HIGHLIGHTS

news

Stochastic block models reveal a robust nested pattern in healthy human gut microbiomes

PNAS Nexus - May 23, 2022



A key question in human gut microbiome research is what are the robust structural patterns underlying its taxonomic composition. Herein, we use whole metagenomic datasets from healthy human guts to show that such robust patterns do exist, albeit not in the conventional enterotype sense. We first introduce the concept of...

Read more

news

Node Metadata Can Produce Predictability Crossovers in Network Inference Problems

Phys. Rev. X - Jan. 14, 2022



Network inference is the process of learning the properties of complex networks from data. Besides using information about known links in the network, node attributes and other forms of network metadata can help solve network inference problems. Indeed, several approaches have been proposed to introduce metadata into probabilistic network models...

Read more

news

A Bayesian machine scientist to aid in the solution of challenging scientific problems

Sci. Adv. - Jan. 31, 2020



Closed-form, interpretable mathematical models have been instrumental for advancing our understanding of the world; with the data revolution, we may now be in a position to uncover new such models for many systems from physics to the social sciences. However, to deal with increasing amounts of data, we need “machine...

Read more

OUR RESEARCH

research

Complex Systems

Cells, ecosystems and economies are examples of complex systems. In complex systems, individual components interact with each other, usually in nonlinear ways, giving rise to complex networks of interactions that are neither totally regular nor totally random. Partly because of the interactions themselves and partly because of the interaction's topology, complex systems cannot be properly understood by just analyzing their constituent parts.

research

Data Science

Humans generate information at an unprecedented pace, with some estimates suggesting that, in a year, we now produce on the order of 10^21 bytes of data, millions of times the amount of information in all the books ever written. Processing this "data deluge", as some have called it, requires new tools and new approaches at the interface of statistics, statistical and machine learning, network theory and statistical physics.

research

Multidisciplinarity

Our goal is to push forward the boundaries of science. We are interested in addressing fundamental questions in all areas of science including natural, social and economic sciences. We put a special emphasis in the development of tools that aid scientific discovery through understanding and quantification of a specific phenomenon. To this end we have assembled a multidisciplinary team and have established solid collaborations with experts in biology, social sciences, ecology and economics.