HIGHLIGHTS

news

Multilayer stochastic block models reveal the multilayer structure of complex networks

Phys. Rev. X - March 31, 2016



In complex systems, the network of interactions we observe between systems components is the aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that the existence of multiple interaction layers can have a dramatic impact in the dynamical processes occurring on these systems. However, these...

Read more

news

The currents beneath the “rising tide” of school choice: An analysis of student enrollment flows in the Chicago public schools

J. Policy Anal. Manag - Feb. 12, 2015



Existing research highlights that families face geographic, social, and psychological constraints that may limit the extent to which competition can take hold in school choice programs. In this paper, we address the implications of such findings by creating a network of student flows from 11 cohorts of eighth-grade students in...

Read more

news

Impact of heterogeneity and socioeconomic factors on individual behavior in decentralized sharing ecosystems

Proc. Natl. Acad. Sci. U. S. A. - Oct. 28, 2014



Tens of millions of individuals around the world use decentralized content distribution systems, a fact of growing social, economic, and technological importance. These sharing systems are poorly understood because, unlike in other technosocial systems, it is difficult to gather large-scale data about user behavior. Here, we investigate user activity patterns...

Read more

OUR RESEARCH

research

Complex Systems

Cells, ecosystems and economies are examples of complex systems. In complex systems, individual components interact with each other, usually in nonlinear ways, giving rise to complex networks of interactions that are neither totally regular nor totally random. Partly because of the interactions themselves and partly because of the interaction's topology, complex systems cannot be properly understood by just analyzing their constituent parts.

research

Data Science

Humans generate information at an unprecedented pace, with some estimates suggesting that, in a year, we now produce on the order of 10^21 bytes of data, millions of times the amount of information in all the books ever written. Processing this "data deluge", as some have called it, requires new tools and new approaches at the interface of statistics, statistical and machine learning, network theory and statistical physics.

research

Multidisciplinarity

Our goal is to push forward the boundaries of science. We are interested in addressing fundamental questions in all areas of science including natural, social and economic sciences. We put a special emphasis in the development of tools that aid scientific discovery through understanding and quantification of a specific phenomenon. To this end we have assembled a multidisciplinary team and have established solid collaborations with experts in biology, social sciences, ecology and economics.