are related, and that ignoring these relationships
may lead to less accurate predictions, our approach is based
on the rationale that the molecular features predictive of the

existence of a specific fragment may be distinct from those predic-
tive of most other fragments. Our results validate this rationale.

We developed three different SingleFrag models: ANN, GNN,
and combined. While sharing the idea of modeling the existence
of single fragments, these models operate in fundamentally dif-
ferent ways. The ANN model uses a mol2vec embedding, while
the GNN model works directly with the molecular graph, leading
to distinct neural network architectures and underlying mathe-
matical models. Despite these differences, all SingleFrag models
outperform the state-of-the-art in silico prediction tools, CFM-
ID, 3DMoIMS and MassFormer. This is particularly noteworthy
for MassFormer, which employs a more sophisticated network
architecture, and for 3DMolIMS, which also uses a much larger
architecture and, additionally, takes into account detailed fea-
tures encoding the 3D location of each atom in molecules.

A consequence of SingleFrag’s approach is the need to train a
different model for each fragment we aim to predict. Here, we
have shown that 1,000 such models are enough to produce in
silico spectra that are more accurate than the state of the art in
whole-spectrum approaches, but two reasonable objections can
be made. First, one may argue that some rare fragments may be
very informative for certain molecules, and will be missed by our
approach. Second, one may add that considering more models
to alleviate the first objection is not scalable and that, in any
case, training 1,000 models may become prohibitive if the size of
spectral databases grows. With respect to the first objection, we
argue that rare fragments may by structurally informative but, in
general, will not be very useful to machine learning approaches,
which typically cannot learn from only a few examples. This
argument is supported by the fact that, even within the 1,000
fragments considered here, the most common ones are better
predicted than those that are less frequent (Fig. 2). Additionally,
we note that adding more fragments does not seem to add to
SingleFrag’s performance—we explored the addition of another
1,000 models, but observed no significant improvement in perfor-
mance. With regards to the second objection, we note that each
SingleFrag model consists of only a few thousand parameter, as
opposed to the millions of parameters used in whole-spectrum
approaches. Therefore, training 1,000 SingleFrag models is not
more costly than existing approaches.

All things considered, we hope that our approach of modeling
peaks individually will inspire new developments where more
complex features and models, such as those used in 3DMolMS and
MassFormer, can be integrated into SingleFrag-like frameworks
to achieve even higher levels of spectral predictive accuracy.
Additionally, we recognize that there is significant potential for
enhancing the neural network architectures we have employed.
Indeed, we deliberately kept our models simple to demonstrate
that the improved performance is primarily due to the approach
of modeling individual peaks instead of whole spectra, rather than
more sophisticated deep learning techniques. This is especially
relevant for the GNN model. Its slightly lower performance com-
pared to the ANN model should not be seen as a fundamental
limitation of GNNs in the domain of spectral prediction, but rather
as an opportunity to refine graph features and optimize graph
layer architectures for even better results. Our current approach
considers only very basic atom and bond featurization—more
sophisticated featurizations of atoms and bonds, or including
graph attributes and molecular fingerprints, are likely to improve
GNN performance.

We have also shown that, even with relatively simple neural
network models, SingleFrag can already be used to annotate
real spectra, both in a controlled setting with test molecules,
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Figure 5. Annotation of three empirical MS/MS spectra from the ARUS database [24]. For three different unannotated spectra in ARUS, we show the
empirical MS/MS spectrum (obtained by merging all available spectra for the compound and binarized as in the rest of the paper) and the predicted
spectrum for the top candidate annotation identified by SingleFrag. In each case, we show the chemical structure of the top candidate, as well as the
match between observed peaks of the empirical spectrum and plausible fragments identified manually via structural analysis of the molecule.
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and in a real-world scenario with ARUS molecules that we have
annotated for the first time. We expect that future SingleFrag-like
algorithms will enable even more reliable annotation, which is the
standing roadblock for the development of the full potential of
metabolomics.

Moreover, our results emphasize the critical importance of
acquiring experimental MS/MS spectra for each precursor ion
at multiple collision energies. Among the widely used spectral
libraries, only the NIST MS/MS provides a systematic and curated
repository of spectra acquired at multiple collision energies. By
contrast, other spectral libraries such as GNPS, MSDial, or Mass-
Bank often lack sufficient curation and typically contain spectra
acquired at only one or a few collision energies per compound.
This limitation can lead to incomplete or less informative spectra,
which may not fully represent the diversity of fragment ions
produced under different collision conditions.

