HIGHLIGHTS

news

Bayesian machine scientist to compare data collapses for the Nikuradse dataset

Phys. Rev. Lett. - Feb. 27, 2020



Ever since Nikuradse’s experiments on turbulent friction in 1933, there have been theoretical attempts to describe his measurements by collapsing the data into single-variable functions. However, this approach, which is common in other areas of physics and in other fields, is limited by the lack of rigorous quantitative methods to...

Read more

news

CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network

Bioinformatics - Oct. 15, 2019



The analysis of biological samples in untargeted metabolomic studies using LC-MS yields tens of thousands of ion signals. Annotating these features is of the utmost importance for answering questions as fundamental as, e.g. how many metabolites are there in a given sample. Here, we introduce CliqueMS, a new algorithm for...

Read more

news

Tensorial and bipartite block models for link prediction in layered networks and temporal networks

Phys. Rev. E - March 27, 2019



Many real-world complex systems are well represented as multilayer networks; predicting interactions in those systems is one of the most pressing problems in predictive network science. To address this challenge, we introduce two stochastic block models for multilayer and temporal networks; one of them uses nodes as its fundamental unit,...

Read more

OUR RESEARCH

research

Complex Systems

Cells, ecosystems and economies are examples of complex systems. In complex systems, individual components interact with each other, usually in nonlinear ways, giving rise to complex networks of interactions that are neither totally regular nor totally random. Partly because of the interactions themselves and partly because of the interaction's topology, complex systems cannot be properly understood by just analyzing their constituent parts.

research

Data Science

Humans generate information at an unprecedented pace, with some estimates suggesting that, in a year, we now produce on the order of 10^21 bytes of data, millions of times the amount of information in all the books ever written. Processing this "data deluge", as some have called it, requires new tools and new approaches at the interface of statistics, statistical and machine learning, network theory and statistical physics.

research

Multidisciplinarity

Our goal is to push forward the boundaries of science. We are interested in addressing fundamental questions in all areas of science including natural, social and economic sciences. We put a special emphasis in the development of tools that aid scientific discovery through understanding and quantification of a specific phenomenon. To this end we have assembled a multidisciplinary team and have established solid collaborations with experts in biology, social sciences, ecology and economics.