By employing techniques like stepped collision energy, it is
possible to capture a broader range of fragment ions, resulting in
more detailed and informative spectra. Our results suggest that
this approach may be essential, not only for real metabolomic
experiments, but also for the expansion and curation of existing
reference spectral libraries. This creates a positive feedback loop—
improved predictive models generate better in silico spectra, which
in turn can more accurately match the experimental spectra of
unidentified compounds. This enhances the reliability and utility
of these predictions, ultimately leading to new discoveries and a
more comprehensive understanding of metabolic pathways and
processes.

Methods

Machine learning tool to predict in silico MS/MS
spectra of [M+H]+ adducts

Data We obtained 2 291 119 MS/MS spectra from the HMDB, Agi-
lent METLIN, MassBankEU and MoNA, NIST, and Riken databases,
corresponding to 478 631 unique compounds. The annotations for
these spectra and compounds may include the name, molecular
formula, InChIKey, SMILES, adduct, precursor ion mass, collision
energy, and mass spectrometer type.

After excluding in silico generated spectra (mainly from HMDB),
we retained 450 248 experimental MS/MS spectra for the pro-
tonated adduct in positive mode ([M+H)]). Limiting our analysys
to this adduct is based on both data availability and model
robustness. The [M+H]+ adduct is by far the most commonly
encountered ionization product across compound classes and
instrumental platforms. While some databases do provide spectra
for alternative adducts, these are relatively sparse, and their frag-
mentation patterns are often less reproducible or informative. We
discarded spectra with m/z values reported with a single decimal
or generated by low-resolution instruments. After filtering, we
had 434 480 spectra corresponding to 54 790 compounds. We then
merged all spectra corresponding to each unique compound into
a single spectrum, regardless of the original database or acqui-
sition tool. Using unique database identifiers for each molecule,
we combined the m/z values from all corresponding spectra
into a single binary list (see below details about how we build
binned spectra). To ensure consistency, we obtained canonical
SMILES from the latter via their InChIKeys and the Chemical
Identifier Resolver API service of PubChem (https://pubchem.
ncbinlm.nih.gov/rest/pug/compound/inchikey/). After removing
11 916 molecules without InChIKeys and 12 282 molecules not
found by the request, we obtained a final dataset of 30 191 unique
compounds.

We ensured that each molecule in the dataset had its exact
mass, verifying that it matched the mass calculated from its
SMILES within a 0.01 difference. Only one molecule did not match,
so we eliminated it to avoid inconsistencies. We also verified that
each spectrum contained the m/z of the precursor ion corre-
sponding to the [M+H] adduct, allowing a window of £0.05 Da.
For spectra without such a precursor ion, we manually added it
by summing the mass of a proton to the neutral mass of the
compound. Additionally, we removed the peaks for m/z values
larger than the mass of the precursor ion plus 0.05. This process
resulted in a dataset with molecules having masses between
58.041 and 2464.191 Da. Finally, we randomized the data and
divided itinto a training set containing 24 472 spectra, a validation
containing 3059 spectra, and test sets containing 2659 spectra.
Spectrum binarization and merged spectrum construction Sin-
gleFrag predicts the existence/absence of peaks in m/z bins with
a resolution of 0.01 m/z. To that end we discretize the 450 248
spectra in our database by assigning peaks to the m/z bin corre-
sponding to the ceiling of the second decimal of the m/z value
corresponding to the peak. For instance, if a spectrum has a peak
(fragment) at m/z 110.253, we assign it to m/z bin 110.26. Because,
we binarize spectra, m/z bin 119.26 would have associated a value
of 1 since there is a peak in that bin. At the end of the process,
the binarized, discrete spectrum is a vector in which a value of 1
indicates the presence of a peak in the corresponding bin and a
value of 0 indicates the absence of a peak in that m/z bin.

To obtain the merged spectrum of each unique compound, we
consider all individual spectra for that compound. For each m/z
bin, we look at whether individual spectra have a peak in that
bin. If at least one spectrum has a peak, we assign a 1 to that bin,
and a 0 otherwise. Therefore the merged spectrum of a compound
represents all the possible fragments that have been detected for
that compound.

Note that binning spectra is a necessary choice when using
machine learning methods with discrete inputs. As explained
in the main text, by using 0.01 m/z bins and using the 1000
most commons bins with associated fragments, we have a good
coverage of the fragments observed in the majority of spectra.
We note that, by binning spectra into 0.01 m/z bins, nonzero
intensities associated to the same fragment may be split into two
neighboring bins—for instance, fragments with m/z values 25.889,
25.891 would be classified in different bins, but could have been
attributed to the same bin had we binned spectra differently. To
assess how often this happens, we chose 100 random bins of size
m/z 0.01 and represented the distribution of fragments associ-
ated to that bin (Supplementary Fig. S1). Our results show that
approximately half of the time the fragments were distributed in
the middle of the bins, and in the other half the fragments were
distributed between neighboring bins, which suggests that there
is no perfect binning strategy.

Machine learning models We introduce three SingleFrag models.
All models aim to predict whether a molecule has a peak at a
specific mass bin or not, and are thus binary classifiers:

1. ANN: First, we create 300-dimensional embeddings for all
molecules in the training, validation and test sets using
the mol2vec algorithm [20]. These embeddings were then
inputinto a Multilayer Perceptron with three fully-connected
layers, two of them with ReLU activation functions, and the
final layer with a Sigmoid activation. The model was trained
with a batch size of 16, a learning rate of 1x10~*, and binary
cross entropy as the loss function. We set a minimum of 200
and a maximum of 2000 epochs for training, and keep the
model with the lowest validation loss. We also implemented
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an early auto-stop if the validation loss increased while the
training loss decreased, comparing the most recent epoc to
the previous 100 epochs.

2.GNN: The GNN model uses the whole molecular graph to
make predictions. We used bond embeddings (type of bond
and atom indices) and atom embeddings (neighboring atom
sequence, total hydrogens, formal charge, mass, and aro-
maticity). We run the node embeddings through three graph
attention layers (GAT; these assign different importance to
each connection in the graph) with ReLU activations. After
the third GAT layer, we aggregated embeddings using sum,
max, and average functions, and used a sigmoid as an activa-
tion function. We used training parameters equal to those of
the ANN model but with a minimum of 4000 and a maximum
of 10 000 epochs.

3. Combined Neural Network (CNN): This model integrates the
ANN and GNN models by using both the 300-dimensional
mol2vec embeddings and the graph embeddings. The first
three layers of the CNN matched the GNN structure, using
graph attention operators and RelLU activations, followed
by pooling. To integrate the GNN and ANN predictions, we
reshaped the mol2vec vector dimensions to align with the
pooled data. The ANN component included a multilayer
perceptron with three fully-connected layers, two ReLU acti-
vations, and one sigmoid activation. After combining these
outputs, we applied a linear layer with 45 neurons and
another linear layer with ReLU, followed by a final linear
layer with a sigmoid activation. Training parameters were
consistent with the previous models, with a batch size of 16, a
learning rate of le-4, binary cross entropy loss, and a training
range of 4000 to 10 000 epochs.

Threshold scores and model calibration To produce in silico
binary spectra, we need to convert the output scores from our
machine learning models (ANN, GNN, and CNN) into a 0 or 1
prediction for the existing of each peak. A way to achieve this
is to specify a threshold value for each model associated to a
m/z bin so that scores above the threshold are converted into a 1
(presence of a peak) and the remaining scores are converted into
a 0 (absence of a peak).

Because the training and test sets are selected at random, the
expected fraction of molecules having a peak in a specific m/z bin
in the train, validation and test sets is the same. Therefore we have
to select a threshold that recovers the statistically correct fraction
of molecules with peaks in that bin. To that end, for a specific m/z
bin, we rank the Ny, molecules in the validation set according
to their score for that bin. We then compute the fraction fu,, of
molecules with a peak in that bin within the training set. We set
the threshold as the score of the molecule in position fm/zNvyal
within the validation set (rounded upwards to the next integer).
Note that the threshold value depends on the modeling approach
(ANN, GNN, and CNN) and the m/z bin we consider. By binarizing
scores in this way, we ensure that our models are statistically
calibrated.

Validation To evaluate our predictions, we compare them with
those of three other in silico fragmentation tools: CFM-ID [16],
3DMolMS [19] and MassFormer [18].

CFM-ID uses CFM and machine learning to fit model parame-
ters. The latest version, CFM-ID 4.0, is accessible via a web server
at http://cfmid4.wishartlab.com/ and as downloadable Docker
images at https://hub.docker.com/r/wishartlab/cfmid [16]. Using
CFM-ID 4.0 with its default values, which exclude fragmentations
below a 0.001 probability threshold, we obtained predictions for

2638 out of the 2659 molecules in the test set. The tool CFM-
ID 4.0 calculates spectra for low (10 eV), medium (20 eV), and
high (40 eV) collision energies, representing them as lists of mass-
intensity pairs, each corresponding to a peak in the spectrum.
We then consolidated the predicted spectra at different collision
energies into a single merged spectrum and removed the peaks
whose intensity was lower than 1%.

3DMoIMS uses deep learning to predict MS/MS spectra from
3D molecular conformations and other molecular features. The
source code for the tool is available from https://github.com/
JosieHong/3DMolMS. We used the pretrained model provided in
this repository, and generated in silico spectra at low (10 eV),
medium (20 eV), and high (40 eV) collision energies. We then
consolidated the spectra predicted at different collision energies
into a single merged spectrum and removed the peaks whose
intensity was lower than 1%. 3DMoIMS produces spectra at 0.2
m/z resolution.

MassFormer uses a graph transformer architecture to model
long-distance relationships between atoms in the molecule. We
used their pretrained model from https://github.com/Roestlab/
massformer to make predictions. As we did before, we merged
spectra predicted at different collision energies (normalized col-
lision energies of 20, 40, 60, 80, and 100%) into a single merged
spectrum. In this case, we removed the peaks in each spectrum
whose intensity was lower than 1% of the highest predicted
intensity.

Ultimately, 2,563 spectra were predicted using CFM-ID 4.0,
3DMolIMS, MassFormer, and SingleFrag. Because MassFormer pro-
duces spectra at a 1 m/z resolution, we discretized CFM-ID 4.0,
3DMolIMS, and SingleFrag spectra at the same resolution. We also
consider only binary spectra and do not use information about
the intensities associated to m/z bins or fragments.

To evaluate our models, we calculated various metrics com-
paring the real MS/MS spectra of the molecules (discretized and
binarized) with their in silico spectra reconstructed by different
methods (ANN, GNN, Combined, CFM-ID, 3DMolMS, and Mass-
Former). The metrics used were precision, recall, accuracy, F1
score, and cosine similarity. To define these metrics, we use the
following nomenclature: true negative (TN), true positive (TP),
false positive (FP), and false negative (FN). A model prediction is
Positive if it is 1 and Negative if it is 0. Additionally, a prediction is
True if it is correct and False if it is incorrect.

e Precision: Measures the proportion of true positive predic-
tions among all positive predictions made by the model. It
indicates how many of the predicted positives are actually
correct.

TP

Precision = ———
TP + FP

(1)

¢ Recall: Also known as sensitivity, it measures the proportion
of true positive predictions among all actual positives. It
indicates how well the model can identify positive instances.

TP

Recall = TPLEN

(2)

e F1: Combines Precision and Recall into a single metric by tak-
ing their harmonic mean. It provides a balance between Pre-
cision and Recall, especially useful when there is an uneven
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class distribution.

Precision - Recall

F1=2  ——M—
Precision + Recall

(3)

e Accuracy: Measures the proportion of all correct predictions
(both true positives and true negatives) among the total num-
ber of cases evaluated. It indicates the overall effectiveness of
the model.

TP+ TN

Accuracy = ——————————
WY = T TN+ FP+ EN

)

¢ Cosine Similarity: Measures the cosine of the angle between
two vectors in an inner product space. It quantifies how
similar the vectors are by determining if they point in approx-
imately the same direction.

A-B

cos(A,B) = ——
AT IBI

()

In silico spectral database to validate annotation
of empirical spectra

Data To build the in silico spectra database, we used the previously
compiled list of SMILES of 30 191 unique compounds with
associated experimental spectra. We also downloaded SMILES of
metabolites from various online sources: HMDB (217 760 SMILES),
Chemical Entities of Biological Interest (ChEBI) (51 112 SMILES),
ChEMBL (1773 996 SMILES), Computational Toxicology (CompTox)
(8963 SMILES), NORMAN Suspect List Exchange (NORMAN-SLE)
(114 051 SMILES), and NORMAN Substance Database (NORMAN
SusDat) (106 632 SMILES). Additionally, we considered 42 648
SMILES from the NIST20, Agilent METLIN Metabolomics, MSDial,
and GNPS databases. After removing duplicates, the initial
database consisted of 2 211 691 unique SMILES.

To be as exhaustive as possible in the annotation of unidenti-
fied spectra from ARUS, we enlarged the in silico database with all
compounds available for download from PubChem, resulting in
an extended database of 96 492 904 predicted spectra.

To ensure consistency across the SMILES obtained from dif-
ferent databases, we calculated their canonical SMILES using the
Rdkit package (https://www.rdkit.org). This process allowed us to
identify how many SMILES corresponded to the same compound.

Key Points

e We tackle the problem of predicting the fragmentation
spectrum of metabolites and small molecules.

e Whereas existing in silico fragmentation tools based on
deep learning typically use a single model to predict
the whole fragmentation spectrum, we propose to model
each individual fragment separately.

e We achieve more accurate spectral predictions than the
state of the art in both rule-based methods and deep
learning methods.

¢ SingleFragis fast enough to allow us to create a database
with millions of predicted spectra, and use this database
to annotate metabolites.

e Besides validating this annotation method on a test set
with ground truth, we apply it to recurrent unidentified
spectra from the ARUS database, successfully annotat-
ing three new metabolites.
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